Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic nature of inflammatory bowel diseases

Abstract

Crohn’s disease and ulcerative colitis, phenotypically comprising a spectrum of inflammatory bowel diseases (IBDs), spread globally during the westernization of lifestyle and dietary habits over the past few decades. Here, we review experimental and clinical evidence for the metabolic nature of gut inflammation in IBD and delineate distinct parallels to the inflammatory state in metabolic diseases. Experimental evidence indicates that excessive intake of specific macronutrients in a Western diet fuels an inflammatory response in the gut by exploiting sensors of innate immunity and perturbation of gut microbial metabolism. Genetic IBD risk partly affects metabolism and stress signalling of innate immunity, and immunometabolism controls susceptibility to gut inflammation. Epidemiological and clinical studies indicate that specific nutrients in the Western diet pose a risk for the development of IBD and a poor disease course. Translational studies in IBD indicate perturbation of energy metabolism in immune cells and perturbation of gut microbial metabolism, which can be shaped by diet. In turn, dietary restriction by exclusive enteral nutrition induces remission in patients with IBD. Collectively, these studies support a metabolic underpinning of gut inflammation in IBD as described for metabolic inflammation in obesity and related disorders.

Key points

  • Experimental gut inflammation is driven by excessive intake of simple carbohydrates, polyunsaturated fatty acids and food additives in a Western diet.

  • Innate immune receptors and the commensal microbiota modulate diet-induced metabolic inflammation in and beyond the gut.

  • Epidemiological studies indicate that the westernization of diet conveys a risk of developing inflammatory bowel disease (IBD).

  • Translational studies demonstrate perturbation of immunometabolism and host–microorganism commensalism in IBD.

  • Conceptual nutritional trials corroborate the inflammatory nature of a Western diet in IBD, supporting the concept of diet-induced metabolic gut inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diet-induced metabolic stress promotes gut inflammation.
Fig. 2: The metabolic nature of human IBD.

Similar content being viewed by others

References

  1. Chang, J. T. Pathophysiology of inflammatory bowel diseases. N. Engl. J. Med. 383, 2652–2664 (2020).

    PubMed  Google Scholar 

  2. Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    PubMed  Google Scholar 

  3. de Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

    PubMed  Google Scholar 

  4. Roda, G. et al. Crohn’s disease. Nat. Rev. Dis. Prim. 6, 22 (2020).

    PubMed  Google Scholar 

  5. Kobayashi, T. et al. Ulcerative colitis. Nat. Rev. Dis. Prim. 6, 74 (2020).

    PubMed  Google Scholar 

  6. Ng, S. C. et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769–2778 (2017).

    PubMed  Google Scholar 

  7. Coward, S. et al. Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 156, 1345–1353 (2019).

    PubMed  Google Scholar 

  8. Jones, G. R. et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut 68, 1953–1960 (2019).

    PubMed  Google Scholar 

  9. Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 18, 56–66 (2021).

    PubMed  Google Scholar 

  10. Wintjens, D. et al. Disease activity patterns of crohn’s disease in the first ten years after diagnosis in the population-based IBD south limburg cohort. J. Crohns Colitis 15, 391–400 (2021).

    PubMed  Google Scholar 

  11. Kaplan, G. G. The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

    PubMed  Google Scholar 

  12. Ben-Horin, S. & Chowers, Y. Tailoring anti-TNF therapy in IBD: drug levels and disease activity. Nat. Rev. Gastroenterol. Hepatol. 11, 243–255 (2014).

    PubMed  Google Scholar 

  13. Danese, S., Vuitton, L. & Peyrin-Biroulet, L. Biologic agents for IBD: practical insights. Nat. Rev. Gastroenterol. Hepatol. 12, 537–545 (2015).

    PubMed  Google Scholar 

  14. Moschen, A. R., Tilg, H. & Raine, T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16, 185–196 (2019).

    PubMed  Google Scholar 

  15. Salas, A. et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 323–337 (2020).

    PubMed  Google Scholar 

  16. Allez, M. et al. Report of the ECCO pathogenesis workshop on anti-TNF therapy failures in inflammatory bowel diseases: definitions, frequency and pharmacological aspects. J. Crohns Colitis 4, 355–366 (2010).

    PubMed  Google Scholar 

  17. Friedrich, M. et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

    PubMed  PubMed Central  Google Scholar 

  18. Khalili, H. et al. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 15, 525–535 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Temba, G. S. et al. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22, 287–300 (2021). This seminal study shows that a switch from a traditional rural to an urban lifestyle links to an inflammatory immune phenotype.

    PubMed  Google Scholar 

  20. Singh, S., Dulai, P. S., Zarrinpar, A., Ramamoorthy, S. & Sandborn, W. J. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 14, 110–121 (2017).

    PubMed  Google Scholar 

  21. Rahmani, J. et al. Body mass index and risk of inflammatory bowel disease: a systematic review and dose-response meta-analysis of cohort studies of over a million participants. Obes. Rev. 20, 1312–1320 (2019).

    PubMed  Google Scholar 

  22. Bhagavathula, A. S., Clark, C. C. T., Rahmani, J. & Chattu, V. K. Impact of body mass index on the development of inflammatory bowel disease: a systematic review and dose-response analysis of 15.6 million participants. Healthcare https://doi.org/10.3390/healthcare9010035 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    PubMed  Google Scholar 

  24. Aguilera, J. M. The food matrix: implications in processing, nutrition and health. Crit. Rev. Food Sci. Nutr. 59, 3612–3629 (2019).

    PubMed  Google Scholar 

  25. Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 4, 308–319 (2021).

    PubMed  PubMed Central  Google Scholar 

  26. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13, 572–587 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    PubMed  Google Scholar 

  28. Ko, C. W., Qu, J., Black, D. D. & Tso, P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 17, 169–183 (2020).

    PubMed  Google Scholar 

  29. Bernier-Latmani, J. & Petrova, T. V. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat. Rev. Gastroenterol. Hepatol. 14, 510–526 (2017).

    PubMed  Google Scholar 

  30. Guo, Q., Ye, A., Bellissimo, N., Singh, H. & Rousseau, D. Modulating fat digestion through food structure design. Prog. Lipid Res. 68, 109–118 (2017).

    PubMed  Google Scholar 

  31. Duca, F. A., Waise, T. M. Z., Peppler, W. T. & Lam, T. K. T. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 12, 903 (2021).

    PubMed  PubMed Central  Google Scholar 

  32. Sullivan, Z. A. et al. gammadelta T cells regulate the intestinal response to nutrient sensing. Science https://doi.org/10.1126/science.aba8310 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    PubMed  Google Scholar 

  34. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112, 1821–1830 (2003).

    PubMed  PubMed Central  Google Scholar 

  35. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    PubMed  Google Scholar 

  36. Richard, M. L. & Sokol, H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).

    PubMed  Google Scholar 

  37. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    PubMed  Google Scholar 

  38. Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54 (2020).

    PubMed  Google Scholar 

  39. Taskinen, M. R., Packard, C. J. & Boren, J. Dietary fructose and the metabolic syndrome. Nutrients https://doi.org/10.3390/nu11091987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Unger, A. L., Torres-Gonzalez, M. & Kraft, J. Dairy fat consumption and the risk of metabolic syndrome: an examination of the saturated fatty acids in dairy. Nutrients https://doi.org/10.3390/nu11092200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cornier, M. A. et al. The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Wang, X., Wang, Y., Antony, V., Sun, H. & Liang, G. Metabolism-associated molecular patterns (MAMPs). Trends Endocrinol. Metab. 31, 712–724 (2020).

    PubMed  Google Scholar 

  44. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175 (2018). This key study shows that a Western diet induces a long-lasting reprogramming of innate immune cells.

    PubMed  PubMed Central  Google Scholar 

  45. Eguchi, K. et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012).

    PubMed  Google Scholar 

  46. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    PubMed  Google Scholar 

  48. Lancaster, G. I. et al. Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab. 27, 1096–1110 (2018).

    PubMed  Google Scholar 

  49. Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

    PubMed  PubMed Central  Google Scholar 

  50. Dudek, M. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 592, 444–449 (2021).

    PubMed  Google Scholar 

  51. Hug, H., Mohajeri, M. H. & La Fata, G. Toll-like receptors: regulators of the immune response in the human gut. Nutrients https://doi.org/10.3390/nu10020203 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhong, Y., Kinio, A. & Saleh, M. Functions of NOD-like receptors in human diseases. Front. Immunol. 4, 333 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Huang, S., Xing, Y. & Liu, Y. Emerging roles for the ER stress sensor IRE1alpha in metabolic regulation and disease. J. Biol. Chem. 294, 18726–18741 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    PubMed  Google Scholar 

  55. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).

    PubMed  Google Scholar 

  56. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014). This study established that perturbation of the gut microbiota by artificial sweeteners impairs glucose metabolism.

    PubMed  Google Scholar 

  57. Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101 (2012).

    PubMed  Google Scholar 

  58. Cani, P. D. Microbiota and metabolites in metabolic diseases. Nat. Rev. Endocrinol. 15, 69–70 (2019).

    PubMed  Google Scholar 

  59. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    PubMed  Google Scholar 

  60. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    PubMed  Google Scholar 

  62. Wan, Y. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429 (2019).

    PubMed  Google Scholar 

  63. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    PubMed  Google Scholar 

  64. Boulange, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).

    PubMed  Google Scholar 

  66. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    PubMed  Google Scholar 

  67. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  68. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    PubMed  Google Scholar 

  69. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    PubMed  Google Scholar 

  70. Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M. & Clement, K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160, 573–599 (2021).

    PubMed  Google Scholar 

  71. Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    PubMed  Google Scholar 

  72. Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).

    PubMed  Google Scholar 

  73. Sugihara, K., Morhardt, T. L. & Kamada, N. The role of dietary nutrients in inflammatory bowel disease. Front. Immunol. 9, 3183 (2018).

    PubMed  Google Scholar 

  74. Mehandru, S. & Colombel, J. F. The intestinal barrier, an arbitrator turned provocateur in IBD. Nat. Rev. Gastroenterol. Hepatol. 18, 83–84 (2021).

    PubMed  Google Scholar 

  75. Patankar, J. V. & Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 17, 543–556 (2020).

    PubMed  Google Scholar 

  76. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    PubMed  Google Scholar 

  77. Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 497–511 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F. & Becker, C. Mend your fences: the epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell Mol. Gastroenterol. Hepatol. 4, 33–46 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Gunther, C. et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Cader, M. Z. et al. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17, 1046–1056 (2016). This study links genetic Crohn’s disease risk with perturbation of immunometabolism in macrophages.

    PubMed  PubMed Central  Google Scholar 

  82. Cader, M. Z. et al. FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180, 278–295 (2020).

    PubMed  PubMed Central  Google Scholar 

  83. Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).

    PubMed  PubMed Central  Google Scholar 

  84. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Hinrichsen, F. et al. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab. 33, 2355–2366 (2021).

    PubMed  Google Scholar 

  87. Saveljeva, S. et al. A purine metabolic checkpoint that prevents autoimmunity and autoinflammation. Cell Metab. 34, 106–124 (2022).

    PubMed  PubMed Central  Google Scholar 

  88. Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465–469 (2013).

    PubMed  Google Scholar 

  89. Zhao, Q. et al. CD4+ T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abc6373 (2020).

    Article  PubMed  Google Scholar 

  90. Xie, Y. et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J. Clin. Invest. 130, 2111–2128 (2020).

    PubMed  PubMed Central  Google Scholar 

  91. Gerner, R. R. et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut 67, 1813–1823 (2018).

    PubMed  Google Scholar 

  92. Zmora, N., Levy, M., Pevsner-Fishcer, M. & Elinav, E. Inflammasomes and intestinal inflammation. Mucosal Immunol. 10, 865–883 (2017).

    PubMed  Google Scholar 

  93. McGettrick, A. F. & O’Neill, L. A. J. The role of HIF in immunity and inflammation. Cell Metab. 32, 524–536 (2020).

    PubMed  Google Scholar 

  94. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    PubMed  PubMed Central  Google Scholar 

  95. Baier, J. et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J. Clin. Invest. 130, 5703–5720 (2020).

    PubMed  Google Scholar 

  96. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    PubMed  Google Scholar 

  97. Li, X. et al. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Mol. Nutr. Food Res. 65, e2000461 (2021).

    PubMed  Google Scholar 

  98. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    PubMed  Google Scholar 

  100. Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host Microbe 25, 668–680 (2019).

    PubMed  PubMed Central  Google Scholar 

  101. Rath, E. et al. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61, 1269–1278 (2012).

    PubMed  Google Scholar 

  102. Khaloian, S. et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn’s disease recurrence. Gut 69, 1939–1951 (2020).

    PubMed  Google Scholar 

  103. Martinez-Medina, M. et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63, 116–124 (2014).

    PubMed  Google Scholar 

  104. Arnone, D. et al. Long-term overconsumption of fat and sugar causes a partially reversible pre-inflammatory bowel disease state. Front. Nutr. 8, 758518 (2021).

    PubMed  PubMed Central  Google Scholar 

  105. Khan, S. et al. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl Med. https://doi.org/10.1126/scitranslmed.aay6218 (2020).

    Article  PubMed  Google Scholar 

  106. Montrose, D. C. et al. Dietary fructose alters the composition, localization, and metabolism of gut microbiota in association with worsening colitis. Cell Mol. Gastroenterol. Hepatol. 11, 525–550 (2021).

    PubMed  Google Scholar 

  107. Kawabata, K. et al. A high‑fructose diet induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate sodium‑induced colitis. Int. J. Mol. Med. 43, 1487–1496 (2019).

    PubMed  Google Scholar 

  108. Fajstova, A. et al. Diet rich in simple sugars promotes pro-inflammatory response via gut microbiota alteration and TLR4 signaling. Cells https://doi.org/10.3390/cells9122701 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Laffin, M. et al. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 9, 12294 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. He, Z. et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 33, 1358–1371 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). A landmark report that links Western food additives with gut bacterial dysbiosis and inflammation in genetically susceptible mice.

    PubMed  PubMed Central  Google Scholar 

  112. Viennois, E. et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 33, 108229 (2020).

    PubMed  PubMed Central  Google Scholar 

  113. Evstatiev, R. et al. The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci. Rep. 11, 5188 (2021).

    PubMed  PubMed Central  Google Scholar 

  114. Barreau, F., Tisseyre, C., Menard, S., Ferrand, A. & Carriere, M. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Part. Fibre Toxicol. 18, 26 (2021).

    PubMed  PubMed Central  Google Scholar 

  115. Ruiz, P. A. et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216–1224 (2017).

    PubMed  Google Scholar 

  116. Ogawa, T. et al. Oral intake of silica nanoparticles exacerbates intestinal inflammation. Biochem. Biophys. Res. Commun. 534, 540–546 (2021).

    PubMed  Google Scholar 

  117. Progatzky, F. et al. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat. Commun. 5, 5864 (2014).

    PubMed  Google Scholar 

  118. Singh, V. et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut 68, 1801–1812 (2019).

    PubMed  Google Scholar 

  119. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104–108 (2012). This seminal study demonstrated that diet-induced bacterial dysbiosis drives colitis in genetically susceptible mice.

    PubMed  PubMed Central  Google Scholar 

  120. Plichta, D. R., Graham, D. B., Subramanian, S. & Xavier, R. J. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell 178, 1041–1056 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Smith, S. A. et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. https://doi.org/10.1172/JCI133371 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Alexander, M. et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 30, 17–30 (2022).

    PubMed  Google Scholar 

  123. Nagatake, T. et al. Intestinal microbe-dependent omega3 lipid metabolite alphaKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol. 15, 289–300 (2022).

    PubMed  PubMed Central  Google Scholar 

  124. Breuer, U. & Harms, H. Debaryomyces hansenii — an extremophilic yeast biotechnological potential. Yeast 23, 415–437 (2006).

    PubMed  Google Scholar 

  125. Jain, U. et al. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science 371, 1154–1159 (2021).

    PubMed  Google Scholar 

  126. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    PubMed  Google Scholar 

  127. Xing, M. et al. Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. Nat. Commun. 10, 1609 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Liu, T. C. et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host Microbe 29, 988–1001 (2021).

    PubMed  PubMed Central  Google Scholar 

  129. Schaubeck, M. et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–237 (2016).

    PubMed  Google Scholar 

  130. Lee, J. Y. et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 28, 273–284 (2020).

    PubMed  PubMed Central  Google Scholar 

  131. Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell. Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Prendeville, H. & Lynch, L. Diet, lipids, and antitumor immunity. Cell Mol. Immunol. 19, 432–444 (2022).

    PubMed  PubMed Central  Google Scholar 

  133. Zhivaki, D. & Kagan, J. C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat. Rev. Immunol. 22, 322–330 (2022).

    PubMed  Google Scholar 

  134. Korbecki, J. & Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm. Res. 68, 915–932 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Ghezzal, S. et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158530 (2020).

    PubMed  Google Scholar 

  136. Kunisawa, J. et al. Regulation of intestinal IgA responses by dietary palmitic acid and its metabolism. J. Immunol. 193, 1666–1671 (2014).

    PubMed  Google Scholar 

  137. Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    PubMed  PubMed Central  Google Scholar 

  138. Zarate, R., El Jaber-Vazdekis, N., Tejera, N., Perez, J. A. & Rodriguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl Med. 6, 25 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Mayr, L. et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat. Commun. 11, 1775 (2020).

    PubMed  PubMed Central  Google Scholar 

  141. Schwärzler, J. et al. PUFA-induced metabolic enteritis as a fuel for Crohn’s disease. Gastroenterology https://doi.org/10.1053/j.gastro.2022.01.004 (2022). The paper identifies a mechanism of how dietary PUFAs in a Western diet instigate metabolic enteritis in mice resembling aspects of Crohn’s disease.

    Article  PubMed  Google Scholar 

  142. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    PubMed  PubMed Central  Google Scholar 

  143. Naito, Y. et al. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats. Br. J. Nutr. 114, 734–745 (2015).

    PubMed  Google Scholar 

  144. Xie, M. et al. Effects of linoleic acid-rich diet on plasma profiles of eicosanoids and development of colitis in Il-10-/- mice. J. Agric. Food Chem. 68, 7641–7647 (2020).

    PubMed  PubMed Central  Google Scholar 

  145. Ramakers, J. D., Mensink, R. P., Verstege, M. I., te Velde, A. A. & Plat, J. An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis. Br. J. Nutr. 100, 347–354 (2008).

    PubMed  Google Scholar 

  146. Yang, Q. et al. Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids Health Dis. 16, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Camuesco, D. et al. Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J. Nutr. 135, 687–694 (2005).

    PubMed  Google Scholar 

  148. Xu, Z. et al. Algal oil rich in n-3 PUFA alleviates DSS-induced colitis via regulation of gut microbiota and restoration of intestinal barrier. Front. Microbiol. 11, 615404 (2020).

    PubMed  PubMed Central  Google Scholar 

  149. Kitsukawa, Y. et al. Effect of ingestion of eicosapentaenoic acid ethyl ester on carrageenan-induced colitis in guinea pigs. Gastroenterology 102, 1859–1866 (1992).

    PubMed  Google Scholar 

  150. Matsunaga, H. et al. Omega-3 fatty acids exacerbate DSS-induced colitis through decreased adiponectin in colonic subepithelial myofibroblasts. Inflamm. Bowel Dis. 14, 1348–1357 (2008).

    PubMed  Google Scholar 

  151. Hegazi, R. A. et al. Dietary fatty acids modulate chronic colitis, colitis-associated colon neoplasia and COX-2 expression in IL-10 knockout mice. Nutrition 22, 275–282 (2006).

    PubMed  Google Scholar 

  152. Awada, M. et al. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J. Lipid Res. 53, 2069–2080 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    PubMed  PubMed Central  Google Scholar 

  154. Yki-Jarvinen, H., Luukkonen, P. K., Hodson, L. & Moore, J. B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 18, 770–786 (2021).

    PubMed  Google Scholar 

  155. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    PubMed  PubMed Central  Google Scholar 

  156. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012).

    PubMed  Google Scholar 

  157. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    PubMed  Google Scholar 

  158. Morton, H., Pedley, K. C., Stewart, R. J. C. & Coad, J. Inflammatory bowel disease: are symptoms and diet linked? Nutrients https://doi.org/10.3390/nu12102975 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sasson, A. N. et al. The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 6, 754–769 (2021).

    PubMed  Google Scholar 

  160. Ananthakrishnan, A. N. et al. Environmental triggers in IBD: a review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 15, 39–49 (2018).

    PubMed  Google Scholar 

  161. Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    PubMed  Google Scholar 

  162. Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

    PubMed  Google Scholar 

  163. Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374, n1554 (2021). This large cohort study shows that consumption of ultra-processed foods links to the risk of developing IBD.

    PubMed  PubMed Central  Google Scholar 

  164. Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2022).

    PubMed  Google Scholar 

  165. Peters, V. et al. Western and carnivorous dietary patterns are associated with greater likelihood of IBD-development in a large prospective population-based cohort. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab219 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659 (2019).

    PubMed  Google Scholar 

  167. Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M. C. & Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105, 2195–2201 (2010).

    PubMed  Google Scholar 

  168. Dong, C. et al. OP17 Protein intakes and risk of inflammatory bowel disease in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC-IBD). J. Crohn’s Colitis 14, S015 (2020).

    Google Scholar 

  169. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    PubMed  Google Scholar 

  170. Barreiro-de Acosta, M. et al. Emigration to western industrialized countries: a risk factor for developing inflammatory bowel disease. J. Crohns Colitis 5, 566–569 (2011).

    PubMed  Google Scholar 

  171. Santoru, M. L. et al. Metabolic alteration in plasma and biopsies from patients with IBD. Inflamm. Bowel Dis. 27, 1335–1345 (2021).

    PubMed  Google Scholar 

  172. Zaiatz Bittencourt, V., Jones, F., Tosetto, M., Doherty, G. A. & Ryan, E. J. Dysregulation of metabolic pathways in circulating natural killer cells isolated from inflammatory bowel disease patients. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab014 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Di’Narzo, A. F. et al. Integrative analysis of the inflammatory bowel disease serum metabolome improves our understanding of genetic etiology and points to novel putative therapeutic targets. Gastroenterology 162, 828–843 (2022).

    PubMed  Google Scholar 

  174. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. Hall, C. H. T. et al. Creatine transporter, reduced in colon tissues from patients with inflammatory bowel diseases, regulates energy balance in intestinal epithelial cells, epithelial integrity, and barrier function. Gastroenterology 159, 984–998 (2020).

    PubMed  Google Scholar 

  176. Haberman, Y. et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10, 38 (2019).

    PubMed  PubMed Central  Google Scholar 

  177. Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176 (2019).

    PubMed  Google Scholar 

  178. Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).

    PubMed  Google Scholar 

  179. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. Caruso, R., Lo, B. C. & Nunez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

    PubMed  Google Scholar 

  181. Zhang, Y. et al. Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature https://doi.org/10.1038/s41586-022-04648-7 (2022). This extensive analysis ranks metabolic aspects of gut bacterial dysbiosis in IBD.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hou, J. K., Abraham, B. & El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563–573 (2011).

    PubMed  Google Scholar 

  183. IBD in EPIC Study Investigators et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58, 1606–1611 (2009).

    Google Scholar 

  184. de Silva, P. S. et al. An association between dietary arachidonic acid, measured in adipose tissue, and ulcerative colitis. Gastroenterology 139, 1912–1917 (2010).

    PubMed  Google Scholar 

  185. Shoda, R., Matsueda, K., Yamato, S. & Umeda, N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am. J. Clin. Nutr. 63, 741–745 (1996).

    PubMed  Google Scholar 

  186. Ananthakrishnan, A. N. et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63, 776–784 (2014).

    PubMed  Google Scholar 

  187. Chan, S. S. et al. Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment. Pharmacol. Ther. 39, 834–842 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Nishida, T. et al. Increased arachidonic acid composition of phospholipids in colonic mucosa from patients with active ulcerative colitis. Gut 28, 1002–1007 (1987).

    PubMed  PubMed Central  Google Scholar 

  189. Pearl, D. S. et al. Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J. Crohn’s Colitis 8, 70–79 (2014).

    Google Scholar 

  190. Costea, I. et al. Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn’s disease. Gastroenterology 146, 929–931 (2014).

    PubMed  Google Scholar 

  191. Alzoghaibi, M. A., Walsh, S. W., Willey, A., Fowler, A. A. 3rd & Graham, M. F. Linoleic acid, but not oleic acid, upregulates the production of interleukin-8 by human intestinal smooth muscle cells isolated from patients with Crohn’s disease. Clin. Nutr. 22, 529–535 (2003).

    PubMed  Google Scholar 

  192. Peters, V. et al. Dietary intake pattern is associated with occurrence of flares in IBD patients. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Scoville, E. A. et al. Serum polyunsaturated fatty acids correlate with serum cytokines and clinical disease activity in Crohn’s disease. Sci. Rep. 9, 2882 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Halmos, E. P. & Gibson, P. R. Dietary management of IBD — insights and advice. Nat. Rev. Gastroenterol. Hepatol. 12, 133–146 (2015).

    PubMed  Google Scholar 

  195. Fitzpatrick, J. A., Melton, S. L., Yao, C. K., Gibson, P. R. & Halmos, E. P. Dietary management of adults with IBD — the emerging role of dietary therapy. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-022-00619-5 (2022).

    Article  PubMed  Google Scholar 

  196. Bischoff, S. C. et al. ESPEN practical guideline: clinical nutrition in inflammatory bowel disease. Clin. Nutr. 39, 632–653 (2020).

    PubMed  Google Scholar 

  197. Levine, A. et al. Dietary guidance from the international organization for the study of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 18, 1381–1392 (2020).

    PubMed  Google Scholar 

  198. Ruemmele, F. M. et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 8, 1179–1207 (2014).

    PubMed  Google Scholar 

  199. Narula, N. et al. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 4, CD000542 (2018).

    PubMed  Google Scholar 

  200. Middleton, S. J., Rucker, J. T., Kirby, G. A., Riordan, A. M. & Hunter, J. O. Long-chain triglycerides reduce the efficacy of enteral feeds in patients with active Crohn’s disease. Clin. Nutr. 14, 229–236 (1995).

    PubMed  Google Scholar 

  201. Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450 (2019). This study conceptually demonstrated that a restriction diet ameliorates the course of mild to moderate pediatric Crohn’s disease.

    PubMed  Google Scholar 

  202. Svolos, V. et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 1354–1367 (2019).

    PubMed  Google Scholar 

  203. Sigall-Boneh, R. et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm. Bowel Dis. 20, 1353–1360 (2014).

    PubMed  Google Scholar 

  204. Yanai, H. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol. Hepatol. https://doi.org/10.1016/S2468-1253(21)00299-5 (2021). This study conceptually demonstrated that a restriction diet ameliorates the course of mild to moderate adult Crohn’s disease.

    Article  PubMed  Google Scholar 

  205. Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852 (2021).

    PubMed  Google Scholar 

  206. Sarbagili Shabat, C. et al. Use of Fecal transplantation with a novel diet for mild to moderate active ulcerative colitis: The CRAFT UC randomized controlled trial. J. Crohns Colitis https://doi.org/10.1093/ecco-jcc/jjab165 (2021).

    Article  PubMed Central  Google Scholar 

  207. Feagan, B. G. et al. Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC randomized controlled trials. JAMA 299, 1690–1697 (2008).

    PubMed  Google Scholar 

  208. Belluzzi, A. et al. Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N. Engl. J. Med. 334, 1557–1560 (1996).

    PubMed  Google Scholar 

  209. Lev-Tzion, R., Griffiths, A. M., Leder, O. & Turner, D. Omega 3 fatty acids (fish oil) for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006320.pub4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    PubMed  Google Scholar 

  211. Bergemalm, D. et al. Systemic inflammation in preclinical ulcerative colitis. Gastroenterology 161, 1526–1539 (2021).

    PubMed  Google Scholar 

  212. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    PubMed  PubMed Central  Google Scholar 

  213. Scott, B. M. et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat. Med. 27, 1212–1222 (2021).

    PubMed  Google Scholar 

  214. Sethi, J. K. & Hotamisligil, G. S. Metabolic Messengers: tumour necrosis factor. Nat. Metab. 3, 1302–1312 (2021).

    PubMed  Google Scholar 

  215. Ke, X. et al. Gut bacterial metabolites modulate endoplasmic reticulum stress. Genome Biol. 22, 292 (2021).

    PubMed  PubMed Central  Google Scholar 

  216. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Schulze, M. B., Minihane, A. M., Saleh, R. N. M. & Risérus, U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol. 8, 915–930 (2020).

    PubMed  Google Scholar 

  218. Katan, M. B., Zock, P. L. & Mensink, R. P. Trans fatty acids and their effects on lipoproteins in humans. Annu. Rev. Nutr. 15, 473–493 (1995).

    PubMed  Google Scholar 

  219. Hotamisligil, G. S. Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47, 406–420 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013).

    PubMed  Google Scholar 

  221. Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016).

    PubMed  Google Scholar 

  222. Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    PubMed  PubMed Central  Google Scholar 

  223. Michaudel, C. & Sokol, H. The gut microbiota at the service of immunometabolism. Cell Metab. 32, 514–523 (2020).

    PubMed  Google Scholar 

  224. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  225. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Investig. 116, 1793–1801 (2006).

    PubMed  PubMed Central  Google Scholar 

  226. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    PubMed  Google Scholar 

  227. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

T.E.A. is supported by the Austrian Science Fund (FWF P33070) and the European Research Council (ERC–STG: 101039320). L.M. and J.S. are grateful for the support from the Austrian Society of Gastroenterology & Hepatology (ÖGGH). F.G. appreciates support from the Tyrolean Science Funds (TWF). H.T. received funding by the excellence initiative (Competence Centers for Excellent Technologies - COMET) of the Austrian Research Promotion Agency FFG: Research Center of Excellence in Vascular Ageing Tyrol, VASCage (K-Project Nr. 843536) funded by the BMVIT, BMWFW, the Wirtschaftsagentur Wien and the Standortagentur Tirol.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed/edited the manuscript before submission. T.E.A., M.M., J.S., L.M., F.G. and H.T. made substantial contributions to the discussion of content. T.E.A., M.M., J.S., L.M. and F.G. researched data for the article. J.S., L.M. and F.G. prepared the figures and boxes.

Corresponding authors

Correspondence to Timon E. Adolph or Herbert Tilg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Taku Kobayashi, who co-reviewed with Shintaro Sagami; Benoit Chassaing; and Dirk Haller for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Fibre

Term for complex carbohydrates mainly contained in plant-derived food.

Metabolic inflammation

Chronic low-grade inflammation detectable in the serum of patients with metabolic diseases, such as obesity and type 2 diabetes, which stems from metabolically active tissues.

Western diet

Dietary habit established in industrialized countries that is frequently characterized by an increased intake of simple carbohydrates, long-chain fatty acids and food additives as well as reduced intake of plant-derived fibre.

Metabolic syndrome

A clinical phenotype characterized by obesity, elevated blood pressure, blood glucose and/or blood triglyceride concentration that is associated with a higher risk of cardiovascular diseases and type 2 diabetes.

Immunometabolism

A concept in which diet-derived or host-derived metabolites regulate immune function and, vice versa, the immune system controls metabolism.

Colitis

Inflammation affecting the large intestine.

Enteritis

Inflammation affecting the small intestine.

Exposome

A measure of an individual’s exposure to non-genetic (endogenous and exogenous) cues that affect health during a lifetime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adolph, T.E., Meyer, M., Schwärzler, J. et al. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol 19, 753–767 (2022). https://doi.org/10.1038/s41575-022-00658-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00658-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing