Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Capturing the environment of the Clostridioides difficile infection cycle

Abstract

Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism–host and microorganism–microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.

Key points

  • Clostridioides difficile (formerly Clostridium difficile) infection has a substantial health-care burden worldwide. While infection mostly manifests in health-care settings, the pathogen can be acquired in both health-care and community environments.

  • Multiple microorganism–microorganism and microorganism–host interactions act in concert to suppress C. difficile in the gut.

  • C. difficile has developed several unique survival mechanisms to facilitate proliferation in the competitive environment of the gut.

  • Characterizing the multi-levelled interactions between C. difficile, the host and the indigenous microbiota requires systems biology approaches that account for the complexity of the host–microorganism interface.

  • Understanding the interactions of C. difficile with the gut environment should inform patient care as these mechanisms are leveraged to develop novel treatment options that target specific aspects of this complex host–pathogen–microbiota interaction.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Leveraging the environment to interrupt the C. difficile infection cycle.
Fig. 2: Bile acid metabolism and C. difficile physiology.
Fig. 3: Differential stress adaptations of C. difficile in the gut environment.
Fig. 4: C. difficile interactions with its environment.

References

  1. Crobach, M. J. T. et al. The bacterial gut microbiota of adult patients infected, colonized or noncolonized by Clostridioides difficile. Microorganisms 8, 677 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  2. He, X., McLean, J. S., Guo, L., Lux, R. & Shi, W. The social structure of microbial community involved in colonization resistance. ISME J. 8, 564–574 (2014). This paper offers insights into several parts gut microorganisms might play to create colonization resistance using Escherichia coli as a model organism.

    Article  PubMed  Google Scholar 

  3. Baumgartner, M., Pfrunder-Cardozo, K. R. & Hall, A. R. Microbial community composition interacts with local abiotic conditions to drive colonization resistance in human gut microbiome samples. Proc. Biol. Sci. 288, 20203106 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Knight, D. R., Elliott, B., Chang, B. J., Perkins, T. T. & Riley, T. V. Diversity and evolution in the genome of Clostridium difficile. Clin. Microbiol. Rev. 28, 721–741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moore, R. J. & Lacey, J. A. Genomics of the pathogenic Clostridia. Microbiol. Spect. https://doi.org/10.1128/microbiolspec.GPP3-0033-2018 (2019).

    Article  Google Scholar 

  7. Janezic, S. & Rupnik, M. Genomic diversity of Clostridium difficile strains. Res. Microbiol. 166, 353–360 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Janvilisri, T. et al. Microarray identification of Clostridium difficile core components and divergent regions associated with host origin. J. Bacteriol. 191, 3881–3891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stabler, R. A. et al. Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J. Bacteriol. 188, 7297–7305 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kato, H. et al. A systematic review and meta-analysis of decontamination methods to prevent hospital environmental contamination and transmission of Clostridioides difficile. Anaerobe 73, 102478 (2021).

    Article  PubMed  CAS  Google Scholar 

  11. Brown, K., Valenta, K., Fisman, D., Simor, A. & Daneman, N. Hospital ward antibiotic prescribing and the risks of Clostridium difficile Infection. JAMA Intern. Med. 175, 626–633 (2015).

    Article  PubMed  Google Scholar 

  12. Weese, J. S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Invest. 32, 213–221 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hernandez, B. G., Vinithakumari, A. A., Sponseller, B., Tangudu, C. & Mooyottu, S. Prevalence, colonization, epidemiology, and public health significance of Clostridioides difficile in companion animals. Front. Vet. Sci. 7, 512551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodriguez Diaz, C., Seyboldt, C. & Rupnik, M. Non-human C. difficile reservoirs and sources: animals, food, environment. Adv. Exp. Med. Biol. 1050, 227–243 (2018). This Review provides an excellent summary of the literature on C. difficile environmental prevalence.

    Article  PubMed  Google Scholar 

  15. Lim, S. C. et al. Whole-genome sequencing links Clostridium (Clostridioides) difficile in a single hospital to diverse environmental sources in the community. J. Appl. Microbiol. https://doi.org/10.1111/jam.15408 (2021).

    Article  PubMed  Google Scholar 

  16. Paredes-Sabja, D., Shen, A. & Sorg, J. A. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 22, 406–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Janoir, C. Virulence factors of Clostridium difficile and their role during infection. Anaerobe 37, 13–24 (2016). This Review gives a great overview of the various survival factors that C. difficile might use in the gut.

    Article  CAS  PubMed  Google Scholar 

  18. Brown, K. A. et al. Antibiotic prescribing choices and their comparative C. difficile infection risks: a longitudinal case-cohort study. Clin. Infect. Dis. 72, 836–844 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Schubert, A. M., Sinani, H. & Schloss, P. D. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 6, e00974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Antunes, A. et al. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 40, 10701–10718 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Girinathan, B. P., Ou, J., Dupuy, B. & Govind, R. Pleiotropic roles of Clostridium difficile sin locus. PLoS Pathog. 14, e1006940 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nawrocki, K. L., Edwards, A. N., Daou, N., Bouillaut, L. & McBride, S. M. CodY-dependent regulation of sporulation in Clostridium difficile. J. Bacteriol. 198, 2113–2130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Girinathan, B. P. et al. In vivo commensal control of Clostridioides difficile virulence. Cell Host Microbe 29, 1693–1708.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Desai, K. et al. Epidemiological and economic burden of Clostridium difficile in the United States: estimates from a modeling approach. BMC Infect. Dis. 16, 303 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reigadas Ramírez, E. & Bouza, E. S. in Updates on Clostridium difficile in Europe: Advances in Microbiology, Infectious Diseases and Public Health Vol. 8 (eds Mastrantonio, P. & Rupnik, M.) 1–12 (Springer International Publishing, 2018).

  26. Freeman, J. et al. Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: the extended ClosER study. Eur. J. Clin. Microbiol. Infect. Dis. 39, 169–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Kuijper, E. J., Coignard, B. & Tüll, P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin. Microbiol. Infect. 12, 2–18 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Finn, E., Andersson, F. L. & Madin-Warburton, M. Burden of Clostridioides difficile infection (CDI)-a systematic review of the epidemiology of primary and recurrent CDI. BMC Infect. Dis. 21, 456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guh, A. Y. et al. Trends in U.S. burden of Clostridioides difficile infection and outcomes. N. Engl. J. Med. 382, 1320–1330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burke, K. E. & Lamont, J. T. Clostridium difficile infection: a worldwide disease. Gut Liver 8, 1–6 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abad, C. L. R. & Safdar, N. A review of Clostridioides difficile infection and antibiotic-associated diarrhea. Gastroenterol. Clin. North. Am. 50, 323–340 (2021).

    Article  PubMed  Google Scholar 

  32. Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Chiang, H.-Y. et al. Risk prediction for 30-day mortality among patients with Clostridium difficile infections: a retrospective cohort study. Antimicrob. Resist. Infect. Control 8, 175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Czepiel, J. et al. Mortality following Clostridioides difficile infection in Europe: a retrospective multicenter case-control study. Antibiotics 10, 299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parlet, C. P., Brown, M. M. & Horswill, A. R. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 27, 497–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crouzet, L., Rigottier-Gois, L. & Serror, P. Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiol. Lett. 362, fnv012 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 83, e00007-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Johnson, S. et al. Clinical practice guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73, 755–757 (2021).

    Article  PubMed  Google Scholar 

  39. McDonald, L. C. et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Song, J. H. & Kim, Y. S. Recurrent Clostridium difficile infection: Risk factors, treatment, and prevention. Gut Liver 13, 16–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Barbut, F. et al. Epidemiology of recurrences or reinfections of Clostridium difficile-associated diarrhea. J. Clin. Microbiol. 38, 2386–2388 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seekatz, A. M. et al. Presence of multiple Clostridium difficile strains at primary infection is associated with development of recurrent disease. Anaerobe 53, 74–81 (2018). This study is one of the few characterizing multiple C. difficile strain infections and the resulting effects on disease.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dayananda, P. & Wilcox, M. H. A review of mixed strain Clostridium difficile colonization and infection. Front. Microbiol. 10, 692 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Leslie, J. L. et al. Protection from lethal Clostridioides difficile infection via intraspecies competition for cogerminant. mBio 12, e00522-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Merrigan, M. M., Sambol, S. P., Johnson, S. & Gerding, D. N. New approach to the management of Clostridium difficile infection: Colonisation with non-toxigenic C. difficile during daily ampicillin or ceftriaxone administration. Int. J. Antimicrob. Agents 33, S46–S50 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Zuo, T. et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663 (2018). This study demonstrates a correlation between gut fungi and CDI, which is an area of research that merits further study.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Woodworth, M. H., Hayden, M. K., Young, V. B. & Kwon, J. H. The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: the current landscape and future directions. Open Forum Infect. Dis. 6, ofz288 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wilson, B. C., Vatanen, T., Cutfield, W. S. & O’Sullivan, J. M. The super-donor phenomenon in fecal microbiota transplantation. Front. Cell. Infect. Microbiol. 9, 2 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2018).

    Article  CAS  Google Scholar 

  50. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    Article  PubMed  Google Scholar 

  51. Hui, W., Li, T., Liu, W., Zhou, C. & Gao, F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: an updated randomized controlled trial meta-analysis. PLoS ONE 14, e0210016 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan, X. & Johnson, S. Fecal microbiota transplantation (FMT) for C. difficile infection, just say ‘no’. Anaerobe 60, 102092 (2019).

    Article  PubMed  Google Scholar 

  53. Madoff, S. E., Urquiaga, M., Alonso, C. D. & Kelly, C. P. Prevention of recurrent Clostridioides difficile infection: a systematic review of randomized controlled trials. Anaerobe 61, 102098 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. van Prehn, J. et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 27 (Suppl. 2), S1–S21 (2021).

    Article  PubMed  CAS  Google Scholar 

  55. Shrestha, R. & Sorg, J. A. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 49, 41–47 (2018). This study suggests ways in which amino acids are recognized in the complex milieu of the gut.

    Article  CAS  PubMed  Google Scholar 

  56. Kochan, T. J. et al. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog. 13, e1006443 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wheeldon, L. J., Worthington, T., Hilton, A. C., Elliott, T. S. J. & Lambert, P. A. Physical and chemical factors influencing the germination of Clostridium difficile spores. J. Appl. Microbiol. 105, 2223–2230 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rohlfing, A. E. et al. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet. 15, e1008224 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Shrestha, R., Cochran, A. M. & Sorg, J. A. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog. 15, e1007681 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kevorkian, Y. & Shen, A. Revisiting the role of Csp family proteins in regulating Clostridium difficile spore germination. J. Bacteriol. 199, e00266-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045-15 (2015).

    Article  CAS  Google Scholar 

  63. Thanissery, R., Winston, J. A. & Theriot, C. M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 45, 86–100 (2017). This study shows how bile acids affect diverse aspects of C. difficile physiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winston, J. A. & Theriot, C. M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 11, 158–171 (2020).

    Article  PubMed  Google Scholar 

  65. Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Francis, M. B. & Sorg, J. A. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. mSphere 11, e00306-16 (2016).

    Article  CAS  Google Scholar 

  67. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Awad, M. M. et al. Human plasminogen exacerbates Clostridioides difficile enteric disease and alters the spore surface. Gastroenterology 159, 1431–1443.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Kochan, T. J. et al. Germinant synergy facilitates Clostridium difficile spore germination under physiological conditions. mSphere 3, e00335-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heeg, D., Burns, D. A., Cartman, S. T. & Minton, N. P. Spores of Clostridium difficile clinical isolates display a diverse germination response to bile salts. PLoS ONE 7, e32381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhattacharjee, D. et al. Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor. J. Bacteriol. 198, 777–786 (2016). This study demonstrates that the C. difficile germinant receptor (CspC) can activate and inhibit germination and that receptor abundance varies from strain to strain.

    Article  CAS  PubMed Central  Google Scholar 

  72. Sharma, S. K. et al. The design, synthesis, and characterizations of spore germination inhibitors effective against an epidemic strain of Clostridium difficile. J. Medicinal Chem. 61, 6759–6778 (2018).

    Article  CAS  Google Scholar 

  73. Ali, S., Yui, S., Muzslay, M. & Wilson, A. P. R. Comparison of two whole-room ultraviolet irradiation systems for enhanced disinfection of contaminated hospital patient rooms. J. Hospital Infect. 97, 180–184 (2017).

    Article  CAS  Google Scholar 

  74. Yui, S., Ali, S., Muzslay, M., Jeanes, A. & Wilson, A. P. R. Identification of Clostridium difficile reservoirs in the patient environment and efficacy of aerial hydrogen peroxide decontamination. Infect. Control Hosp. Epidemiol. 38, 1487–1492 (2017).

    Article  PubMed  Google Scholar 

  75. Sankar, S. A., Lagier, J.-C., Pontarotti, P., Raoult, D. & Fournier, P.-E. The human gut microbiome, a taxonomic conundrum. Syst. Appl. Microbiol. 38, 276–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Wiles, T. J. & Guillemin, K. The other side of the coin: what beneficial microbes can teach us about pathogenic potential. J. Mol. Biol. 431, 2946–2956 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Garrett, E. M. et al. Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence. PLoS Biol. 17, e3000379 (2019). This study shows that C. difficile uses phase variation to create a heterogeneous population in the gut and to regulate pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reyes Ruiz, L. M., Williams, C. L. & Tamayo, R. Enhancing bacterial survival through phenotypic heterogeneity. PLoS Pathog. 16, e1008439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Crobach, M. J. T. et al. Understanding Clostridium difficile colonization. Clin. Microbiol. Rev. 31, e00021-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Anjewierden, S., Han, Z., Brown, A. M., Donskey, C. J. & Deshpande, A. Risk factors for Clostridioides difficile colonization among hospitalized adults: a meta-analysis and systematic review. Infect. Control Hosp. Epidemiol. 42, 565–572 (2021).

    Article  PubMed  Google Scholar 

  82. Cao, Y. et al. Fecal mycobiota combined with host immune factors distinguish Clostridioides difficile infection from asymptomatic carriage. Gastroenterology 160, 2328–2339.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Dubois, T. et al. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbiomes 5, 14 (2019). This study is one of the first papers to characterize biofilm formation by C. difficile.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Semenyuk, E. G. et al. Analysis of bacterial communities during Clostridium difficile infection in the mouse. Infect. Immun. 83, 4383–4391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brauer, M. et al. What’s a biofilm? — How the choice of the biofilm model impacts the protein inventory of Clostridioides difficile. Front. Microbiol. 12, 682111 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ahmed, U. K. B., Shadid, T. M., Larabee, J. L., Ballard, J. D. & Gilmore, M. S. Combined and distinct roles of Agr proteins in Clostridioides difficile 630 sporulation, motility, and toxin production. mBio 11, e03190-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Edwards, A. N., Nawrocki, K. L. & McBride, S. M. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect. Immun. 82, 4276–4291 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen, K. Y. et al. The transcriptional regulator Lrp contributes to toxin expression, sporulation, and swimming motility in Clostridium difficile. Front. Cell. Infect. Microbiol. 9, 356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards, A. N., Tamayo, R. & McBride, S. M. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol. Microbiol. 100, 954–971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. El Meouche, I. & Peltier, J. Toxin release mediated by the novel autolysin Cwp19 in Clostridium difficile. Microb. Cell 5, 421–423 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Govind, R. & Dupuy, B. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE. PLoS Pathog. 8, e1002727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Govind, R., Fitzwater, L. & Nichols, R. Observations on the role of TcdE isoforms in Clostridium difficile toxin secretion. J. Bacteriol. 197, 2600–2609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Olling, A. et al. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the TcdE gene. Microb. Pathog. 52, 92–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Tan, K. S., Wee, B. Y. & Song, K. P. Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J. Med. Microbiol. 50, 613–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Ransom, E. M., Kaus, G. M., Tran, P. M., Ellermeier, C. D. & Weiss, D. S. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile. Mol. Microbiol. 110, 533–549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aktories, K., Schwan, C. & Jank, T. Clostridium difficile toxin biology. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-090816-093458 (2017). This is an excellent Review of C. difficile toxins and their effects on the host.

    Article  PubMed  Google Scholar 

  97. Bouillaut, L., Dubois, T., Sonenshein, A. L. & Dupuy, B. Integration of metabolism and virulence in Clostridium difficile. Res. Microbiol. 166, 375–383 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Natarajan, M., Walk, S. T., Young, V. B. & Aronoff, D. M. A clinical and epidemiological review of non-toxigenic Clostridium difficile. Anaerobe 22, 1–5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Janezic, S. et al. Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microb. Genom. 6, mgen000449 (2020).

    PubMed Central  Google Scholar 

  100. Tao, L. et al. Sulfated glycosaminoglycans and low-density lipoprotein receptor contribute to Clostridium difficile toxin A entry into cells. Nat. Microbiol. 4, 1760–1769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tao, L. et al. Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538, 350–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schöttelndreier, D., Langejürgen, A., Lindner, R. & Genth, H. Low density lipoprotein receptor-related protein-1 (LRP1) is involved in the uptake of Clostridioides difficile toxin A and serves as an internalizing receptor. Front. Cell. Infect. Microbiol. 10, 565465 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. LaFrance, M. E. et al. Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc. Natl Acad. Sci. USA 112, 7073–7078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. López-Ureña, D. et al. Toxin B variants from Clostridium difficile strains VPI 10463 and NAP1/027 share similar substrate profile and cellular intoxication kinetics but use different host cell entry factors. Toxins 11, 348 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  105. Zhao, H. et al. Global landscape of Clostridioides difficile phylogeography, antibiotic susceptibility, and toxin polymorphisms by post-hoc whole-genome sequencing from the MODIFY I/II studies. Infect. Dis. Ther. 10, 853–870 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Papatheodorou, P., Barth, H., Minton, N. & Aktories, K. Cellular uptake and mode-of-action of Clostridium difficile toxins. Adv. Exp. Med. Biol. 1050, 77–96 (2018).

    Article  PubMed  Google Scholar 

  107. Chandrasekaran, R., Kenworthy, A. K. & Lacy, D. B. Clostridium difficile Toxin A undergoes clathrin-independent, PACSIN2-dependent endocytosis. PLoS Pathog. 12, e1006070 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gerhard, R., Frenzel, E., Goy, S. & Olling, A. Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain. J. Med. Microbiol. 62, 1414–1422 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Pan, Z. et al. Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLoS Pathog. 17, e1009197 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abernathy-Close, L. et al. Intestinal inflammation and altered gut microbiota associated with inflammatory bowel disease render mice susceptible to Clostridioides difficile colonization and infection. mBio 12, e0273320 (2021).

    Article  PubMed  Google Scholar 

  111. Fletcher, J. R. et al. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat. Commun. 12, 462 (2021). This study is the first to show that C. difficile uses its toxins to make the gut a more hospitable space.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tam, J. et al. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl Acad. Sci. USA 117, 6792–6800 (2020). This study is the first to show that bile acids interact directly with C. difficile toxins to affect disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Garland, M. et al. The clinical drug ebselen attenuates inflammation and promotes microbiome recovery in mice after antibiotic treatment for CDI. Cell Rep. Med. 1, 100005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Marreddy, R. K. R. et al. Ebselen not only inhibits Clostridioides difficile toxins but displays redox-associated cellular killing. Microbiol. Spectr. 9, e0044821 (2021).

    Article  PubMed  Google Scholar 

  115. Sehgal, K. & Khanna, S. Immune response against Clostridioides difficile and translation to therapy. Therapeutic Adv. Gastroenterol. https://doi.org/10.1177/17562848211014817 (2021).

    Article  Google Scholar 

  116. Yang, Z. et al. Mechanisms of protection against Clostridium difficile infection by the monoclonal antitoxin antibodies actoxumab and bezlotoxumab. Infect. Immun. 83, 822–831 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kelly, C. P. et al. Effect of endogenous Clostridioides difficile toxin antibodies on recurrence of C. difficile infection. Clin. Infect. Dis. 71, 81–86 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Akiyama, S. et al. Efficacy and safety of monoclonal antibodies against Clostridioides difficile toxins for prevention of recurrent Clostridioides difficile infection: a systematic review and meta-analysis. J. Clin. Gastroenterol. 55, 43–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Kyne, L., Warny, M., Qamar, A. & Kelly, C. P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357, 189–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Segev, E., Smith, Y. & Ben-Yehuda, S. RNA dynamics in aging bacterial spores. Cell 148, 139–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Shen, A. Clostridioides difficile spore formation and germination: new insights and opportunities for intervention. Annu. Rev. Microbiol. 74, 545–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Castro-Córdova, P. et al. Entry of spores into intestinal epithelial cells contributes to recurrence of Clostridioides difficile infection. Nat. Commun. 12, 1140 (2021). This study is the first to demonstrate that C. difficile spores are internalized in the mouse intestine, which contributes to spore persistence and recurrent disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. de Cena, J. A., Zhang, J., Deng, D., Damé-Teixeira, N. & Do, T. Low-abundant microorganisms: the human microbiome’s dark matter, a scoping review. Front. Cell. Infect. Microbiol. 11, 689197 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shortt, C. et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur. J. Nutr. 57, 25–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Kern, L., Abdeen, S. K., Kolodziejczyk, A. A. & Elinav, E. Commensal inter-bacterial interactions shaping the microbiota. Curr. Opin. Microbiol. 63, 158–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Runge, S. & Rosshart, S. P. The mammalian metaorganism: a holistic view on how microbes of all kingdoms and niches shape local and systemic immunity. Front Immunol. 12, 702378 (2021). This Review offers a view of the inter-kingdom interactions taking place within the human organism and how coevolution shapes local and systemic immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Magrone, T., Russo, M. A. & Jirillo, E. Antimicrobial peptides: phylogenic sources and biological activities. First of two parts. Curr. Pharm. Des. 24, 1043–1053 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Moravej, H. et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist. 24, 747–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Barreto-Santamaría, A., Arévalo-Pinzón, G., Patarroyo, M. A. & Patarroyo, M. E. How to combat gram-negative bacteria using antimicrobial peptides: a challenge or an unattainable goal? Antibiotics 10, 1499 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Sandiford, S. K. Current developments in lantibiotic discovery for treating Clostridium difficile infection. Expert Opin. Drug Discov. 14, 71–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Suárez, J. M., Edwards, A. N. & McBride, S. M. The Clostridium difficile cpr locus is regulated by a noncontiguous two-component system in response to type A and B lantibiotics. J. Bacteriol. 195, 2621–2631 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Kers, J. A. et al. OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS ONE 13, e0197467 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Cebrián, R., Macia-Valero, A., Jati, A. P. & Kuipers, O. P. Design and expression of specific hybrid lantibiotics active against pathogenic Clostridium spp. Front. Microbiol. 10, 2154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Townsend, E. M. et al. The human gut phageome: origins and roles in the human gut microbiome. Front. Cell. Infect. Microbiol. 11, 643214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Naureen, Z. et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 91, e2020024 (2020). This Review discusses how bacteriophages shape bacterial populations in the environment and offers needed background to those interested in gut phage biology.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Baugher, J. L., Durmaz, E. & Klaenhammer, T. R. Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl. Env. Microbiol. 80, 3508–3517 (2014).

    Article  CAS  Google Scholar 

  138. Oladeinde, A. et al. Horizontal gene transfer and acquired antibiotic resistance in Salmonella enterica serovar Heidelberg following in vitro incubation in broiler ceca. Appl. Environ. Microbiol. 85, e01903-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zünd, M. et al. High throughput sequencing provides exact genomic locations of inducible prophages and accurate phage-to-host ratios in gut microbial strains. Microbiome 9, 77 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. de Jonge, P. A., Nobrega, F. L., Brouns, S. J. J. & Dutilh, B. E. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 27, 51–63 (2019).

    Article  PubMed  CAS  Google Scholar 

  142. Riedel, T. et al. A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J. Biotechnol. 250, 23–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Park, H. et al. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: a retrospective cohort study. Gut Microbes 10, 676–687 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Draper, L. A. et al. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 6, 220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).

    CAS  PubMed  Google Scholar 

  146. Nale, J. Y. et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob. Agents Chemother. 60, 968–981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nale, J. Y., Redgwell, T. A., Millard, A. & Clokie, M. R. J. Efficacy of an optimised bacteriophage cocktail to clear Clostridium difficile in a batch fermentation model. Antibiotics 7, 13 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  148. Usui, Y. et al. Impact of deoxycholate on Clostridioides difficile growth, toxin production, and sporulation. Heliyon 6, e03717 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Reed, A. D. et al. Strain-dependent inhibition of Clostridioides difficile by commensal Clostridia carrying the bile acid-inducible (bai) operon. J. Bacteriol. 202, e00039–00020 (2020). This study characterizes that, while individual strains can metabolize bile acids, they are generally unable to outcompete C. difficile in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sievers, S. et al. Differential view on the bile acid stress response of Clostridioides difficile. Front. Microbiol. 10, 258 (2019). This study compares C. difficile stress responses to bile acids and pushes back on the primary–secondary bile acid dichotomy since there are individual bile acid-specific responses.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Weingarden, A. R. et al. Ursodeoxycholic acid inhibits clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J. Clin. Gastroenterol. 50, 624–630 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Webb, B. J., Brunner, A., Lewis, J., Ford, C. D. & Lopansri, B. K. Repurposing an old drug for a new epidemic: ursodeoxycholic acid to prevent recurrent Clostridioides difficile infection. Clin. Infect. Dis. 68, 498–500 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Winston, J. A. et al. Ursodeoxycholic acid (UDCA) mitigates the host inflammatory response during Clostridioides difficile infection by altering gut bile acids. Infect Immun. 88, e00045–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. van der Hee, B. & Wells, J. M. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 29, 700–712 (2021).

    Article  PubMed  CAS  Google Scholar 

  158. Weiner, N. & Draskóczy, P. The effects of organic acids on the oxidative metabolism of intact and disrupted E. coli. J. Pharmacol. Exp. Therapeutics 132, 299–305 (1961).

    CAS  Google Scholar 

  159. Repaske, D. R. & Adler, J. Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol. 145, 1196–1208 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fischbach, M. A. & Sonnenburg, J. L. Eating for two: how metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sun, Y. & O’Riordan, M. X. D. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 85, 93–118 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Seekatz, A. M. et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe https://doi.org/10.1016/j.anaerobe.2018.04.001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hryckowian, A. J. et al. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 3, 662–669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pettit, L. J. et al. Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics 15, 160 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Buckel, W. Energy conservation in fermentations of anaerobic bacteria. Front. Microbiol. 12, 703525 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Fachi, J. L. et al. Butyrate protects mice from Clostridium difficile-induced colitis through an HIF-1-dependent mechanism. Cell Rep. 27, 750–761.e7 (2019). This study demonstrates that microbiota-produced butyrate protects the host from C. difficile -associated damage by acting on the gut epithelium.

    Article  CAS  PubMed  Google Scholar 

  167. Leslie, J. L., Vendrov, K. C., Jenior, M. L. & Young, V. B. The gut microbiota is associated with clearance of Clostridium difficile infection independent of adaptive immunity. mSphere 4, e00698-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Frisbee, A. L. et al. IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nat. Commun. 10, 2712 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect. Immun. 39, 676–685 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Marcobal, A., Southwick, A. M., Earle, K. A. & Sonnenburg, J. L. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 23, 1038–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wittung-Stafshede, P. Role of cofactors in protein folding. Acc. Chem. Res. 35, 201–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  172. Faber, F. & Bäumler, A. J. The impact of intestinal inflammation on the nutritional environment of the gut microbiota. Immunol. Lett. 162, 48–53 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Berger, T. et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 103, 1834–1839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fischbach, M. A. et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc. Natl Acad. Sci. USA 103, 16502–16507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Knippel, R. J. et al. Clostridioides difficile senses and hijacks host heme for incorporation into an oxidative stress defense system. Cell Host Microbe 28, 411–421.e416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Knippel, R. J. et al. Heme sensing and detoxification by HatRT contributes to pathogenesis during Clostridium difficile infection. PLoS Pathog. 14, e1007486 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Zackular, J. P. et al. ZupT facilitates Clostridioides difficile resistance to host-mediated nutritional immunity. mSphere 5, e00061-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zackular, J. P. et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nat. Med. 22, 1330–1334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lopez, C. A. et al. The immune protein calprotectin impacts Clostridioides difficile metabolism through zinc limitation. mBio 10, e02289-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Jenior, M. L., Leslie, J. L., Young, V. B. & Schloss, P. Clostridium difficile colonizes alternative nutrient niches during infection across distinct murine gut microbiome. mSystems 2, e00063-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Darkoh, C., Plants-Paris, K., Bishoff, D. & DuPont, H. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. mSystems 4, e00346-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dawson, L. F. et al. The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. BMC Microbiol. 11, 86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Passmore, I. J. et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 14, e1007191 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Pereira, F. C. et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat. Commun. 11, 5104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Neumann-Schaal, M., Jahn, D. & Schmidt-Hohagen, K. Metabolism the Difficile way: the key to the success of the pathogen Clostridioides difficile. Front. Microbiol. 10, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Robinson, J. I. et al. Metabolomic networks connect host-microbiome processes to human Clostridioides difficile infections. J. Clin. Investig. 129, 3792–3806 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gencic, S. & Grahame, D. A. Diverse energy-conserving pathways in Clostridium difficile: growth in the absence of amino acid stickland acceptors and the role of the Wood-Ljungdahl pathway. J. Bacteriol. 202, e00233-20 (2020). This study characterizes the use of acetogenesis by C. difficile in the absence of amino acid electron acceptors.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Aguirre, A. M. et al. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 17, e1010015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Collins, J. et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553, 291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Eyre, D. W. et al. Clostridium difficile trehalose metabolism variants are common and not associated with adverse patient outcomes when variably present in the same lineage. EBioMedicine 43, 347–355 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Saund, K., Rao, K., Young, V. B. & Snitkin, E. S. Genetic determinants of trehalose utilization are not associated with severe Clostridium difficile infection outcome. Open. Forum Infect. Dis. 7, ofz548 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Islam, W., Noman, A., Naveed, H., Huang, Z. & Chen, H. Y. H. Role of environmental factors in shaping the soil microbiome. Environ. Sci. Pollut. Res. Int. 27, 41225–41247 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Konjar, Š., Pavšič, M. & Veldhoen, M. Regulation of oxygen homeostasis at the intestinal epithelial barrier site. Int. J. Mol. Sci. 22, 9170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kint, N. et al. How the anaerobic enteropathogen Clostridioides difficile tolerates low O2 tensions. mBio 8, e01559-20 (2020).

    Article  Google Scholar 

  196. Morvan, C., Folgosa, F., Kint, N., Teixeira, M. & Martin-Verstraete, I. Responses of Clostridia to oxygen: from detoxification to adaptive strategies. Env. Microbiol. 23, 4112–4125 (2021).

    Article  CAS  Google Scholar 

  197. Wetzel, D. & McBride, S. M. The impact of pH on Clostridioides difficile sporulation and physiology. Appl. Environ. Microbiol. 86, e02706-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Djemai, K., Drancourt, M. & Tidjani Alou, M. Bacteria and methanogens in the human microbiome: a review of syntrophic interactions. Microb. Ecol. https://doi.org/10.1007/s00248-021-01796-7 (2021).

    Article  PubMed  Google Scholar 

  199. Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Engevik, M. A. et al. Mucin-degrading microbes release monosaccharides that chemoattract Clostridioides difficile and facilitate colonization of the human intestinal mucus layer. ACS Infect. Dis. 7, 1126–1142 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Engevik, M. A. et al. Human Clostridium difficile infection: altered mucus production and composition. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G510–G524 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Madeline Barron for critical review of the manuscript. This work was funded by the National Institute for Allergy and Infectious Disease (U01-AI124255).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article

Corresponding author

Correspondence to Vincent B. Young.

Ethics declarations

Competing interests

V.B.Y. is a consultant to Vedanta Biosciences. M.K.S. declares no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Dena Lyras, Wiep Klaas Smits and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schnizlein, M.K., Young, V.B. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 19, 508–520 (2022). https://doi.org/10.1038/s41575-022-00610-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00610-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing