Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal causes of cancer-related death worldwide. The treatment of HCC remains challenging and is largely predicated on early diagnosis. Surveillance of high-risk groups using abdominal ultrasonography, with or without serum analysis of α-fetoprotein (AFP), can permit detection of early, potentially curable tumours, but is limited by its insensitivity. Reviewed here are two current approaches that aim to address this limitation. The first is to use old re-emerged empirically derived biomarkers such as AFP, now applied within statistical models. The second is to use circulating nucleic acid biomarkers, which include cell-free DNA (for example, circulating tumour DNA, cell-free mitochondrial DNA and cell-free viral DNA) and cell-free RNA, applying modern molecular biology-based technologies and machine learning techniques closely allied to the underlying biology of cancer. Taken together, these approaches are likely to be complementary. Both hold considerable promise for achieving earlier diagnosis as well as offering additional functionalities including improved monitoring of therapy and prediction of response thereto.

Key points

  • The development of clinically useful biomarkers for hepatocellular carcinoma (HCC) management has been slow; α-fetoprotein (AFP), despite much controversy and many limitations, remains widely used.

  • Biomarkers predicting response to systemic therapy are urgently needed; AFP is the only biomarker to predict response, and only in a subset of patients receiving ramucirumab in the second-line setting.

  • Promising combinations of biomarkers in diagnostic, predictive and prognostic roles are largely based on case–control studies; judgment on these should be reserved until they are backed up by prospective studies.

  • Cell-free DNAs (cfDNA), based on their genomic and epigenetic changes, can serve as promising biomarkers for early HCC and monitoring of minimal residual disease.

  • The analysis of genetic changes in circulating tumour DNA (ctDNA) enables the deciphering of tumour heterogeneity, facilitating precision oncology in patients with advanced-stage HCC.

  • Liquid biopsy can go beyond genomic DNA molecules, with cell-free mitochondrial DNA, cell-free viral DNA, cfRNA and extracellular vesicles as potential biomarkers for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GALAD Performance in cohorts of patients with HCC at Mayo Clinic, Rochester, MN, USA. Panel.
Fig. 2: Overview of liquid biopsy in the management of HCC.

Similar content being viewed by others

References

  1. Arnold, M. et al. Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159, 335–349.e15 (2020).

    Article  PubMed  Google Scholar 

  2. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  3. Kulik, L. & El-Serag, H. B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156, 477–491.e1 (2019).

    Article  PubMed  Google Scholar 

  4. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  5. Heimbach, J. K. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67, 358–380 (2018).

    Article  PubMed  Google Scholar 

  6. Jepsen, P. & West, J. We need stronger evidence for (or against) hepatocellular carcinoma surveillance. J. Hepatol. 74, 1234–1239 (2021).

    Article  PubMed  Google Scholar 

  7. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, M. C. et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31, 745–759 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Chan, K. C. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    Article  PubMed  Google Scholar 

  11. Simmons, O. et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Aliment. Pharmacol. Ther. 45, 169–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Mizejewski, G. J. Biological roles of alpha-fetoprotein during pregnancy and perinatal development. Exp. Biol. Med. 229, 439–463 (2004).

    Article  CAS  Google Scholar 

  13. Galle, P. R. et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 39, 2214–2229 (2019).

    Article  PubMed  Google Scholar 

  14. Xu, C., Yan, Z., Zhou, L. & Wang, Y. A comparison of glypican-3 with alpha-fetoprotein as a serum marker for hepatocellular carcinoma: a meta-analysis. J. Cancer Res. Clin. Oncol. 139, 1417–1424 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Marrero, J. A. et al. α-Fetoprotein, des-γ carboxyprothrombin, and lectin-bound α-fetoprotein in early hepatocellular carcinoma. Gastroenterology 137, 110–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Singal, A. et al. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment. Pharmacol. Ther. 30, 37–47 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tzartzeva, K. & Singal, A. G. Testing for AFP in combination with ultrasound improves early liver cancer detection. Expert Rev. Gastroenterol. Hepatol. 12, 947–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Zeng, G., Gill, U. S. & Kennedy, P. T. F. Prioritisation and the initiation of HCC surveillance in CHB patients: lessons to learn from the COVID-19 crisis. Gut 69, 1907–1912 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Hughes, D. M. et al. Serum levels of α-fetoprotein increased more than 10 years before detection of hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 19, 162–170.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Yarchoan, M. et al. Recent developments and therapeutic strategies against hepatocellular carcinoma. Cancer Res. 79, 4326–4330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Llovet, J. M. et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 18, 2290–2300 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Montironi, C., Montal, R. & Llovet, J. M. New drugs effective in the systemic treatment of hepatocellular carcinoma. Clin. Liver Dis. 14, 56–61 (2019).

    Article  Google Scholar 

  23. Kudo, M. et al. Ramucirumab after prior sorafenib in patients with advanced hepatocellular carcinoma and elevated alpha-fetoprotein: Japanese subgroup analysis of the REACH-2 trial. J. Gastroenterol. 55, 627–639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu, A. X., Finn, R. S., Galle, P. R., Llovet, J. M. & Kudo, M. Ramucirumab in advanced hepatocellular carcinoma in REACH-2: the true value of α-fetoprotein. Lancet Oncol. 20, e191 (2019).

    Article  PubMed  Google Scholar 

  25. Zhu, A. X. et al. Serum alpha-fetoprotein and clinical outcomes in patients with advanced hepatocellular carcinoma treated with ramucirumab. Br. J. Cancer 124, 1388–1397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, A. X. et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 16, 859–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Merani, S. et al. The impact of waiting list alpha-fetoprotein changes on the outcome of liver transplant for hepatocellular carcinoma. J. Hepatol. 55, 814–819 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Clavien, P. A. et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol. 13, e11–e22 (2012).

    Article  PubMed  Google Scholar 

  29. Duvoux, C. et al. Liver transplantation for hepatocellular carcinoma: a model including α-fetoprotein improves the performance of Milan criteria. Gastroenterology 143, 986–994.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Halazun, K. J. et al. Dynamic α-fetoprotein response and outcomes after liver transplant for hepatocellular carcinoma. JAMA Surg. 156, 559–567 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sherman, M. Alphafetoprotein: an obituary. J. Hepatol. 34, 603–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sherman, M. Serological surveillance for hepatocellular carcinoma: time to quit. J. Hepatol. 52, 614–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Forner, A., Reig, M. & Bruix, J. α-Fetoprotein for hepatocellular carcinoma diagnosis: the demise of a brilliant star. Gastroenterology 137, 26–29 (2009).

    Article  PubMed  Google Scholar 

  34. Lee, S. S. & Sherman, M. Why won’t the alpha-fetoprotein test go gentle into the good night? Gastroenterology 154, 1572–1573 (2018).

    Article  PubMed  Google Scholar 

  35. Kudo, M. et al. Liver Cancer Working Group report. Jpn. J. Clin. Oncol. 40, i19–i27 (2010).

    Article  PubMed  Google Scholar 

  36. Liebman, H. A. et al. Des-γ-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N. Engl. J. Med. 310, 1427–1431 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Nomura, F. et al. Serum des-gamma-carboxy prothrombin levels determined by a new generation of sensitive immunoassays in patients with small-sized hepatocellular carcinoma. Am. J. Gastroenterol. 94, 650–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, R. et al. Diagnostic performance of des-γ-carboxy prothrombin for hepatocellular carcinoma: a meta-analysis. Gastroenterol. Res. Pract. 2014, 529314 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sato, Y. et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N. Engl. J. Med. 328, 1802–1806 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Yi, X., Yu, S. & Bao, Y. Alpha-fetoprotein-L3 in hepatocellular carcinoma: a meta-analysis. Clin. Chim. Acta 425, 212–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Tada, T. et al. Relationship between Lens culinaris agglutinin-reactive α-fetoprotein and pathologic features of hepatocellular carcinoma. Liver Int. 25, 848–853 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, P. J. et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol. Biomark. Prev. 23, 144–153 (2014).

    Article  CAS  Google Scholar 

  43. Berhane, S. et al. Role of the GALAD and BALAD-2 serologic models in diagnosis of hepatocellular carcinoma and prediction of survival in patients. Clin. Gastroenterol. Hepatol. 14, 875–886.e6 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Best, J. et al. GALAD score detects early hepatocellular carcinoma in an international cohort of patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 18, 728–735.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Best, J. et al. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma. Z. fur Gastroenterol. 54, 1296–1305 (2016).

    Article  CAS  Google Scholar 

  46. Caviglia, G. P. et al. Highly sensitive alpha-fetoprotein, Lens culinaris agglutinin-reactive fraction of alpha-fetoprotein and des-gamma-carboxyprothrombin for hepatocellular carcinoma detection. Hepatol. Res. 46, E130–E135 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, J. D. et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score. Cancer Epidemiol. Biomark. Prev. 28, 531–538 (2019).

    Article  Google Scholar 

  48. Adeniji, N. & Dhanasekaran, R. Current and emerging tools for hepatocellular carcinoma surveillance. Hepatol. Commun. 5, 1972–1986 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Singal, A. G. et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis. Hepatology 75, 541–549 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05342350 (2022).

  51. Toyoda, H. et al. Staging hepatocellular carcinoma by a novel scoring system (BALAD score) based on serum markers. Clin. Gastroenterol. Hepatol. 4, 1528–1536 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Fox, R. et al. Biomarker-based prognosis in hepatocellular carcinoma: validation and extension of the BALAD model. Br. J. Cancer 110, 2090–2098 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Toyoda, H. et al. Validation of serological models for staging and prognostication of HCC in patients from a Japanese nationwide survey. J. Gastroenterol. 52, 1112–1121 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, M. et al. The Doylestown algorithm: a test to improve the performance of AFP in the detection of hepatocellular carcinoma. Cancer Prev. Res. 9, 172–179 (2016).

    Article  CAS  Google Scholar 

  55. Wang, M. et al. Changes in the glycosylation of kininogen and the development of a kininogen-based algorithm for the early detection of HCC. Cancer Epidemiol. Biomark. Prev. 26, 795–803 (2017).

    Article  CAS  Google Scholar 

  56. Tayob, N. et al. Validation of the hepatocellular carcinoma early detection screening (HES) algorithm in a cohort of veterans with cirrhosis. Clin. Gastroenterol. Hepatol. 17, 1886–1893.e5 (2019).

    Article  PubMed  Google Scholar 

  57. Anatelli, F., Chuang, S. T., Yang, X. J. & Wang, H. L. Value of glypican 3 immunostaining in the diagnosis of hepatocellular carcinoma on needle biopsy. Am. J. Clin. Pathol. 130, 219–223 (2008).

    Article  PubMed  Google Scholar 

  58. Xu, D., Su, C., Sun, L., Gao, Y. & Li, Y. Performance of serum glypican 3 in diagnosis of hepatocellular carcinoma: a meta-analysis. Ann. Hepatol. 18, 58–67 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Schwarzenbach, H., Hoon, D. S. B. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11, 426–437 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Mandel, P. & Metais, P. Les acides nucleiques du plasma sanguin chez l’homme [French]. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  61. Stroun, M. et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46, 318–322 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Sorenson, G. D. et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 3, 67–71 (1994).

    CAS  Google Scholar 

  63. Vasioukhin, V. et al. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 86, 774–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

    Article  PubMed  Google Scholar 

  65. Chan, K. C. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Labgaa, I. et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 37, 3740–3752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ng, C. K. Y. et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naive hepatocellular carcinoma patients: a pilot study. Ann. Oncol. 29, 1286–1291 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Yung, T. K. et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin. Cancer Res. 15, 2076–2084 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Cohen, J. D. et al. Detection of low-frequency DNA variants by targeted sequencing of the Watson and Crick strands. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00900-z (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Qu, C. et al. Detection of early-stage hepatocellular carcinoma in asymptomatic HBsAg-seropositive individuals by liquid biopsy. Proc. Natl Acad. Sci. USA 116, 6308–6312 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lennon, A. M. et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369, eabb9601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Razavi, P. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 25, 1928–1937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Craig, A. J., von Felden, J., Garcia-Lezana, T., Sarcognato, S. & Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17, 139–152 (2020).

    Article  PubMed  Google Scholar 

  79. Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science https://doi.org/10.1126/science.aaw3616 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Baylin, S. B. et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet. 10, 687–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Wen, L. et al. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 25, 1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Chalasani, N. P. et al. A novel blood-based panel of methylated DNA and protein markers for detection of early-stage hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 19, 2597–2605.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, R. H. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16, 1155–1161 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Taryma-Lesniak, O., Sokolowska, K. E. & Wojdacz, T. K. Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin. Epigenetics https://doi.org/10.1186/s13148-020-00886-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Li, W. et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 27, 1243–1257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song, C. X. et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 27, 1231–1242 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cai, J. et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut 68, 2195–2205 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Vogel, A. et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv238–iv255 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Cai, Z. et al. Comprehensive liquid profiling of circulating tumor DNA and protein biomarkers in long-term follow-up patients with hepatocellular carcinoma. Clin. Cancer Res. 25, 5284–5294 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Wang, J. et al. Circulating tumor DNA correlates with microvascular invasion and predicts tumor recurrence of hepatocellular carcinoma. Ann Transl Med. 8, 237–237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ronot, M. et al. Alternative response criteria (Choi, European Association for the Study of the Liver, and modified Response Evaluation Criteria in Solid Tumors [RECIST]) versus RECIST 1.1 in patients with advanced hepatocellular carcinoma treated with sorafenib. Oncologist 19, 394–402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rothwell, D. G. et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat. Med. 25, 738–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lim, H. Y. et al. Phase II studies with refametinib or refametinib plus sorafenib in patients with RAS-mutated hepatocellular carcinoma. Clin. Cancer Res. 24, 4650–4661 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Ikeda, S. et al. Next-generation sequencing of circulating tumor DNA reveals frequent alterations in advanced hepatocellular carcinoma. Oncologist 23, 586–593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ikeda, S., Lim, J. S. & Kurzrock, R. Analysis of tissue and circulating tumor DNA by next-generation sequencing of hepatocellular carcinoma: implications for targeted therapeutics. Mol. Cancer Ther. 17, 1114–1122 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oh, C. R. et al. Genome-wide copy number alteration and VEGFA amplification of circulating cell-free DNA as a biomarker in advanced hepatocellular carcinoma patients treated with sorafenib. BMC Cancer https://doi.org/10.1186/s12885-019-5483-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  99. von Felden, J. et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 40, 140-151 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aat4921 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mouliere, F., El Messaoudi, S., Pang, D., Dritschilo, A. & Thierry, A. R. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol. Oncol. 8, 927–941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet. 12, e1006162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen, L. et al. Genome-scale profiling of circulating cell-free DNA signatures for early detection of hepatocellular carcinoma in cirrhotic patients. Cell Res. 31, 589–592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. https://doi.org/10.1038/s41572-020-00240-3 (2021).

    Article  PubMed  Google Scholar 

  106. Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kan, Z. et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23, 1422–1433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sung, W. K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, W. et al. Noninvasive chimeric DNA profiling identifies tumor-originated HBV integrants contributing to viral antigen expression in liver cancer. Hepatol. Int. 14, 326–337 (2020).

    Article  PubMed  Google Scholar 

  110. Li, C. L. et al. Cell-free virus-host chimera DNA from hepatitis B virus integration sites as a circulating biomarker of hepatocellular cancer. Hepatology 72, 2063–2076 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, H. et al. Hypomethylation in HBV integration regions aids non-invasive surveillance to hepatocellular carcinoma by low-pass genome-wide bisulfite sequencing. BMC Med. https://doi.org/10.1186/s12916-020-01667-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Chan, K. C. A. et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377, 513–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Ohata, K. et al. High viral load is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. J. Gastroenterol. Hepatol. 19, 670–675 (2004).

    Article  PubMed  Google Scholar 

  114. Li, L. et al. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection. Sci. Rep. 6, 23992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, Y. et al. Next generation sequencing-based analysis of mitochondrial DNA characteristics in plasma extracellular vesicles of patients with hepatocellular carcinoma. Oncol. Lett. 20, 2820–2828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, Y. et al. NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients. Mol. Ther. Nucleic acids 23, 657–666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma, M. L. et al. Topologic analysis of plasma mitochondrial DNA reveals the coexistence of both linear and circular molecules. Clin. Chem. 65, 1161–1170 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Zhong, S., Ng, M. C., Lo, Y. M. D., Chan, J. C. & Johnson, P. J. Presence of mitochondrial tRNA(Leu(UUR)) A to G 3243 mutation in DNA extracted from serum and plasma of patients with type 2 diabetes mellitus. J. Clin. Pathol. 53, 466–469 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yin, C. et al. NGS-based profiling reveals a critical contributing role of somatic D-loop mtDNA mutations in HBV-related hepatocarcinogenesis. Ann. Oncol. 30, 953–962 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Nishikawa, M. et al. Somatic mutation of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Res. 61, 1843–1845 (2001).

    CAS  PubMed  Google Scholar 

  121. Lo, K. W. et al. Analysis of cell-free Epstein-Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma. Clin. Chem. 45, 1292–1294 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Larson, M. H. et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat. Commun. 12, 2357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jin, Y. et al. Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Sci. Rep. https://doi.org/10.1038/s41598-019-46872-8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Koberle, V. et al. Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur. J. Cancer 49, 3442–3449 (2013).

    Article  PubMed  Google Scholar 

  125. Tan, C. et al. Noncoding RNAs serve as diagnosis and prognosis biomarkers for hepatocellular carcinoma. Clin. Chem. 65, 905–915 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Malkin, E. Z. & Bratman, S. V. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 11, 584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sugimachi, K. et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 112, 532–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Qu, Z. et al. Exosomal miR-665 as a novel minimally invasive biomarker for hepatocellular carcinoma diagnosis and prognosis. Oncotarget 8, 80666–80678 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shi, M. et al. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J. Cell. Biochem. 119, 4711–4716 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Sun, N. et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat. Commun. 11, 4489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Singal, A. G. et al. Doylestown Plus and GALAD demonstrate high sensitivity for HCC detection in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 20, 953–955.e2 (2021).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Philip Johnson.

Ethics declarations

Competing interests

Y.M.D.L. holds equities in Grail/Illumina, DRA and Take2, and has previously received research funding from Grail. Y.M.D.L. is a scientific cofounder of Grail. Y.M.D.L. receives patent royalties from Sequenom, Illumina, Xcelom, Grail, DRA and Take2. P.J, Q.Z. and D.Y.D. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Arndt Vogel, Thomas Decaens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, P., Zhou, Q., Dao, D.Y. et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 19, 670–681 (2022). https://doi.org/10.1038/s41575-022-00620-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00620-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research