Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut immune cell trafficking: inter-organ communication and immune-mediated inflammation

Abstract

Immune cell trafficking is a complex and tightly regulated process that is indispensable for the body’s fight against pathogens. However, it is also increasingly acknowledged that dysregulation of cell trafficking contributes to the pathogenesis of immune-mediated inflammatory diseases (IMIDs) in gastroenterology and hepatology, such as inflammatory bowel disease and primary sclerosing cholangitis. Moreover, altered cell trafficking has also been implicated as a crucial step in the immunopathogenesis of other IMIDs, such as rheumatoid arthritis and multiple sclerosis. Over the past few years, a central role of the gut in mediating these disorders has progressively emerged, and the partly microbiota-driven imprinting of particular cell trafficking phenotypes in the intestine seems to be crucially involved. Therefore, this Review highlights achievements in understanding immune cell trafficking to, within and from the intestine and delineates its consequences for immune-mediated pathology along the gut–liver, gut–joint and gut–brain axes. We also discuss implications for current and future therapeutic approaches that specifically interfere with homing, retention, egress and recirculation of immune cells.

Key points

  • Immune-mediated inflammatory diseases (IMIDs) are a group of diseases with an important pathogenetic contribution of immune cell infiltration that depends on cell trafficking.

  • Sophisticated organ-specific mechanisms that regulate immune cell trafficking exist in the gut; however, re-routing cannot be precluded owing to pleiotropy and redundancy of the cell trafficking pathways.

  • Clinical and experimental observations established the gut as a central organ for several IMIDs of extra-intestinal organs and demonstrated disease-relevant communication via the gut–liver, gut–joint and gut–brain axes.

  • Cell trafficking mechanisms along these axes include the induction of pathogenic immune cells at the interface with the intestinal microbiome and their homing to extra-intestinal sites.

  • Anti-trafficking agents have been established for the treatment of inflammatory bowel disease and multiple sclerosis. The field is expected to grow further.

  • Gut-derived cell trafficking pathways in IMIDs represent an important yet insufficiently explored field for potential future therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Important immune-mediated inflammatory diseases, depicting examples of typical manifestation.
Fig. 2: Mechanisms of intestinal T cell trafficking.
Fig. 3: Key mechanisms of immune cell trafficking along the gut–liver, gut–joint and gut–brain axes.
Fig. 4: Overview of the mechanism of action of anti-trafficking agents.

Similar content being viewed by others

References

  1. Girard, J.-P., Moussion, C. & Förster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773 (2012).

    Article  CAS  Google Scholar 

  2. von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  Google Scholar 

  3. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016).

    Article  CAS  Google Scholar 

  4. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  Google Scholar 

  5. Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    Article  CAS  Google Scholar 

  6. Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article  CAS  Google Scholar 

  7. Zaiss, M. M., Joyce, Wu,H.-J., Mauro, D., Schett, G. & Ciccia, F. The gut–joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 17, 224–237 (2021).

    Article  Google Scholar 

  8. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  CAS  Google Scholar 

  9. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  Google Scholar 

  10. Agirman, G., Yu, K. B. & Hsiao, E. Y. Signaling inflammation across the gut–brain axis. Science 374, 1087–1092 (2021).

    Article  CAS  Google Scholar 

  11. Henriksen, E. K. K. et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J. Hepatol. 66, 116–122 (2017).

    Article  CAS  Google Scholar 

  12. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1995 (2020).

    Article  CAS  Google Scholar 

  13. Duc, D. et al. Disrupting myelin-specific Th17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis. Cell Rep. 29, 378–390.e4 (2019).

    Article  CAS  Google Scholar 

  14. Zundler, S., Becker, E., Schulze, L. L. & Neurath, M. F. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut 68, 1688–1700 (2019).

    Article  CAS  Google Scholar 

  15. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  16. McEver, R. P. & Zhu, C. Rolling cell adhesion. Annu. Rev. Cell Dev. Biol. 26, 363–396 (2010).

    Article  CAS  Google Scholar 

  17. Briskin, M. et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am. J. Pathol. 151, 97–110 (1997).

    CAS  Google Scholar 

  18. Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).

    Article  CAS  Google Scholar 

  19. Sriramarao, P. et al. VCAM-1 is more effective than MAdCAM-1 in supporting eosinophil rolling under conditions of shear flow. Blood 95, 592–601 (2000).

    Article  CAS  Google Scholar 

  20. Sun, H. et al. Distinct integrin activation pathways for effector and regulatory T cell trafficking and function. J. Exp. Med. 218, e20201524 (2021).

    Article  CAS  Google Scholar 

  21. Yuan, M. et al. Mucin-like domain of mucosal addressin cell adhesion molecule-1 facilitates integrin α4β7-mediated cell adhesion through electrostatic repulsion. Front. Cell Dev. Biol. 8, 603148 (2020).

    Article  Google Scholar 

  22. Dufour, E. M., Deroche, A., Bae, Y. & Muller, W. A. CD99 is essential for leukocyte diapedesis in vivo. Cell Commun. Adhes. 15, 351–363 (2008).

    Article  CAS  Google Scholar 

  23. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  Google Scholar 

  24. Rosen, H., Stevens, R. C., Hanson, M., Roberts, E. & Oldstone, M. B. A. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem. 82, 637–662 (2013).

    Article  CAS  Google Scholar 

  25. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    Article  CAS  Google Scholar 

  26. McNamee, E. N. et al. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn’s-like murine ileitis. J. Leukoc. Biol. 97, 1011–1022 (2015).

    Article  CAS  Google Scholar 

  27. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  Google Scholar 

  28. Molenaar, R. et al. Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. J. Immunol. 186, 1934–1942 (2011).

    Article  CAS  Google Scholar 

  29. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  Google Scholar 

  30. Belarif, L. et al. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J. Clin. Invest. 129, 1910–1925 (2019).

    Article  Google Scholar 

  31. Ballet, R. et al. A CD22–Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Nat. Immunol. 22, 381–390 (2021).

    Article  CAS  Google Scholar 

  32. Osorio-Barrios, F. et al. The heteromeric complex formed by dopamine receptor D5 and CCR9 leads the gut homing of CD4+ T cells upon inflammation. Cell Mol. Gastroenterol. Hepatol. 12, 489–506 (2021).

    Article  CAS  Google Scholar 

  33. Kim, M. H., Taparowsky, E. J. & Kim, C. H. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    Article  CAS  Google Scholar 

  34. Schleier, L. et al. Non-classical monocyte homing to the gut via α4β7 integrin mediates macrophage-dependent intestinal wound healing. Gut 69, 252–263 (2020).

    Article  CAS  Google Scholar 

  35. Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    Article  CAS  Google Scholar 

  36. Suply, T. et al. A natural ligand for the orphan receptor GPR15 modulates lymphocyte recruitment to epithelia. Sci. Signal. 10, eaal0180 (2017).

    Article  Google Scholar 

  37. Xiong, L. et al. Ahr-Foxp3-RORγt axis controls gut homing of CD4+ T cells by regulating GPR15. Sci. Immunol. 5, eaaz7277 (2020).

    Article  CAS  Google Scholar 

  38. Sheldon, P. Rheumatoid arthritis and gut related lymphocytes: the iteropathy concept. Ann. Rheum. Dis. 47, 697–700 (1988).

    Article  CAS  Google Scholar 

  39. Cattin, A. et al. RALDH activity induced by bacterial/fungal pathogens in CD16+ monocyte-derived dendritic cells boosts HIV infection and outgrowth in CD4+ T cells. J. Immunol. 206, 2638–2651 (2021).

    Article  CAS  Google Scholar 

  40. Bhattacharya, N. et al. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8+ T cell-mediated immunity in colorectal cancer. Immunity 45, 641–655 (2016).

    Article  CAS  Google Scholar 

  41. Grizotte-Lake, M. et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49, 1103–1115.e6 (2018).

    Article  CAS  Google Scholar 

  42. Woo, V. et al. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 29, 1744–1756.e5 (2021).

    Article  CAS  Google Scholar 

  43. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  Google Scholar 

  44. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 SCID mice. Int. Immunol. 5, 1461–1471 (1993).

    Article  CAS  Google Scholar 

  45. Zhang, H. et al. A mutation that blocks integrin α4β7 activation prevents adaptive immune-mediated colitis without increasing susceptibility to innate colitis. BMC Biol. 18, 64 (2020).

    Article  CAS  Google Scholar 

  46. Picarella, D. et al. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J. Immunol. 158, 2099–2106 (1997).

    CAS  Google Scholar 

  47. Sydora, B. C. et al. β7 Integrin expression is not required for the localization of T cells to the intestine and colitis pathogenesis. Clin. Exp. Immunol. 129, 35–42 (2002).

    Article  CAS  Google Scholar 

  48. Mottet, C., Uhlig, H. H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    Article  CAS  Google Scholar 

  49. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    Article  CAS  Google Scholar 

  50. Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    Article  CAS  Google Scholar 

  51. Watanabe, C. et al. Spatial heterogeneity of TNF-alpha-induced T cell migration to colonic mucosa is mediated by MAdCAM-1 and VCAM-1. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G1379–G1387 (2002).

    Article  CAS  Google Scholar 

  52. Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337.e16 (2017).

    Article  CAS  Google Scholar 

  53. Zundler, S. et al. Hobit- and Blimp-1-driven CD4+tissue-resident memory T cells control chronic intestinal inflammation. Nat. Immunol. 20, 288–300 (2019).

    Article  CAS  Google Scholar 

  54. Wiendl, M. et al. Targeting immune cell trafficking–insights from research models and implications for future IBD therapy. Front. Immunol. 12, 656452 (2021).

    Article  CAS  Google Scholar 

  55. Sandborn, W. J. et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 353, 1912–1925 (2005).

    Article  CAS  Google Scholar 

  56. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 369, 711–721 (2013).

    Article  CAS  Google Scholar 

  57. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    Article  CAS  Google Scholar 

  58. Sandborn, W. J. et al. Ozanimod as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 385, 1280–1291 (2021).

    Article  CAS  Google Scholar 

  59. Na, Y. R., Stakenborg, M., Seok, S. H. & Matteoli, G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 16, 531–543 (2019).

    Article  CAS  Google Scholar 

  60. Ott, C. & Schölmerich, J. Extraintestinal manifestations and complications in IBD. Nat. Rev. Gastroenterol. Hepatol. 10, 585–595 (2013).

    Article  CAS  Google Scholar 

  61. Adams, D. H. & Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat. Rev. Immunol. 6, 244–251 (2006).

    Article  CAS  Google Scholar 

  62. Hedin, C. R. H. et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy. J. Crohn’s Colitis 13, 541–554 (2019).

    Article  CAS  Google Scholar 

  63. Albillos, A., de Gottardi, A. & Rescigno, M. The gut–liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72, 558–577 (2020).

    Article  CAS  Google Scholar 

  64. Gao, W. et al. Impaired CCR9/CCL25 signalling induced by inefficient dendritic cells contributes to intestinal immune imbalance in nonalcoholic steatohepatitis. Biochem. Biophys. Res. Commun. 534, 34–40 (2021).

    Article  CAS  Google Scholar 

  65. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  Google Scholar 

  66. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  Google Scholar 

  67. Barberio, B. et al. Prevalence of primary sclerosing cholangitis in patients with inflammatory bowel disease: a systematic review and meta-analysis. Gastroenterology 161, 1865–1877 (2021).

    Article  CAS  Google Scholar 

  68. Di Ciaula, A. et al. Liver steatosis, gut–liver axis, microbiome and environmental factors. a never-ending bidirectional cross-talk. J. Clin. Med. 9, E2648 (2020).

    Article  Google Scholar 

  69. Lunder, A. K. et al. Prevalence of sclerosing cholangitis detected by magnetic resonance cholangiography in patients with long-term inflammatory bowel disease. Gastroenterology 151, 660–669.e4 (2016).

    Article  Google Scholar 

  70. Ong, J., Bath, M. F., Swift, C. & Al-Naeeb, Y. Does colectomy affect the progression of primary sclerosing cholangitis? A systematic review and meta-analysis. Gastroenterol. Hepatol. Bed Bench 11, 277–283 (2018).

    Google Scholar 

  71. Steenstraten, I. C. et al. Systematic review with meta-analysis: risk factors for recurrent primary sclerosing cholangitis after liver transplantation. Aliment. Pharmacol. Ther. 49, 636–643 (2019).

    Article  Google Scholar 

  72. Ji, S.-G. et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 49, 269–273 (2017).

    Article  CAS  Google Scholar 

  73. Zimmer, C. L. et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells. Sci. Transl. Med. 13, eabb3107 (2021).

    Article  CAS  Google Scholar 

  74. de Krijger, M. et al. Characterization of gut-homing molecules in non-endstage livers of patients with primary sclerosing cholangitis and inflammatory bowel disease. J. Transl. Autoimmun. 3, 100054 (2020).

    Article  Google Scholar 

  75. Schippers, A. et al. MAdCAM-1/α4β7 integrin-mediated lymphocyte/endothelium interactions exacerbate acute immune-mediated hepatitis in mice. Cell Mol. Gastroenterol. Hepatol. 11, 1227–1250.e1 (2021).

    Article  CAS  Google Scholar 

  76. Grant, A. J., Lalor, P. F., Hübscher, S. G., Briskin, M. & Adams, D. H. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 33, 1065–1072 (2001).

    Article  CAS  Google Scholar 

  77. Eksteen, B. et al. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 137, 320–329 (2009).

    Article  CAS  Google Scholar 

  78. Wiggins, B. G. et al. The human liver microenvironment shapes the homing and function of CD4+ T-cell populations. Gut 71, 1399–1411 (2022).

    Article  CAS  Google Scholar 

  79. Graham, J. J. et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis. Hepatology 75, 518–530 (2022).

    Article  CAS  Google Scholar 

  80. Seidel, D. et al. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice. Hepatology 59, 601–611 (2014).

    Article  CAS  Google Scholar 

  81. Rai, R. P. et al. Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. J. Hepatol. 73, 1013–1022 (2020).

    Article  CAS  Google Scholar 

  82. Neumann, K. et al. Connecting liver and gut: murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid. Hepatology 55, 1976–1984 (2012).

    Article  CAS  Google Scholar 

  83. Harms, M. H. et al. Number needed to treat with ursodeoxycholic acid therapy to prevent liver transplantation or death in primary biliary cholangitis. Gut 69, 1502–1509 (2020).

    Article  CAS  Google Scholar 

  84. Abbas, N., Quraishi, M. N. & Trivedi, P. Emerging drugs for the treatment of primary sclerosing cholangitis. Curr. Opin. Pharmacol. 62, 23–35 (2021).

    Article  Google Scholar 

  85. Deneau, M. R. et al. Oral vancomycin, ursodeoxycholic acid, or no therapy for pediatric primary sclerosing cholangitis: a matched analysis. Hepatology 73, 1061–1073 (2021).

    Article  CAS  Google Scholar 

  86. Christensen, B. et al. Vedolizumab in patients with concurrent primary sclerosing cholangitis and inflammatory bowel disease does not improve liver biochemistry but is safe and effective for the bowel disease. Aliment. Pharmacol. Ther. 47, 753–762 (2018).

    Article  CAS  Google Scholar 

  87. Lynch, K. D. et al. Effects of vedolizumab in patients with primary sclerosing cholangitis and inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 18, 179–187.e6 (2020).

    Article  CAS  Google Scholar 

  88. Tse, C. S., Loftus, E. V., Raffals, L. E., Gossard, A. A. & Lightner, A. L. Effects of vedolizumab, adalimumab and infliximab on biliary inflammation in individuals with primary sclerosing cholangitis and inflammatory bowel disease. Aliment. Pharmacol. Ther. 48, 190–195 (2018).

    Article  CAS  Google Scholar 

  89. Laborda, T. J. et al. Vedolizumab therapy in children with primary sclerosing cholangitis: data from the pediatric primary sclerosing cholangitis consortium. J. Pediatr. Gastroenterol. Nutr. 71, 459–464 (2020).

    Article  CAS  Google Scholar 

  90. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  Google Scholar 

  91. Baeten, D. et al. Comparative study of the synovial histology in rheumatoid arthritis, spondyloarthropathy, and osteoarthritis: influence of disease duration and activity. Ann. Rheum. Dis. 59, 945–953 (2000).

    Article  CAS  Google Scholar 

  92. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  Google Scholar 

  93. Abbot, S. E., Whish, W. J., Jennison, C., Blake, D. R. & Stevens, C. R. Tumour necrosis factor alpha stimulated rheumatoid synovial microvascular endothelial cells exhibit increased shear rate dependent leucocyte adhesion in vitro. Ann. Rheum. Dis. 58, 573–581 (1999).

    Article  CAS  Google Scholar 

  94. Salmi, M., Rajala, P. & Jalkanen, S. Homing of mucosal leukocytes to joints. Distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J. Clin. Invest. 99, 2165–2172 (1997).

    Article  CAS  Google Scholar 

  95. Lally, F. et al. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum. 52, 3460–3469 (2005).

    Article  CAS  Google Scholar 

  96. McGettrick, H. M. et al. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells. Eur. J. Immunol. 39, 113–125 (2009).

    Article  CAS  Google Scholar 

  97. Söderström, K. et al. High expression of V gamma 8 is a shared feature of human gamma delta T cells in the epithelium of the gut and in the inflamed synovial tissue. J. Immunol. 152, 6017–6027 (1994).

    Google Scholar 

  98. Trollmo, C., Nilsson, I. M., Sollerman, C. & Tarkowski, A. Expression of the mucosal lymphocyte integrin alpha E beta 7 and its ligand E-cadherin in the synovium of patients with rheumatoid arthritis. Scand. J. Immunol. 44, 293–298 (1996).

    CAS  Google Scholar 

  99. Salmi, M., Andrew, D. P., Butcher, E. C. & Jalkanen, S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J. Exp. Med. 181, 137–149 (1995).

    Article  CAS  Google Scholar 

  100. May, E. et al. Identical T-cell expansions in the colon mucosa and the synovium of a patient with enterogenic spondyloarthropathy. Gastroenterology 119, 1745–1755 (2000).

    Article  CAS  Google Scholar 

  101. Cho, Y.-N. et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193, 3891–3901 (2014).

    Article  CAS  Google Scholar 

  102. Kim, M. et al. TNFα and IL-1β in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine 99, 91–98 (2017).

    Article  CAS  Google Scholar 

  103. Kurioka, A., Walker, L. J., Klenerman, P. & Willberg, C. B. MAIT cells: new guardians of the liver. Clin. Transl. Immunol. 5, e98 (2016).

    Article  Google Scholar 

  104. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44, 875–888 (2016).

    Article  CAS  Google Scholar 

  105. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    Article  CAS  Google Scholar 

  106. Flak, M. B. et al. Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight 4, e125191 (2019).

    Article  Google Scholar 

  107. Jubair, W. K. et al. Modulation of inflammatory arthritis in mice by gut microbiota through mucosal inflammation and autoantibody generation. Arthritis Rheumatol. 70, 1220–1233 (2018).

    Article  CAS  Google Scholar 

  108. Matei, D. E. et al. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med 2, 864–883.e9 (2021).

    Article  CAS  Google Scholar 

  109. Takaki-Kuwahara, A. et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res. Ther. 21, 198 (2019).

    Article  Google Scholar 

  110. Ren, J., Feng, Z., Lv, Z., Chen, X. & Li, J. Natural Killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-α. J. Rheumatol. 38, 2112–2118 (2011).

    Article  CAS  Google Scholar 

  111. Venken, K. et al. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in spondyloarthritis patients. Nat. Commun. 10, 9 (2019).

    Article  CAS  Google Scholar 

  112. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    Article  CAS  Google Scholar 

  113. Shen, H., Goodall, J. C. & Hill Gaston, J. S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656 (2009).

    Article  CAS  Google Scholar 

  114. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    Article  CAS  Google Scholar 

  115. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    Article  CAS  Google Scholar 

  116. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  Google Scholar 

  117. Wekerle, H. Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr. Opin. Neurobiol. 3, 779–784 (1993).

    Article  CAS  Google Scholar 

  118. Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    Article  CAS  Google Scholar 

  119. Miller, I. The gut–brain axis: historical reflections. Microb. Ecol. Health Dis. 29, 1542921 (2018).

    Google Scholar 

  120. Parodi, B. & Kerlero de Rosbo, N. The gut–brain axis in multiple sclerosis. is its dysfunction a pathological trigger or a consequence of the disease? Front. Immunol. 12, 3911 (2021).

    Article  Google Scholar 

  121. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  Google Scholar 

  122. Ochoa-Repáraz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

    Article  Google Scholar 

  123. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  124. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2011).

    Article  CAS  Google Scholar 

  125. Lee, Y. K. & Mazmanian, S. K. Microbial learning lessons: SFB educate the immune system. Immunity 40, 457–459 (2014).

    Article  CAS  Google Scholar 

  126. Kent, S. J. et al. A monoclonal antibody to α4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J. Neuroimmunol. 58, 1–10 (1995).

    Article  CAS  Google Scholar 

  127. Kuhbandner, K. et al. MAdCAM-1-mediated intestinal lymphocyte homing is critical for the development of active experimental autoimmune encephalomyelitis. Front. Immunol. 10, 903 (2019).

    Article  CAS  Google Scholar 

  128. Goto, Y. et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014).

    Article  CAS  Google Scholar 

  129. Mindur, J. E. et al. Surface layer protein A expressed in Clostridioides difficile DJNS06-36 possesses an encephalitogenic mimotope of myelin basic protein. Microorganisms 9, 34 (2021).

    Article  CAS  Google Scholar 

  130. Erturk-Hasdemir, D., Ochoa-Repáraz, J., Kasper, D. L. & Kasper, L. H. Exploring the gut–brain axis for the control of CNS inflammatory demyelination: immunomodulation by Bacteroides fragilis’ polysaccharide A. Front. Immunol. 12, 1561 (2021).

    Article  Google Scholar 

  131. Ochoa-Repáraz, J. et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 3, 487–495 (2010).

    Article  Google Scholar 

  132. Wang, Y. et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat. Commun. 5, 4432 (2014).

    Article  CAS  Google Scholar 

  133. Haase, S. et al. The role of the gut microbiota and microbial metabolites in neuroinflammation. Eur. J. Immunol. 50, 1863–1870 (2020).

    Article  CAS  Google Scholar 

  134. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  CAS  Google Scholar 

  135. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  Google Scholar 

  136. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  Google Scholar 

  137. Kadowaki, A., Saga, R., Lin, Y., Sato, W. & Yamamura, T. Gut microbiota-dependent CCR9+CD4+ T cells are altered in secondary progressive multiple sclerosis. Brain 142, 916–931 (2019).

    Article  Google Scholar 

  138. Zhang, Y. et al. Toll-like receptor 4 promotes Th17 lymphocyte infiltration via CCL25/CCR9 in pathogenesis of experimental autoimmune encephalomyelitis. J. Neuroimmune Pharmacol. 14, 493–502 (2019).

    Article  Google Scholar 

  139. Kadowaki, A. et al. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3. Nat. Commun. 7, 11639 (2016).

    Article  CAS  Google Scholar 

  140. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article  CAS  Google Scholar 

  141. Miyake, S. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters. PLoS ONE 10, e0137429 (2015).

    Article  Google Scholar 

  142. Choileáin, S. N. et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. J. Transl. Autoimmun. 3, 100032 (2020).

    Article  Google Scholar 

  143. Gordon, K. B. et al. Efalizumab for patients with moderate to severe plaque psoriasis: a randomized controlled trial. JAMA 290, 3073–3080 (2003).

    Article  CAS  Google Scholar 

  144. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  145. Berger, J. R. Progressive multifocal leukoencephalopathy and newer biological agents. Drug Saf. 33, 969–983 (2010).

    Article  CAS  Google Scholar 

  146. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  Google Scholar 

  147. McGinley, M. P. & Cohen, J. A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 398, 1184–1194 (2021).

    Article  CAS  Google Scholar 

  148. Zundler, S. et al. Three-dimensional cross-sectional light-sheet microscopy imaging of the inflamed mouse gut. Gastroenterology 153, 898–900 (2017).

    Article  Google Scholar 

  149. Zeissig, S. et al. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut 68, 25–39 (2019).

    Article  CAS  Google Scholar 

  150. Uzzan, M. et al. Anti-α4β7 therapy targets lymphoid aggregates in the gastrointestinal tract of HIV-1–infected individuals. Sci. Transl. Med. 10, eaau4711 (2018).

    Article  Google Scholar 

  151. Becker, E. et al. Residual homing of α4β7-expressing β1+PI16+ regulatory T cells with potent suppressive activity correlates with exposure-efficacy of vedolizumab. Gut 71, 1551–1566 (2022).

    Article  CAS  Google Scholar 

  152. Vitali, F., Simon, D., Neurath, M. F., Schett, G. & Zundler, S. Vedolizumab-associated enthesitis: correlation or causality? Rheumatology 60, 5491–5492 (2021).

    Article  Google Scholar 

  153. Zundler, S. et al. Blockade of αEβ7 integrin suppresses accumulation of CD8+and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo. Gut 66, 1936–1948 (2017).

    Article  CAS  Google Scholar 

  154. Dai, B. et al. Dual targeting of lymphocyte homing and retention through α4β7 and αEβ7 inhibition in inflammatory bowel disease. Cell Rep. Med. 2, 100381 (2021).

    Article  CAS  Google Scholar 

  155. Vermeire, S. et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet 384, 309–318 (2014).

    Article  CAS  Google Scholar 

  156. Agrawal, M. & Verstockt, B. Etrolizumab for ulcerative colitis: beyond what meets the eye. Lancet Gastroenterol. Hepatol. 7, 2–4 (2022).

    Article  Google Scholar 

  157. Rubin, D. T. et al. Etrolizumab versus adalimumab or placebo as induction therapy for moderately to severely active ulcerative colitis (HIBISCUS): two phase 3 randomised, controlled trials. Lancet Gastroenterol. Hepatol. 7, 17–27 (2022).

    Article  Google Scholar 

  158. Peyrin-Biroulet, L. et al. Etrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): a phase 3, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 7, 128–140 (2022).

    Article  Google Scholar 

  159. Vermeire, S. et al. Etrolizumab for maintenance therapy in patients with moderately to severely active ulcerative colitis (LAUREL): a randomised, placebo-controlled, double-blind, phase 3 study. Lancet Gastroenterol. Hepatol. 7, 28–37 (2022).

    Article  Google Scholar 

  160. Danese, S. et al. Etrolizumab versus infliximab for the treatment of moderately to severely active ulcerative colitis (GARDENIA): a randomised, double-blind, double-dummy, phase 3 study. Lancet Gastroenterol. Hepatol. 7, 118–127 (2022).

    Article  Google Scholar 

  161. Binder, M.-T. et al. Similar inhibition of dynamic adhesion of lymphocytes from IBD patients to MAdCAM-1 by vedolizumab and etrolizumab-s. Inflamm. Bowel Dis. 24, 1237–1250 (2018).

    Article  Google Scholar 

  162. Smids, C., Horjus Talabur Horje, C. S., van Wijk, F. & van Lochem, E. G. The complexity of alpha E beta 7 blockade in inflammatory bowel diseases. J. Crohns Colitis 11, 500–508 (2017).

    Google Scholar 

  163. Lamb, C. A. et al. αEβ7 integrin identifies subsets of pro-inflammatory colonic CD4+ T lymphocytes in ulcerative colitis. J. Crohns Colitis 11, 610–620 (2017).

    Google Scholar 

  164. Tew, G. W. et al. Association between response to etrolizumab and expression of integrin αE and granzyme A in colon biopsies of patients with ulcerative colitis. Gastroenterology 150, 477–487.e9 (2016).

    Article  Google Scholar 

  165. Sandborn, W. J. et al. Efficacy and safety of abrilumab in a randomized, placebo-controlled trial for moderate-to-severe ulcerative colitis. Gastroenterology 156, 946–957.e18 (2019).

    Article  CAS  Google Scholar 

  166. Vermeire, S. et al. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 390, 135–144 (2017).

    Article  CAS  Google Scholar 

  167. Sandborn, W. J. et al. Eldelumab [anti-interferon-γ-inducible protein-10 antibody] induction therapy for active Crohn’s disease: a randomised, double-blind, placebo-controlled phase IIa study. J. Crohns Colitis 11, 811–819 (2017).

    Article  Google Scholar 

  168. Keshav, S. et al. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn’s disease. PLoS ONE 8, e60094 (2013).

    Article  CAS  Google Scholar 

  169. Feagan, B. G. et al. Randomised clinical trial: vercirnon, an oral CCR9 antagonist, vs. placebo as induction therapy in active Crohn’s disease. Aliment. Pharmacol. Ther. 42, 1170–1181 (2015).

    Article  CAS  Google Scholar 

  170. Matsuoka, K. et al. AJM300 (carotegrast methyl), an oral antagonist of α4-integrin, as induction therapy for patients with moderately active ulcerative colitis: a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Gastroenterol. Hepatol. 7, 648–657 (2022).

    Article  Google Scholar 

  171. Cohen, J. A. et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 18, 1021–1033 (2019).

    Article  CAS  Google Scholar 

  172. Sandborn, W. J. et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with Ulcerative colitis. Gastroenterology 158, 550–561 (2020).

    Article  CAS  Google Scholar 

  173. Silverberg, J. I. et al. Results from ADVISE: a randomized, double-blind, placebo-controlled phase 2 study of etrasimod, an oral, selective, sphingosine 1-phosphate receptor modulator, in adults with moderate-to-severe atopic dermatitis. In Revolutionizing Atopic Dermatitis Conference. Abstr. #390 (2020).

  174. D’Haens, G., Danese, S., Davies, M., Watanabe, M. & Hibi, T. A phase II, multicentre, randomised, double-blind, placebo-controlled study to evaluate safety, tolerability and efficacy of amiselimod in patients with moderate to severe active Crohn’s disease. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab201 (2021).

    Article  Google Scholar 

  175. Yacyshyn, B. R. et al. Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut 51, 30–36 (2002).

    Article  CAS  Google Scholar 

  176. Atlantic Healthcare. Atlantic healthcare announces results from phase 3 trial of alicaforsen enema for orphan-designated pouchitis. https://www.atlantichc.com/atlantic-healthcare-announces-results-from-phase-3-trial-of-alicaforsen-enema-for-orphan-designated-pouchitis/ (2019).

  177. Ghosh, S. et al. Natalizumab for active Crohn’s disease. N. Engl. J. Med. 348, 24–32 (2003).

    Article  CAS  Google Scholar 

  178. James, D. G., Seo, D. H., Chen, J., Vemulapalli, C. & Stone, C. D. Efalizumab, a human monoclonal anti-CD11a antibody, in the treatment of moderate to severe Crohn’s disease: an open-label pilot study. Dig. Dis. Sci. 56, 1806–1810 (2011).

    Article  CAS  Google Scholar 

  179. Sandborn, W. J. et al. OP035 Efficacy and safety of abrilumab (AMG 181/MEDI 7183) therapy for moderate to severe Crohn’s disease. J. Crohns Colitis 11, S22–S23 (2017).

    Article  Google Scholar 

  180. Sandborn, W. J. et al. Eldelumab [anti-IP-10] induction therapy for ulcerative colitis: a randomised, placebo-controlled, phase 2b study. J. Crohns Colitis 10, 418–428 (2016).

    Article  Google Scholar 

  181. Sandborn, W. J. et al. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn’s disease: report of the OPERA study. Gut 67, 1824–1835 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation for their funding (DFG, ZU 377/4-1, TRR241 A02, B08 and C04).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Sebastian Zundler.

Ethics declarations

Competing interests

M.F.N. has served as an adviser for Pentax, Giuliani, MSD, AbbVie, Janssen, Takeda and Boehringer. S.Z. received speaker’s fees from Takeda, Roche, Galapagos, Ferring, Lilly and Janssen. M.F.N. and S.Z. received research support from Takeda, Shire (a part of Takeda) and Roche. C.G., M.M.Z, V.R. and A.E.K. declare no conflicts of interest.

Peer review

Peer review information

Nature Reviews Reviews Gastroenterology & Hepatology thanks Giovanni Monteleone and Angela Schippers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT02394028: https://clinicaltrials.gov/ct2/show/NCT02394028

NCT03996369: https://clinicaltrials.gov/ct2/show/NCT03996369

NCT04857112: https://clinicaltrials.gov/ct2/show/NCT04857112

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zundler, S., Günther, C., Kremer, A.E. et al. Gut immune cell trafficking: inter-organ communication and immune-mediated inflammation. Nat Rev Gastroenterol Hepatol 20, 50–64 (2023). https://doi.org/10.1038/s41575-022-00663-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00663-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing