Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dietary management of adults with IBD — the emerging role of dietary therapy

Abstract

Historically, dietitians played a minor part in the management of inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Patients were commonly referred for consequences of uncontrolled disease, such as malnutrition and bowel obstruction risk. Today, dietitians are fundamental members of the multidisciplinary IBD team, from educating on the role of diet at diagnosis and throughout the lifespan of a patient with IBD to guiding primary induction therapy. This aspect is reflected in published guidelines for IBD management, which previously placed diet as only a minor factor, but now have diet-specific publications. This Review describes a four-step approach in a dietitian’s assessment and management of diet in patients with IBD: (1) identifying and correcting nutritional gaps and dietary imbalances; (2) considering diet to treat active disease with the use of exclusive enteral nutrition (EEN) or emerging diets that could replace EEN; (3) using therapeutic diets to control existing complications of IBD, such as reduced fibre to prevent bowel obstruction in stricturing disease or a fermentable oligosaccharides, disaccharides, monosaccharides and polyols diet to manage co-existing functional gut symptoms; and (4) considering the role of diet in preventing IBD development in high-risk populations.

Key points

  • Specialized dietitian intervention is a key component of inflammatory bowel disease (IBD) management and all patients with symptoms or who have changed their diet should be referred to a dietitian.

  • Nutrition assessment needs to include body composition assessments that are associated with clinical outcomes.

  • Exclusive enteral nutrition (EEN) and the Crohn’s Disease Exclusion Diet could be used to induce IBD remission, with potential for emerging, more-targeted diets to treat disease.

  • Dietary therapy is used to managed complications of IBD, including bowel obstruction risk and co-existing functional gut symptoms.

  • Preoperative nutritional support, with oral nutritional supplements or EEN, improves surgical outcomes and should be optimized if possible.

  • Disordered eating is an emerging issue in IBD and needs clinical consideration and further examination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of diet therapy in management of IBD in a four-step strategy.
Fig. 2: Proposed mechanisms of action for exclusive enteral nutrition treating active Crohn’s disease.

Similar content being viewed by others

References

  1. Holt, D. Q., Strauss, B. J. & Moore, G. T. Patients with inflammatory bowel disease and their treating clinicians have different views regarding diet. J. Hum. Nutr. Diet. 30, 66–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Vagianos, K. et al. What are adults with inflammatory bowel disease (IBD) eating? A closer look at the dietary habits of a population-based Canadian IBD cohort. JPEN 40, 405–411 (2016).

    Article  Google Scholar 

  3. Mountifield, R., Andrews, J. M., Mikocka-Walus, A. & Bampton, P. Doctor communication quality and friends’ attitudes influence complementary medicine use in inflammatory bowel disease. World J. Gastroenterol. 21, 3663–3670 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nguyen, G. C., Croitoru, K., Silverberg, M. S., Steinhart, A. H. & Weizman, A. V. Use of complementary and alternative medicine for inflammatory bowel disease is associated with worse adherence to conventional therapy: the COMPLIANT study. Inflamm. Bowel Dis. 22, 1412–1417 (2016).

    Article  PubMed  Google Scholar 

  5. Day, A., Wood, J., Melton, S. & Bryant, R. V. Exclusive enteral nutrition: an optimal care pathway for use in adult patients with active Crohn’s disease. JGH Open 4, 260–266 (2020). This article presents a practical clinical toolkit for implementing exclusive enteral nutrition in adults.

    Article  PubMed  Google Scholar 

  6. Lamb, C. A. et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 68 (Suppl. 3), s1–s106 (2019).

    Article  PubMed  Google Scholar 

  7. Mikocka-Walus, A. et al. Quality of care in inflammatory bowel disease: actual health service experiences fall short of the standards. Intern. Med. J. 50, 1216–1225 (2020). This article compares current IBD care to nationally recommended standards.

    Article  PubMed  Google Scholar 

  8. IBD UK. Crohn’s and colitis care in the UK: The hidden cost and a vision for change. IBD UK https://ibduk.org/reports/crohns-and-colitis-care-in-the-uk-the-hidden-cost-and-a-vision-for-change (2021).

  9. Lomer, M. C. National UK audits in inflammatory bowel disease (IBD) highlight a deficit of dietitians in gastroenterology: a priority for improvement supported by national IBD standards. J. Hum. Nutr. Diet. 22, 287–289 (2009).

    Article  PubMed  Google Scholar 

  10. Prasad, S. S. et al. Roles of healthcare professionals in the management of chronic gastrointestinal diseases with a focus on primary care: a systematic review. JGH Open. 4, 221–229 (2020).

    Article  PubMed  Google Scholar 

  11. Sigall-Boneh, R. et al. Research gaps in diet and nutrition in inflammatory bowel disease. A topical review by D-ECCO Working Group [Dietitians of ECCO]. J. Crohns Colitis 11, 1407–1419 (2017). This review highlights the areas of dietary research still requiring further evidence before implementation in clinical practice.

    Article  PubMed  Google Scholar 

  12. Halmos, E. P. & Gibson, P. R. Dietary management of IBD–insights and advice. Nat. Rev. Gastroenterol. Hepatol. 12, 133–146 (2015). This article is a formative review examining the evidence for dietary management of IBD up to 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Gassull, M. A. & Cabré, E. Nutrition in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 4, 561–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, J. et al. British Dietetic Association evidence-based guidelines for the dietary management of Crohn’s disease in adults. J. Hum. Nutr. Dietetics 27, 207–218 (2014).

    Article  CAS  Google Scholar 

  15. Bischoff, S. C. et al. ESPEN practical guideline: clinical nutrition in inflammatory bowel disease. Clin. Nutr. 39, 632–653 (2020). This article summarizes nutritional interventions in IBD in all disease states.

    Article  PubMed  Google Scholar 

  16. Bryant, R. V. et al. Visceral adipose tissue is associated with stricturing Crohn’s disease behavior, fecal calprotectin, and quality of life. Inflamm. Bowel Dis. 25, 592–600 (2019).

    Article  PubMed  Google Scholar 

  17. Chooi, Y. C., Ding, C. & Magkos, F. The epidemiology of obesity. Metabolism 92, 6–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, S., Dulai, P. S., Zarrinpar, A., Ramamoorthy, S. & Sandborn, W. J. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 14, 110–121 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Sandhu, A. et al. Self-screening for malnutrition risk in outpatient inflammatory bowel disease patients using the malnutrition universal screening tool (MUST). J. Parenter. Enter. Nutr. 40, 507–510 (2016).

    Article  Google Scholar 

  20. Cederholm, T. et al. GLIM criteria for the diagnosis of malnutrition: a consensus report from the global clinical nutrition community. Clin. Nutr. 38, 1–9 (2019). This is a definitive paper assessing malnutrition across the spectrum of clinical disorders using body composition assessment.

    Article  CAS  PubMed  Google Scholar 

  21. Fiorindi, C. et al. Effect of long-lasting nutritional prehabilitation on postoperative outcome in elective surgery for IBD. Clin. Nutr. 40, 928–935 (2020).

    Article  PubMed  Google Scholar 

  22. Cederholm, T. et al. Diagnostic criteria for malnutrition–an ESPEN Consensus Statement. Clin. Nutr. 34, 335–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Innes, K., Hooper, J., Bramley, M. & DahDah, P. Creation of a clinical classification. International statistical classification of diseases and related health problems–10th revision, Australian modification (ICD-10-AM). Health Inf. Manag. 27, 31–38 (1997).

    CAS  PubMed  Google Scholar 

  24. Casanova, M. J. et al. Prevalence of malnutrition and nutritional characteristics of patients with inflammatory bowel disease. J. Crohns Colitis 11, 1430–1439 (2017).

    Article  PubMed  Google Scholar 

  25. Massuger, W. et al. Crohn’s & Colitis Australia inflammatory bowel disease audit: measuring the quality of care in Australia. Intern. Med. J. 49, 859–866 (2019).

    Article  PubMed  Google Scholar 

  26. Nguyen, G. C., Munsell, M. & Harris, M. L. Nationwide prevalence and prognostic significance of clinically diagnosable protein-calorie malnutrition in hospitalized inflammatory bowel disease patients. Inflamm. Bowel Dis. 14, 1105–1111 (2008).

    Article  PubMed  Google Scholar 

  27. Valentini, L. et al. Malnutrition and impaired muscle strength in patients with Crohn’s disease and ulcerative colitis in remission. Nutrition 24, 694–702 (2008).

    Article  PubMed  Google Scholar 

  28. Wood, J., Ward, L., Sparrow, M. & King, S. Utility of bioimpedance methods for the assessment of fat-free mass in adult outpatients with inflammatory bowel disease. Nutrition 77, 110833 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Bryant, R. V. et al. Obesity in inflammatory bowel disease: gains in adiposity despite high prevalence of myopenia and osteopenia. Nutrients 10, 1192 (2018). This article is a prospective assessment of detailed body composition in patients with IBD.

    Article  PubMed Central  Google Scholar 

  30. Fearon, K., Evans, W. J. & Anker, S. D. Myopenia–a new universal term for muscle wasting. J. Cachexia Sarcopenia Muscle 2, 1–3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bamba, S. et al. Sarcopenia is a predictive factor for intestinal resection in admitted patients with Crohn’s disease. PLoS ONE 12, e0180036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bryant, R. V. et al. Low muscle mass and sarcopenia: common and predictive of osteopenia in inflammatory bowel disease. Aliment. Pharmacol. Ther. 41, 895–906 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ding, N. S. et al. The body composition profile is associated with response to anti-TNF therapy in Crohn’s disease and may offer an alternative dosing paradigm. Aliment. Pharmacol. Ther. 46, 883–891 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Grillot, J. et al. Sarcopenia and visceral obesity assessed by computed tomography are associated with adverse outcomes in patients with Crohn’s disease. Clin. Nutr. 39, 3024–3030 (2020).

    Article  PubMed  Google Scholar 

  35. Zhang, T. et al. Prevalence of sarcopenia and its impact on postoperative outcome in patients with Crohn’s disease undergoing bowel resection. JPEN 41, 592–600 (2017).

    Article  Google Scholar 

  36. Erős, A. et al. Sarcopenia as an independent predictor of the surgical outcomes of patients with inflammatory bowel disease: a meta-analysis. Surg. Today 50, 1138–1150 (2020).

    Article  PubMed  Google Scholar 

  37. Ryan, E. et al. Sarcopenia and inflammatory bowel disease: a systematic review. Inflamm. Bowel Dis. 25, 67–73 (2019).

    Article  PubMed  Google Scholar 

  38. Romberg-Camps, M. J. et al. Fatigue and health-related quality of life in inflammatory bowel disease: results from a population-based study in the Netherlands: the IBD-South Limburg cohort. Inflamm. Bowel Dis. 16, 2137–2147 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. van Langenberg, D. R. et al. Objectively measured muscle fatigue in Crohn’s disease: correlation with self-reported fatigue and associated factors for clinical application. J. Crohns Colitis 8, 137–146 (2014).

    Article  PubMed  Google Scholar 

  40. van Langenberg, D. R. et al. Delving into disability in Crohn’s disease: dysregulation of molecular pathways may explain skeletal muscle loss in Crohn’s disease. J. Crohns Colitis 8, 626–634 (2014).

    Article  PubMed  Google Scholar 

  41. Price, K. L. & Earthman, C. P. Update on body composition tools in clinical settings: computed tomography, ultrasound, and bioimpedance applications for assessment and monitoring. Eur. J. Clin. Nutr. 73, 187–193 (2019).

    Article  PubMed  Google Scholar 

  42. Dignass, A. U. et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns Colitis 9, 211–222 (2015).

    Article  PubMed  Google Scholar 

  43. Kilby, K., Mathias, H., Boisvenue, L., Heisler, C. & Jones, J. L. Micronutrient absorption and related outcomes in people with inflammatory bowel disease: a review. Nutrients 11, 1388 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  44. Fletcher, J., Cooper, S. C., Ghosh, S. & Hewison, M. The role of vitamin D in inflammatory bowel disease: mechanism to management. Nutrients 11, 1019 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  45. Vaghari-Tabari, M. et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles? Biol. Trace Elem. Res. 199, 3190–3204 (2020).

    Article  PubMed  Google Scholar 

  46. Siva, S., Rubin, D. T., Gulotta, G., Wroblewski, K. & Pekow, J. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 23, 152–157 (2017).

    Article  PubMed  Google Scholar 

  47. MacMaster, M. J. et al. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin. Nutr. 40, 327–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Kabbani, T. A. et al. Association of vitamin D level with clinical status in inflammatory bowel disease: a 5-year longitudinal study. Am. J. Gastroenterol. 111, 712–719 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Rowan, C. R., McManus, J., Boland, K. & O’Toole, A. Visceral adiposity and inflammatory bowel disease. Int. J. Colorectal Dis. 36, 2305–2319 (2021).

    Article  PubMed  Google Scholar 

  50. Dai, Z. H., Xu, X. T. & Ran, Z. H. Associations between obesity and the effectiveness of anti-tumor necrosis factor-α agents in inflammatory bowel disease patients: a literature review and meta-analysis. Ann. Pharmacother. 54, 729–741 (2020).

    Article  PubMed  Google Scholar 

  51. Cederholm, T. et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 36, 49–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Ding, Z. et al. Association between high visceral fat area and postoperative complications in patients with Crohn’s disease following primary surgery. Colorectal Dis. 18, 163–172 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Holt, D. Q. et al. Visceral adiposity predicts post-operative Crohn’s disease recurrence. Aliment. Pharmacol. Ther. 45, 1255–1264 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Correa-de-Araujo, R. et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the National Institute on Aging. Front. Physiol. 11, 963 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Spooren, C. et al. The reproducibility of skeletal muscle signal intensity on routine magnetic resonance imaging in Crohn’s disease. J. Gastroenterol. Hepatol. 35, 1902–1908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Brien, S. et al. The impact of sarcopenia and myosteatosis on postoperative outcomes in patients with inflammatory bowel disease. Eur. Radiol. Exp. 2, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cravo, M. L. et al. Lower skeletal muscle attenuation and high visceral fat index are associated with complicated disease in patients with Crohn’s disease: an exploratory study. Clin. Nutr. ESPEN 21, 79–85 (2017).

    Article  PubMed  Google Scholar 

  58. Whelan, K. et al. Food-related quality of life is impaired in inflammatory bowel disease and associated with reduced intake of key nutrients. Am. J. Clin. Nutr. 113, 832–844 (2021).

    Article  PubMed  Google Scholar 

  59. Schreiner, P. et al. Vegetarian or gluten-free diets in patients with inflammatory bowel disease are associated with lower psychological well-being and a different gut microbiota, but no beneficial effects on the course of the disease. United Eur. Gastroenterol. J. 7, 767–781 (2019).

    Article  Google Scholar 

  60. Leffler, D. A. et al. A prospective comparative study of five measures of gluten-free diet adherence in adults with coeliac disease. Aliment. Pharmacol. Ther. 26, 1227–1235 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Carter, M. C., Burley, V. J., Nykjaer, C. & Cade, J. E. ‘My Meal Mate’ (MMM): validation of the diet measures captured on a smartphone application to facilitate weight loss. Br. J. Nutr. 109, 539–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Lemacks, J. L., Adams, K. & Lovetere, A. Dietary intake reporting accuracy of the Bridge2U mobile application food log compared to control meal and dietary recall methods. Nutrients 11, 199 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  63. Iłowiecka, K., Glibowski, P., Skrzypek, M. & Styk, W. The long-term dietitian and psychological support of obese patients who have reduced their weight allows them to maintain the effects. Nutrients 13, 2020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Crespo-Escobar, P. et al. The role of gluten consumption at an early age in celiac disease development: a further analysis of the prospective PreventCD cohort study. Am. J. Clin. Nutr. 105, 890–896 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Levine, A. et al. Dietary guidance from the International Organization for the Study of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 18, 1381–1392 (2020).

    Article  PubMed  Google Scholar 

  66. Voitk, A. J., Echave, V., Feller, J. H., Brown, R. A. & Gurd, F. N. Experience with elemental diet in the treatment of inflammatory bowel disease: is this primary therapy? Arch. Surg. 107, 329–333 (1973).

    Article  CAS  PubMed  Google Scholar 

  67. Yu, Y., Chen, K. C. & Chen, J. Exclusive enteral nutrition versus corticosteroids for treatment of pediatric Crohn’s disease: a meta-analysis. World J. Pediatr. 15, 26–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dziechciarz, P., Horvath, A., Shamir, R. & Szajewska, H. Meta-analysis: enteral nutrition in active Crohn’s disease in children. Aliment. Pharmacol. Ther. 26, 795–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Heuschkel, R. B., Menache, C. C., Megerian, J. T. & Baird, A. E. Enteral nutrition and corticosteroids in the treatment of acute Crohn’s disease in children. J. Pediatr. Gastroenterol. Nutr. 31, 8–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Ruemmele, F. M. et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis 8, 1179–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Narula, N. et al. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 4, CD000542 (2018). This article is a systematic review of the evidence for EEN in adult and paediatric populations.

    PubMed  Google Scholar 

  72. Wall, C. L., Day, A. S. & Gearry, R. B. Use of exclusive enteral nutrition in adults with Crohn’s disease: a review. World J. Gastroenterol. 19, 7652–7660 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Comeche, J. M. et al. Enteral nutrition in patients with inflammatory bowel disease. systematic review, meta-analysis, and meta-regression. Nutrients 11, 2657 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  74. Afzal, N. A. et al. Colonic Crohn’s disease in children does not respond well to treatment with enteral nutrition if the ileum is not involved. Dig. Dis. Sci. 50, 1471–1475 (2005).

    Article  PubMed  Google Scholar 

  75. Wilschanski, M. et al. Supplementary enteral nutrition maintains remission in paediatric Crohn’s disease. Gut 38, 543 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ashton, J. J., Gavin, J. & Beattie, R. M. Exclusive enteral nutrition in Crohn’s disease: evidence and practicalities. Clin. Nutr. 38, 80–89 (2019).

    Article  PubMed  Google Scholar 

  77. Buchanan, E. et al. The use of exclusive enteral nutrition for induction of remission in children with Crohn’s disease demonstrates that disease phenotype does not influence clinical remission. Aliment. Pharmacol. Ther. 30, 501–507 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Knight, C., El-Matary, W., Spray, C. & Sandhu, B. K. Long-term outcome of nutritional therapy in paediatric Crohn’s disease. Clin. Nutr. 24, 775–779 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Yamamoto, T., Nakahigashi, M., Umegae, S. & Matsumoto, K. Enteral nutrition for the maintenance of remission in Crohn’s disease: a systematic review. Eur. J. Gastroenterol. Hepatol. 22, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Shariff, S., Moran, G., Grimes, C. & Cooney, R. M. Current use of EEN in pre-operative optimisation in Crohn’s disease. Nutrients 13, 4389 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hu, D. et al. Exclusive enteral nutritional therapy can relieve inflammatory bowel stricture in Crohn’s disease. J. Clin. Gastroenterol. 48, 790–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Yan, D., Ren, J., Wang, G., Liu, S. & Li, J. Predictors of response to enteral nutrition in abdominal enterocutaneous fistula patients with Crohn’s disease. Eur. J. Clin. Nutr. 68, 959–963 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, Q. et al. Efficacy of exclusive enteral nutrition in complicated Crohn’s disease. Scand. J. Gastroenterol. 52, 995–1001 (2017).

    PubMed  Google Scholar 

  84. Logan, M. et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease–new insights into dietary disease triggers. Aliment. Pharmacol. Ther. 51, 935–947 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wedrychowicz, A. et al. Serum concentrations of VEGF and TGF-β1 during exclusive enteral nutrition in IBD. J. Pediatr. Gastroenterol. Nutr. 53, 150–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Sahu, P. et al. Randomised clinical trial: exclusive enteral nutrition versus standard of care for acute severe ulcerative colitis. Aliment. Pharmacol. Ther. 53, 568–576 (2021).

    CAS  PubMed  Google Scholar 

  87. Alhagamhmad, M. H., Day, A. S., Lemberg, D. A. & Leach, S. T. Exploring and enhancing the anti-inflammatory properties of polymeric formula. JPEN 41, 436–445 (2017).

    Article  CAS  Google Scholar 

  88. Diederen, K. et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci. Rep. 10, 18879 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gerasimidis, K. et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition. Inflamm. Bowel Dis. 20, 861–871 (2014).

    Article  PubMed  Google Scholar 

  90. Jia, W. et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn’s disease? FEMS Microbiol. Lett. 310, 138–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Quince, C. et al. Extensive modulation of the fecal metagenome in children with Crohn’s disease during exclusive enteral nutrition. Am. J. Gastroenterol. 110, 1718–1729 (2015). quiz 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wall, C. L., Gearry, R. B. & Day, A. S. Treatment of active Crohn’s disease with exclusive and partial enteral nutrition: a pilot study in adults. Inflamm. Intestinal Dis. 2, 219–227 (2018).

    Article  Google Scholar 

  93. Wall, C. L., McCombie, A., Mulder, R., Day, A. S. & Gearry, R. B. Adherence to exclusive enteral nutrition by adults with active Crohn’s disease is associated with conscientiousness personality trait: a sub-study. J. Hum. Nutr. Diet. 33, 752–757 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Mutsekwa, R. N., Edwards, J. T. & Angus, R. L. Exclusive enteral nutrition in the management of Crohn’s disease: a qualitative exploration of experiences, challenges and enablers in adult patients. J. Hum. Nutr. Diet. 34, 440–449 (2020).

    Article  PubMed  Google Scholar 

  95. Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450.e8 (2019). This article presents the latest evidence for the effectiveness of a whole-food diet coupled with partial enteral nutrition in inducing remission in Crohn’s disease.

    Article  PubMed  Google Scholar 

  96. Yanai, H. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol. Hepatol. 7, 49–59 (2022).

    Article  PubMed  Google Scholar 

  97. Szczubełek, M. et al. Effectiveness of Crohn’s disease exclusion diet for induction of remission in Crohn’s disease adult patients. Nutrients 13, 4112 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sigall Boneh, R. et al. Dietary therapy with the Crohn’s disease exclusion diet is a successful strategy for induction of remission in children and adults failing biological therapy. J. Crohns Colitis 11, 1205–1212 (2017).

    Article  PubMed  Google Scholar 

  99. Sigall-Boneh, R. et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease. Inflamm. Bowel Dis. 20, 1353–1360 (2014).

    Article  PubMed  Google Scholar 

  100. Pfeffer-Gik, T. & Levine, A. Dietary clues to the pathogenesis of Crohn’s disease. Dig. Dis. 32, 389–394 (2014).

    Article  PubMed  Google Scholar 

  101. Guo, X. et al. High fat diet alters gut microbiota and the expression of Paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017, 9474896 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nickerson, K. P. et al. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice. PLoS ONE 9, e101789 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tomas, J. et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl Acad. Sci. USA 113, E5934–E5943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wagner, S. J. et al. Semisynthetic diet ameliorates Crohn’s disease-like ileitis in TNFδARE/WT mice through antigen-independent mechanisms of gluten. Inflamm. Bowel Dis. 19, 1285–1294 (2013).

    Article  PubMed  Google Scholar 

  105. Larussa, T. et al. Self-prescribed dietary restrictions are common in inflammatory bowel disease patients and are associated with low bone mineralization. Medicina 55, 507 (2019).

    Article  PubMed Central  Google Scholar 

  106. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).

    Article  PubMed  Google Scholar 

  107. Cohen, S. A. et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 59, 516–521 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Obih, C. et al. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center. Nutrition 32, 418–425 (2016).

    Article  PubMed  Google Scholar 

  109. Suskind, D. L. et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease. J. Clin. Gastroenterol. 52, 155–163 (2018).

    Article  PubMed  Google Scholar 

  110. Suskind, D. L. et al. The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn’s disease: a randomized diet controlled trial. Nutrients 12, 3749 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  111. Suskind, D. L., Wahbeh, G., Gregory, N., Vendettuoli, H. & Christie, D. Nutritional therapy in pediatric Crohn disease: the specific carbohydrate diet. J. Pediatr. Gastroenterol. Nutr. 58, 87–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Braly, K. et al. Nutritional adequacy of the specific carbohydrate diet in pediatric inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 65, 533–538 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Abdelhamid, A., Jennings, A., Hayhoe, R. P. G., Awuzudike, V. E. & Welch, A. A. High variability of food and nutrient intake exists across the Mediterranean dietary pattern–a systematic review. Food Sci. Nutr. 8, 4907–4918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Godny, L. et al. Adherence to the Mediterranean diet is associated with decreased fecal calprotectin in patients with ulcerative colitis after pouch surgery. Eur. J. Nutr. 59, 3183–3190 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Chicco, F. et al. Multidimensional impact of Mediterranean diet on IBD patients. Inflamm. Bowel Dis. 27, 1–9 (2021).

    Article  PubMed  Google Scholar 

  117. Jacka, F. N. et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 15, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).

    Article  PubMed  Google Scholar 

  119. Borthakur, A., Bhattacharyya, S., Dudeja, P. K. & Tobacman, J. K. Carrageenan induces interleukin-8 production through distinct Bcl10 pathway in normal human colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G829–G838 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Choi, H. J. et al. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells. Toxicol. Lett. 211, 289–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Roberts, C. L. et al. Translocation of Crohn’s disease Esherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59, 1331–1339 (2010).

    Article  PubMed  Google Scholar 

  122. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Halmos, E. P., Mack, A. & Gibson, P. R. Review article: emulsifiers in the food supply and implications for gastrointestinal disease. Aliment. Pharmacol. Ther. 49, 41–50 (2019). This review examines the role of emulsifiers in the potential pathogenesis of inflammation in IBD.

    Article  CAS  PubMed  Google Scholar 

  125. Martino, J. V., Van Limbergen, J. & Cahill, L. E. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front. Pediatr. 5, 96 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bhattacharyya, S. et al. Reply to critique of “A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity”. Nutr. Healthy Aging 5, 159–163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Andrews, E. B. et al. Prevalence and demographics of irritable bowel syndrome: results from a large web-based survey. Aliment. Pharmacol. Ther. 22, 935–942 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Brandt, L. J. et al. An evidence-based position statement on the management of irritable bowel syndrome. Am. J. Gastroenterol. 104 (Suppl. 1), 1–35 (2009).

    Google Scholar 

  129. Farrokhyar, F., Marshall, J. K., Easterbrook, B. & Irvine, E. J. Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: prevalence and impact on health. Inflamm. Bowel Dis. 12, 38–46 (2006).

    Article  PubMed  Google Scholar 

  130. Colombel, J. F., Shin, A. & Gibson, P. R. AGA clinical practice update on functional gastrointestinal symptoms in patients with inflammatory bowel disease: expert review. Clin. Gastroenterol. Hepatol. 17, 380–390.e1 (2019).

    Article  PubMed  Google Scholar 

  131. Gibson, P. R. Use of the low-FODMAP diet in inflammatory bowel disease. J. Gastroenterol. Hepatol. 32 (Suppl. 1), 40–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Halmos, E. P. A low FODMAP diet in patients with Crohn’s disease. J. Gastroenterol. Hepatol. 31 (Suppl. 1), 14–15 (2016).

    Article  PubMed  Google Scholar 

  133. McKenzie, Y. A. et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults (2016 update). J. Hum. Nutr. Diet. 29, 549–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Moayyedi, P. et al. Canadian Association of Gastroenterology clinical practice guideline for the management of irritable bowel syndrome (IBS). J. Can. Assoc. Gastroenterol. 2, 6–29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gearry, R. B. et al. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease–a pilot study. J. Crohns Colitis 3, 8–14 (2009).

    Article  PubMed  Google Scholar 

  136. Prince, A. C. et al. Fermentable carbohydrate restriction (low FODMAP diet) in clinical practice improves functional gastrointestinal symptoms in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 22, 1129–1136 (2016).

    Article  PubMed  Google Scholar 

  137. Cox, S. R. et al. Fermentable Carbohydrates [FODMAPs] exacerbate functional gastrointestinal symptoms in patients with inflammatory bowel disease: a randomised, double-blind, placebo-controlled, cross-over, re-challenge trial. J. Crohns Colitis 11, 1420–1429 (2017). A randomized controlled trial examining the role of the low FODMAP diet in treating patients with IBD.

    Article  PubMed  Google Scholar 

  138. Halmos, E. P. et al. Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with Crohn’s disease: a randomised, controlled cross-over trial of well-defined diets. Clin. Transl. Gastroenterol. 14, e164 (2016).

    Article  Google Scholar 

  139. O’Keeffe, M. et al. Long-term impact of the low-FODMAP diet on gastrointestinal symptoms, dietary intake, patient acceptability, and healthcare utilization in irritable bowel syndrome. Neurogastroenterol. Motil. https://doi.org/10.1111/nmo.13154 (2018).

    Article  PubMed  Google Scholar 

  140. Knowles, S., Andrews, J. M. & Porter, A. Predictors of impaired mental health and support seeking in adults with inflammatory bowel disease: an online survey. Gastroenterol. Nurs. 41, 38–46 (2018).

    Article  PubMed  Google Scholar 

  141. Cox, S. R. et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158, 176–188.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Tuck, C. J., Reed, D. E., Muir, J. G. & Vanner, S. J. Implementation of the low FODMAP diet in functional gastrointestinal symptoms: a real-world experience. Neurogastroenterol. Motil. 32, e13730 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Halmos, E. P. & Gibson, P. R. Controversies and reality of the FODMAP diet for patients with irritable bowel syndrome. J. Gastroenterol. Hepatol. 34, 1134–1142 (2019).

    Article  PubMed  Google Scholar 

  144. Aziz, I., Branchi, F., Pearson, K., Priest, J. & Sanders, D. S. A study evaluating the bidirectional relationship between inflammatory bowel disease and self-reported non-celiac gluten sensitivity. Inflamm. Bowel Dis. 21, 847–853 (2015).

    Article  PubMed  Google Scholar 

  145. Herfarth, H. H., Martin, C. F., Sandler, R. S., Kappelman, M. D. & Long, M. D. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm. Bowel Dis. 20, 1194–1197 (2014).

    Article  PubMed  Google Scholar 

  146. Morton, H., Pedley, K. C., Stewart, R. J. C. & Coad, J. Inflammatory bowel disease: are symptoms and diet linked? Nutrients 12, 2975 (2020).

    Article  PubMed Central  Google Scholar 

  147. Skodje, G. I. et al. Fructan, rather than gluten, induces symptoms in patients with self-reported non-celiac gluten sensitivity. Gastroenterology 154, 529–539.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Wischmeyer, P. E. et al. American Society for Enhanced Recovery and Perioperative Quality Initiative joint consensus statement on nutrition screening and therapy within a surgical enhanced recovery pathway. Anesth. Analg. 126, 1883–1895 (2018).

    Article  PubMed  Google Scholar 

  149. Lassen, K. et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch. Surg. 144, 961–969 (2009).

    Article  PubMed  Google Scholar 

  150. Gustafsson, U. O. et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS((R))) Society recommendations: 2018. World J. Surg. 43, 659–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Bemelman, W. A. et al. ECCO-ESCP consensus on surgery for Crohn’s disease. J. Crohns Colitis 12, 1–16 (2018).

    PubMed  Google Scholar 

  152. Heerasing, N. et al. Exclusive enteral nutrition provides an effective bridge to safer interval elective surgery for adults with Crohn’s disease. Aliment. Pharm. Ther. 45, 660–669 (2017). An observational study examining the role of EEN in preoperative patients demonstrating that 25% avoided surgery after starting EEN.

    Article  CAS  Google Scholar 

  153. Li, G. et al. Preoperative exclusive enteral nutrition reduces the postoperative septic complications of fistulizing Crohn’s disease. Eur. J. Clin. Nutr. 68, 441–446 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Li, Y. et al. Role of exclusive enteral nutrition in the preoperative optimization of patients with Crohn’s disease following immunosuppressive therapy. Medicine 94, e478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, H. et al. Impact of preoperative exclusive enteral nutrition on postoperative complications and recurrence after bowel resection in patients with active Crohn’s disease. World J. Surg. 40, 1993–2000 (2016).

    Article  PubMed  Google Scholar 

  156. de Oliveira, A. L., Boroni Moreira, A. P., Pereira Netto, M. & Gonçalves Leite, I. C. A cross-sectional study of nutritional status, diet, and dietary restrictions among persons with an ileostomy or colostomy. Ostomy Wound Manag. 64, 18–29 (2018).

    Article  Google Scholar 

  157. Mitchell, A., England, C. & Atkinson, C. Provision of dietary advice for people with an ileostomy: a survey in the UK and Ireland. Colorectal Dis. https://doi.org/10.1111/codi.15268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Brown, C. et al. Long-term outcomes of colectomy surgery among patients with ulcerative colitis. Springerplus 4, 573 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Fazio, V. W. et al. Ileal pouch anal anastomosis: analysis of outcome and quality of life in 3707 patients. Ann. Surg. 257, 679–685 (2013).

    Article  PubMed  Google Scholar 

  160. Ardalan, Z. S., Yao, C. K., Sparrow, M. P. & Gibson, P. R. Review article: the impact of diet on ileoanal pouch function and on the pathogenesis of pouchitis. Aliment. Pharmacol. Ther. 52, 1323–1340 (2020).

    PubMed  Google Scholar 

  161. Godny, L. et al. Fruit consumption is associated with alterations in microbial composition and lower rates of pouchitis. J. Crohns Colitis 13, 1265–1272 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. McLaughlin, S. D. et al. Exclusive elemental diet impacts on the gastrointestinal microbiota and improves symptoms in patients with chronic pouchitis. J. Crohns Colitis 7, 460–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Welters, C. F. et al. Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis. Colon. Rectum 45, 621–627 (2002).

    Article  PubMed  Google Scholar 

  164. Yamamoto, T. Elemental diet therapy for pouchitis following restorative proctocolectomy for ulcerative colitis. J. Crohns Colitis 7, e155 (2013).

    Article  PubMed  Google Scholar 

  165. Chey, W. D., Keefer, L., Whelan, K. & Gibson, P. R. Behavioral and diet therapies in integrated care for patients with irritable bowel syndrome. Gastroenterology 160, 47–62 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Association, 2013).

  167. Wabich, J., Bellaguarda, E., Joyce, C., Keefer, L. & Kinsinger, S. Disordered eating, body dissatisfaction, and psychological distress in patients with inflammatory bowel disease (IBD). J. Clin. Psychol. Med. Settings 27, 310–317 (2020).

    Article  PubMed  Google Scholar 

  168. Day, A. S., Yao, C. K., Costello, S. P., Andrews, J. M. & Bryant, R. V. Food avoidance, restrictive eating behaviour and association with quality of life in adults with inflammatory bowel disease: a systematic scoping review. Appetite 167, 105650 (2021). An Australian study examining the role of disordered eating and food-related quality of life in patients with IBD.

    Article  PubMed  Google Scholar 

  169. Guadagnoli, L. et al. Food-related quality of life in patients with inflammatory bowel disease and irritable bowel syndrome. Qual. Life Res. 28, 2195–2205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zickgraf, H. F. & Ellis, J. M. Initial validation of the Nine Item Avoidant/Restrictive Food Intake Disorder Screen (NIAS): a measure of three restrictive eating patterns. Appetite 123, 32–42 (2018).

    Article  PubMed  Google Scholar 

  171. Day, A. S., Yao, C. K., Costello, S. P., Andrews, J. M. & Bryant, R. V. Food-related quality of life in adults with inflammatory bowel disease is associated with restrictive eating behaviour, disease activity and surgery: a prospective multicentre observational study. J. Hum. Nutr. Diet. 35, 234–244 (2021).

    Article  PubMed  Google Scholar 

  172. Butwicka, A. et al. Association of childhood-onset inflammatory bowel disease with risk of psychiatric disorders and suicide attempt. JAMA Pediatr. 173, 969–978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ludvigsson, J. F. et al. Association between inflammatory bowel disease and psychiatric morbidity and suicide: a Swedish nationwide population-based cohort study with sibling comparisons. J. Crohns Colitis 15, 1824–1836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ilzarbe, L. et al. Inflammatory bowel disease and eating disorders: a systematized review of comorbidity. J. Psychosom. Res. 102, 47–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Czuber-Dochan, W. et al. Perceptions and psychosocial impact of food, nutrition, eating and drinking in people with inflammatory bowel disease: a qualitative investigation of food-related quality of life. J. Hum. Nutr. Diet. 33, 115–127 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Herpertz-Dahlmann, B., Seitz, J. & Baines, J. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa. Eur. Child. Adolesc. Psychiatry 26, 1031–1041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Solmi, M., Santonastaso, P., Caccaro, R. & Favaro, A. A case of anorexia nervosa with comorbid Crohn’s disease: beneficial effects of anti-TNF-α therapy? Int. J. Eat. Disord. 46, 639–641 (2013).

    Article  PubMed  Google Scholar 

  178. Wood, J. A., Halmos, E. P., Taylor, K. M. & Gibson, P. R. The role of epidemiological evidence from prospective population studies in shaping dietary approaches to therapy in Crohn’s disease. Mol. Nutr. Food Res. 65, e2000294 (2020). A review examining dietary studies in the pathogenesis of IBD and treating IBD and the discourse between them.

    Article  PubMed  Google Scholar 

  179. Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Andersen, V. et al. Fibre intake and the development of inflammatory bowel disease: a European prospective multi-centre cohort study (EPIC-IBD). J. Crohns Colitis 12, 129–136 (2018).

    Article  PubMed  Google Scholar 

  181. Ananthakrishnan, A. N. et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63, 776–784 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. de Silva, P. S. A., Luben, R., Shrestha, S. S., Khaw, K. T. & Hart, A. R. Dietary arachidonic and oleic acid intake in ulcerative colitis etiology: a prospective cohort study using 7-day food diaries. Eur. J. Gastroenterol. Hepatol. 26, 11–18 (2014).

    Article  PubMed  Google Scholar 

  183. Dong, C. et al. Protein intakes and risk of inflammatory bowel disease in the European Prospective Investigation into Cancer and Nutrition cohort (EPIC-IBD) [abstract OP17]. J. Crohns Colitis 14 (Suppl. 1), S015 (2020).

    Article  Google Scholar 

  184. IBD in EPIC Study Investigators. et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58, 1606–1611 (2009).

    Article  Google Scholar 

  185. Jantchou, P., Morois, S., Clavel-chapelon, F., Boutron-ruault, M. C. & Carbonnel, F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105, 2195–2201 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Khalili, H. et al. No association between consumption of sweetened beverages and risk of later-onset Crohn’s disease or ulcerative colitis. Clin. Gastroenterol. Hepatol. 17, 123–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Lo., C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2021.08.031 (2021). A large prospective study examining the role of ultraprocessed foods in IBD.

    Article  PubMed  Google Scholar 

  188. Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374, n1554 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Chan, S. S. M. et al. Association between high dietary intake of the n−3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn’s disease. Aliment. Pharmacol. Ther. 39, 834–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lu, Y. et al. Dietary polyphenols in the aetiology of Crohn’s disease and ulcerative colitis–a mnulticenter European Prospective Cohort study (EPIC). Inflamm. Bowel Dis. 23, 2072–2082 (2017).

    Article  PubMed  Google Scholar 

  191. Opstelten, J. L. et al. Dairy products, dietary calcium, and risk of inflammatory bowel disease: results from a European Prospective Cohort investigation. Inflamm. Bowel Dis. 22, 1403–1411 (2016).

    Article  PubMed  Google Scholar 

  192. Davis, C., Bryan, J., Hodgson, J. & Murphy, K. Definition of the Mediterranean diet; a literature review. Nutrients 7, 9139–9153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Khalili, H. et al. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: results from two large prospective cohort studies. Gut 69, 1637–1644 (2020).

    Article  PubMed  Google Scholar 

  194. Racine, A. et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm. Bowel Dis. 22, 345–354 (2016).

    Article  PubMed  Google Scholar 

  195. Lo, C. H. et al. Dietary inflammatory potential and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 159, 873–883.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Narula, N. et al. Does a high-inflammatory diet increase the risk of inflammatory bowel disease? Results from the Prospective Urban Rural Epidemiology (PURE) study: a prospective cohort study. Gastroenterology 161, 1333–1335.e1 (2021).

    Article  PubMed  Google Scholar 

  197. Svolos, V. et al. The dose-dependent effect of enteral nutrition on faecal microbial metabolites of healthy volunteers [abstract DOP02]. J. Crohns Colitis 14 (Suppl. 1), S041–S042 (2020).

    Article  Google Scholar 

  198. Konijeti, G. G. et al. Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflamm. Bowel Dis. 23, 2054–2060 (2017).

    Article  PubMed  Google Scholar 

  199. Chiba, M. et al. Lifestyle-related disease in Crohn’s disease: relapse prevention by a semi-vegetarian diet. World J. Gastroenterol. 16, 2484–2495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Svolos, V. et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 1354–1367.e6 (2019).

    Article  PubMed  Google Scholar 

  201. Yao, C. K., Muir, J. G. & Gibson, P. R. Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 43, 181–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Sandall, A. M. et al. Emulsifiers impact colonic length in mice and emulsifier restriction is feasible in people with Crohn’s disease. Nutrients 12, 2827 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  203. Fritsch, J. et al. Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin. Gastroenterol. Hepatol. 19, 1189–1199.e30 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Albenberg, L. et al. A diet low in red and processed meat does not reduce rate of Crohn’s disease flares. Gastroenterology 157, 128–136.e5 (2019).

    Article  PubMed  Google Scholar 

  205. Jian, L. et al. Food exclusion based on IgG antibodies alleviates symptoms in ulcerative colitis: a prospective study. Inflamm. Bowel Dis. 24, 1918–1925 (2018).

    Article  PubMed  Google Scholar 

  206. Sarbagili-Shabat, C. et al. A novel UC exclusion diet and antibiotics for treatment of mild to moderate pediatric ulcerative colitis: a prospective open-label pilot study. Nutrients 13, 3736 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Misselwitz, B., Butter, M., Verbeke, K. & Fox, M. R. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut 68, 2080–2091 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Al-Toma, A. et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 7, 583–613 (2019).

    Article  Google Scholar 

  209. Jackson, A. et al. The efficacy of a low-fat diet to manage the symptoms of bile acid malabsorption–outcomes in patients previously treated for cancer. Clin. Med. 17, 412–418 (2017).

    Article  Google Scholar 

  210. Watson, L. et al. Management of bile acid malabsorption using low-fat dietary interventions: a useful strategy applicable to some patients with diarrhoea-predominant irritable bowel syndrome? Clin. Med. 15, 536–540 (2015).

    Article  Google Scholar 

  211. Avelar Rodriguez, D., Ryan, P. M., Toro Monjaraz, E. M., Ramirez Mayans, J. A. & Quigley, E. M. Small intestinal bacterial overgrowth in children: a state-of-the-art review. Front. Pediatr. 7, 363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Pimentel, M. et al. A 14-day elemental diet is highly effective in normalizing the lactulose breath test. Dig. Dis. Sci. 49, 73–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  213. Rezaie, A., Pimentel, M. & Rao, S. S. How to test and treat small intestinal bacterial overgrowth: an evidence-based approach. Curr. Gastroenterol. Rep. 18, 8 (2016).

    Article  PubMed  Google Scholar 

  214. Maconi, G. et al. Prevalence of pancreatic insufficiency in inflammatory bowel diseases. Assessment by fecal elastase-1. Dig. Dis. Sci. 53, 262–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Rao, S. S. & Patcharatrakul, T. Diagnosis and treatment of dyssynergic defecation. J. Neurogastroenterol. Motil. 22, 423–435 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.A.F. is supported by a Monash University Australian Postgraduate Award and Crohn’s & Colitis Australia PhD Scholarship, S.L.M. is supported by an Alfred Research Trusts Small Project Grant, C.K.Y. is supported by a Crohn’s & Colitis Australia Angela McAvoy Scholarship, E.P.H. is supported by the Crohn’s & Colitis Foundation Litwin IBD Pioneers Program and a National Health & Medical Research Council Investigator Grant. The authors thank M. Justice for help with designing the initial draft of the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to researching data, writing, and reviewing/editing the manuscript before submission. J.A.F., S.L.M., P.R.G. and E.P.H. were involved in discussion of content of the article.

Corresponding author

Correspondence to Emma P. Halmos.

Ethics declarations

Competing interests

P.R.G. has published a book on food intolerances. The Department of Gastroenterology has published an App, booklets and online educational courses on the Monash University FODMAP Diet, the proceeds of which go to the Department, not to individuals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Henit Yanai, who co-reviewed with Lihi Godny; Catherine Wall; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzpatrick, J.A., Melton, S.L., Yao, C.K. et al. Dietary management of adults with IBD — the emerging role of dietary therapy. Nat Rev Gastroenterol Hepatol 19, 652–669 (2022). https://doi.org/10.1038/s41575-022-00619-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00619-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing