Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A framework for fibrolamellar carcinoma research and clinical trials

Abstract

Fibrolamellar carcinoma (FLC), a rare, lethal hepatic cancer, occurs primarily in adolescents and young adults. Unlike hepatocellular carcinoma, FLC has no known association with viral, metabolic or chemical agents that cause cirrhosis. Currently, surgical resection is the only treatment demonstrated to achieve cure, and no standard of care exists for systemic therapy. Progress in FLC research illuminates a transition from an obscure cancer to one for which an interactive community seems poised to uncover fundamental mechanisms and initiate translation towards novel therapies. In this Roadmap, we review advances since the seminal discovery in 2014 that nearly all FLC tumours express a signature oncogene (DNAJB1PRKACA) encoding a fusion protein (DNAJ–PKAc) in which the J-domain of a heat shock protein 40 (HSP40) co-chaperone replaces an amino-terminal segment of the catalytic subunit of the cyclic AMP-dependent protein kinase (PKA). Important gains include increased understanding of oncogenic pathways driven by DNAJ–PKAc; identification of potential therapeutic targets; development of research models; elucidation of immune mechanisms with potential for the development of immunotherapies; and completion of the first multicentre clinical trials of targeted therapy for FLC. In each of these key areas we propose a Roadmap for future progress.

Key points

  • Fibrolamellar carcinoma (FLC) is a rare but devastating disease that disproportionately affects adolescents and young adults and is characterized by the fusion oncogene DNAJB1–PRKACA.

  • There is a critical need to establish new cellular and animal models of FLC to perform reliable functional and preclinical studies.

  • Efforts to directly inhibit cyclic AMP-dependent protein kinase (PKA) catalytic activity for FLC therapy might be constrained by the important role of the normal enzyme in multiple tissues; a deeper understanding of mechanisms underlying cellular transformation by the oncogenic chimaera remains essential to defining tractable pharmacological targets.

  • Advances in the genetic and molecular underpinnings of FLC, in part through the application of genome-scale techniques, reveal promising avenues for new targeted therapeutic strategies and motivate higher-resolution single-cell and spatial approaches.

  • Immunotherapy for FLC must overcome the challenge of generating responses against a low-tumour mutational burden cancer, potentially by targeting the specific fusion oncoprotein as a neoantigen.

  • Clinical trials must overcome obstacles to accruing sufficient patients and should utilize an evidence-based approach and collaborative networks tailored to rare cancers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fibrolamellar carcinoma.
Fig. 2: Molecular mechanisms of fibrolamellar carcinoma.

References

  1. Edmondson, H. A. Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. AMA J. Dis. Child. 91, 168–186 (1956).

    CAS  PubMed  Google Scholar 

  2. Berman, M. M., Libbey, N. P. & Foster, J. H. Hepatocellular carcinoma. Polygonal cell type with fibrous stroma–an atypical variant with a favorable prognosis. Cancer 46, 1448–1455 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Craig, J. R., Peters, R. L., Edmondson, H. A. & Omata, M. Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 46, 372–379 (1980). This paper names fibrolamellar carcinoma and describes the tumour as a distinct entity.

    Article  CAS  PubMed  Google Scholar 

  4. Farhi, D. C., Shikes, R. H. & Silverberg, S. G. Ultrastructure of fibrolamellar oncocytic hepatoma. Cancer 50, 702–709 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. O’Neill, A. F. et al. Fibrolamellar carcinoma: an entity all its own. Curr. Probl. Cancer 45, 100770 (2021). A current review that emphasizes clinical aspects of FLC.

    Article  PubMed  Google Scholar 

  6. Mavros, M. N., Mayo, S. C., Hyder, O. & Pawlik, T. M. A systematic review: treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma. J. Am. Coll. Surg. 215, 820–830 (2012).

    Article  PubMed  Google Scholar 

  7. Graham, R. P. & Torbenson, M. S. Fibrolamellar carcinoma: a histologically unique tumor with unique molecular findings. Semin. Diagn. Pathol. 34, 146–152 (2017).

    Article  PubMed  Google Scholar 

  8. Close, A. G., Dreyzin, A., Miller, K. D., Seynnaeve, B. K. N. & Rapkin, L. B. Adolescent and young adult oncology–past, present, and future. CA Cancer J. Clin. 69, 485–496 (2019).

    Article  PubMed  Google Scholar 

  9. Tricoli, J. V. & Bleyer, A. Adolescent and young adult cancer biology. Cancer J. 24, 267–274 (2018).

    Article  PubMed  Google Scholar 

  10. Eggert, T. et al. Fibrolamellar hepatocellular carcinoma in the USA, 2000-2010: a detailed report on frequency, treatment and outcome based on the Surveillance, Epidemiology, and End Results database. United European Gastroenterol. J. 1, 351–357 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramai, D., Ofosu, A., Lai, J. K., Gao, Z. H. & Adler, D. G. Fibrolamellar hepatocellular carcinoma: a population-based observational study. Dig. Dis. Sci. 66, 308–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Torbenson, M. Fibrolamellar carcinoma: 2012 update. Scientifica 2012, 743790 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lafaro, K. J. & Pawlik, T. M. Fibrolamellar hepatocellular carcinoma: current clinical perspectives. J. Hepatocell. Carcinoma 2, 151–157 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Graham, R. P. Fibrolamellar carcinoma: what Is new and why it matters. Surg. Pathol. Clin. 11, 377–387 (2018).

    Article  PubMed  Google Scholar 

  15. Zakka, K. et al. Clinical outcomes of rare hepatocellular carcinoma variants compared to pure hepatocellular carcinoma. J. Hepatocell. Carcinoma 6, 119–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lemekhova, A. et al. Clinical features and surgical outcomes of fibrolamellar hepatocellular carcinoma: retrospective analysis of a single-center experience. World J. Surg. Oncol. 18, 93 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dinh, T. A. et al. Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma. Sci. Rep. 7, 44653 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ang, C. S. et al. Clinicopathologic characteristics and survival outcomes of patients with fibrolamellar carcinoma: data from the fibrolamellar carcinoma consortium. Gastrointest. Cancer Res. 6, 3–9 (2013). This article reviews the clinical experience of 95 patients with FLC from a consortium of three institutions over 25 years (1986–2011).

    PubMed  PubMed Central  Google Scholar 

  19. Stipa, F. et al. Outcome of patients with fibrolamellar hepatocellular carcinoma. Cancer 106, 1331–1338 (2006).

    Article  PubMed  Google Scholar 

  20. Mayo, S. C. et al. Treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma: a national perspective. J. Am. Coll. Surg. 218, 196–205 (2014).

    Article  PubMed  Google Scholar 

  21. Atienza, L. G. et al. Liver transplantation for fibrolamellar hepatocellular carcinoma: a national perspective. J. Surg. Oncol. 115, 319–323 (2017).

    Article  PubMed  Google Scholar 

  22. McCloskey, J. J., Germain-Lee, E. L., Perman, J. A., Plotnick, L. P. & Janoski, A. H. Gynecomastia as a presenting sign of fibrolamellar carcinoma of the liver. Pediatrics 82, 379–382 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Santiago-Reynoso, J. et al. Hepatocellular carcinoma of fibrolamellar type in an adolescent: case report and literature review. Gastrointest. Tumors 6, 43–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cho, J. et al. Hyperammonemic encephalopathy in a patient with fibrolamellar hepatocellular carcinoma: case report and literature review. J. Gastrointest. Oncol. 10, 582–588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bartlett, A. L., Leslie, N. D., Gupta, A. & Geller, J. I. Acquired ornithine transcarbamylase deficiency in pediatric and adolescent patients with fibrolamellar hepatocellular carcinoma. Pediatr. Blood Cancer 65, e27392 (2018).

    Article  PubMed  Google Scholar 

  26. Lalazar, G. & Simon, S. M. Fibrolamellar carcinoma: recent advances and unresolved questions on the molecular mechanisms. Semin. Liver Dis. 38, 51–59 (2018). This article is a review that emphasizes the molecular aspects of FLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riggle, K. M., Turnham, R., Scott, J. D., Yeung, R. S. & Riehle, K. J. Fibrolamellar hepatocellular carcinoma: mechanistic distinction from adult hepatocellular carcinoma. Pediatr. Blood Cancer 63, 1163–1167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Graham, R. P. et al. Molecular testing for the clinical diagnosis of fibrolamellar carcinoma. Mod. Pathol. 31, 141–149 (2018). This article discusses a break-apart FISH assay for DNAJB1–PRKACA gene fusion and reports a correlation between the presence of the fusion and classic diagnostic criteria for FLC.

    Article  CAS  PubMed  Google Scholar 

  29. Ross, H. M. et al. Fibrolamellar carcinomas are positive for CD68. Mod. Pathol. 24, 390–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Ward, S. C. et al. Fibrolamellar carcinoma of the liver exhibits immunohistochemical evidence of both hepatocyte and bile duct differentiation. Mod. Pathol. 23, 1180–1190 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Malouf, G. G. et al. Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature. Hepatology 59, 2228–2237 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Cornella, H. et al. Unique genomic profile of fibrolamellar hepatocellular carcinoma. Gastroenterology 148, 806–818.e10 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, L. et al. Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum. Mol. Genet. 24, 50–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Simon, E. P. et al. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 112, E5916–E5925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Honeyman, J. N. et al. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science 343, 1010–1014 (2014). This article reports the discovery of the fusion oncogene of FLC and the chimeric protein it encodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oikawa, T. et al. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells. Nat. Commun. 6, 8070 (2015). This article describes the first PDX model of FLC and evidence for the cancer’s potential relationship to biliary tree stem cells.

    Article  CAS  PubMed  Google Scholar 

  37. Griffith, O. L. et al. A genomic case study of mixed fibrolamellar hepatocellular carcinoma. Ann. Oncol. 27, 1148–1154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sorenson, E. C. et al. Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS ONE 12, e0176562 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Darcy, D. G. et al. The genomic landscape of fibrolamellar hepatocellular carcinoma: whole genome sequencing of ten patients. Oncotarget 6, 755–770 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Graham, R. P. et al. DNAJB1-PRKACA is specific for fibrolamellar carcinoma. Mod. Pathol. 28, 822–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Singhi, A. D. et al. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology 158, 573–582.e2 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Vyas, M. et al. DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod. Pathol. 33, 648–656 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Qiu, X. B., Shao, Y. M., Miao, S. & Wang, L. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63, 2560–2570 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Krebs, E. G. The Albert Lasker Medical Awards. Role of the cyclic AMP-dependent protein kinase in signal transduction. JAMA 262, 1815–1818 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Taylor, S. S., Ilouz, R., Zhang, P. & Kornev, A. P. Assembly of allosteric macromolecular switches: lessons from PKA. Nat. Rev. Mol. Cell Biol. 13, 646–658 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turnham, R. E. & Scott, J. D. Protein kinase A catalytic subunit isoform PRKACA; history, function and physiology. Gene 577, 101–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Ward, S. C. & Waxman, S. Fibrolamellar carcinoma: a review with focus on genetics and comparison to other malignant primary liver tumors. Semin. Liver Dis. 31, 61–70 (2011).

    Article  PubMed  Google Scholar 

  48. El Dika, I. et al. Molecular profiling and analysis of genetic aberrations aimed at identifying potential therapeutic targets in fibrolamellar carcinoma of the liver. Cancer 126, 4126–4135 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Singh, A. P., Chaturvedi, P. & Batra, S. K. Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res. 67, 433–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Dinh, T. A. et al. Hotspots of aberrant enhancer activity in fibrolamellar carcinoma reveal candidate oncogenic pathways and therapeutic vulnerabilities. Cell Rep. 31, 107509 (2020). A study that describes the identification of the enhancer landscape and genes marked by super-enhancers in FLC tumour tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karki, A. et al. MDM4 expression in fibrolamellar hepatocellular carcinoma. Oncol. Rep. 42, 1487–1496 (2019).

    CAS  PubMed  Google Scholar 

  52. Malouf, G. G. et al. Pure and mixed fibrolamellar hepatocellular carcinomas differ in natural history and prognosis after complete surgical resection. Cancer 118, 4981–4990 (2012).

    Article  PubMed  Google Scholar 

  53. Chagas, A. L. et al. Clinical and pathological evaluation of fibrolamellar hepatocellular carcinoma: a single center study of 21 cases. Clinics 70, 207–213 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Calderaro, J., Ziol, M., Paradis, V. & Zucman-Rossi, J. Molecular and histological correlations in liver cancer. J. Hepatol. 71, 616–630 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Hirsch, T. Z. et al. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J. Hepatol. 72, 924–936 (2020). A study that describes the identification of frequent biallelic inactivation of BAP1, a tumour suppressor gene, and activation of PKA in liver tumours with mixed features of FLC and HCC.

    Article  CAS  PubMed  Google Scholar 

  56. Averill, A. M. et al. Inhibition of the chimeric DNAJ-PKAc enzyme by endogenous inhibitor proteins. J. Cell Biochem. 120, 13783–13791 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Engelholm, L. H. et al. CRISPR/Cas9 engineering of adult mouse liver demonstrates that the Dnajb1-Prkaca gene fusion is sufficient to induce tumors resembling fibrolamellar hepatocellular carcinoma. Gastroenterology 153, 1662–1673.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Kastenhuber, E. R. et al. DNAJB1-PRKACA fusion kinase interacts with β-catenin and the liver regenerative response to drive fibrolamellar hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 114, 13076–13084 (2017). Together with Engelholm et al. (2017), this study shows that the DNAJ–PKAc chimeric protein is oncogenic and can induce liver tumours in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schalm, S. S. et al. Evaluation of PRKACA as a therapeutic target for fibrolamellar carcinoma. Preprint at bioRxiv https://doi.org.1101/2022.01.31.477690 (2022).

  60. Sullivan, K. M., Kenerson, H. L., Pillarisetty, V. G., Riehle, K. J. & Yeung, R. S. Precision oncology in liver cancer. Ann. Transl. Med. 6, 285 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Qiu, S. et al. A review of the role of neurotensin and its receptors in colorectal cancer. Gastroenterol. Res. Pract. 2017, 6456257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Myers, R. M. et al. Cancer, chemistry, and the cell: molecules that interact with the neurotensin receptors. ACS Chem. Biol. 4, 503–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Riehle, K. J. et al. Neurotensin as a source of cyclic AMP and co-mitogen in fibrolamellar hepatocellular carcinoma. Oncotarget 10, 5092–5102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lu, T. W. et al. Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc. Natl Acad. Sci. USA 116, 16347–16356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Riggle, K. M. et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr. Res. 80, 110–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kamilaris, C. D. C., Faucz, F. R., Voutetakis, A. & Stratakis, C. A. Carney complex. Exp. Clin. Endocrinol. Diabetes 127, 156–164 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Graham, R. P. et al. Fibrolamellar carcinoma in the Carney complex: PRKAR1A loss instead of the classic DNAJB1-PRKACA fusion. Hepatology 68, 1441–1447 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Cheung, J. et al. Structural insights into mis-regulation of protein kinase A in human tumors. Proc. Natl Acad. Sci. USA 112, 1374–1379 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tomasini, M. D. et al. Conformational landscape of the PRKACA-DNAJB1 chimeric kinase, the driver for fibrolamellar hepatocellular carcinoma. Sci. Rep. 8, 720 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cao, B. et al. Structures of the PKA RIα holoenzyme with the FLHCC driver J-PKAcα or wild-type PKAcα. Structure 27, 816–828.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu, T. W. et al. Structural analyses of the PKA RIIβ holoenzyme containing the oncogenic DnaJB1-PKAc fusion protein reveal protomer asymmetry and fusion-induced allosteric perturbations in fibrolamellar hepatocellular carcinoma. PLoS Biol. 18, e3001018 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Olivieri, C. et al. Defective internal allosteric network imparts dysfunctional ATP/substrate-binding cooperativity in oncogenic chimera of protein kinase A. Commun. Biol. 4, 321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith, F. D. et al. Local protein kinase A action proceeds through intact holoenzymes. Science 356, 1288–1293 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Scott, J. D., Dessauer, C. W. & Tasken, K. Creating order from chaos: cellular regulation by kinase anchoring. Ann. Rev. Pharmacol. Toxicol. 53, 187–210 (2013).

    Article  CAS  Google Scholar 

  75. Soberg, K. & Skalhegg, B. S. The molecular basis for specificity at the level of the protein kinase A catalytic subunit. Front. Endocrinol. 9, 538 (2018).

    Article  Google Scholar 

  76. Turnham, R. E. et al. An acquired scaffolding function of the DNAJ-PKAc fusion contributes to oncogenic signaling in fibrolamellar carcinoma. eLife 8, e44187 (2019). This article shows that the main FLC oncoprotein interacts with A-kinase anchoring proteins (AKAPs) and that the intracellular organization of PKA signalling is altered in FLC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  CAS  Google Scholar 

  78. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531–1544 e1515 (2020). This article discusses the possibility that disrupted compartmentation of membrane-less organelles by DNAJ–PKAc is central to its oncogenic activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kannangai, R., Vivekanandan, P., Martinez-Murillo, F., Choti, M. & Torbenson, M. Fibrolamellar carcinomas show overexpression of genes in the RAS, MAPK, PIK3, and xenobiotic degradation pathways. Hum. Pathol. 38, 639–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sahin, F. et al. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin. Cancer Res. 10, 8421–8425 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Riehle, K. J. et al. mTORC1 and FGFR1 signaling in fibrolamellar hepatocellular carcinoma. Mod. Pathol. 28, 103–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Graham, R. P. et al. FGFR1 and FGFR2 in fibrolamellar carcinoma. Histopathology 68, 686–692 (2016).

    Article  PubMed  Google Scholar 

  84. Cieply, B., Zeng, G., Proverbs-Singh, T., Geller, D. A. & Monga, S. P. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology 49, 821–831 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Subbiah, I. M. et al. Targeted therapies in early-phase trials for the treatment of advanced fibrolamellar hepatocellular carcinoma. J. Clin. Oncol. 31, 232–232 (2013).

    Article  Google Scholar 

  86. Chakrabarti, S. et al. Clinicopathological features and outcomes of fibrolamellar hepatocellular carcinoma. J. Gastrointest. Oncol. 10, 554–561 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jardim, D. L. et al. FBXW7 mutations in patients with advanced cancers: clinical and molecular characteristics and outcomes with mTOR inhibitors. PLoS ONE 9, e89388 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Farber, B. A. et al. Non coding RNA analysis in fibrolamellar hepatocellular carcinoma. Oncotarget 9, 10211–10227 (2018).

    Article  PubMed  Google Scholar 

  89. Dinh, T. A. et al. MicroRNA-375 suppresses the growth and invasion of fibrolamellar carcinoma. Cell Mol. Gastroenterol. Hepatol. 7, 803–817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, C. & Yang, L. Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 28, 287–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Jiang, M. C., Ni, J. J., Cui, W. Y., Wang, B. Y. & Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 9, 1354–1366 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, S. J., Dang, H. X., Lim, D. A., Feng, F. Y. & Maher, C. A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 21, 446–460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, S. S. et al. DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. Preprint at bioRxiv https://doi.org/10.1101/2021/08.11.455931 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. de Oliveira, S., Houseright, R. A., Korte, B. G. & Huttenlocher, A. DnaJ-PKAc fusion induces liver inflammation in a zebrafish model of fibrolamellar carcinoma. Dis. Model Mech. 13, dmm042564 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lalazar, G. et al. Identification of novel therapeutic targets for fibrolamellar carcinoma using patient derived xenografts and direct from patient screening. Cancer Discov. 11, 2544–2563 (2021). This article describes the first large-scale screening of anti-FLC compounds using new PDX models and cells directly from patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cardinale, V. et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes and pancreatic islets. Hepatology 54, 2159–2172 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Cardinale, V. et al. The biliary tree–a reservoir of multipotent stem cells. Nat. Rev. Gastroenterol. Hepatol. 9, 231–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Alison, M. R. The cellular origins of cancer with particular reference to the gastrointestinal tract. Int. J. Exp. Pathol. 101, 132–151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hubbard, J. M. & Grothey, A. Napabucasin: an update on the first-in-class cancer stemness inhibitor. Drugs 77, 1091–1103 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Locken, H., Clamor, C. & Muller, K. Napabucasin and related heterocycle-fused naphthoquinones as STAT3 inhibitors with antiproliferative activity against cancer cells. J. Nat. Prod. 81, 1636–1644 (2018).

    Article  PubMed  CAS  Google Scholar 

  103. Li, Y., Han, Q., Zhao, H., Guo, Q. & Zhang, J. Napabucasin reduces cancer stem cell characteristics in hepatocellular carcinoma. Front. Pharmacol. 11, 597520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Beyreis, M. et al. The cancer stem cell inhibitor napabucasin (BBI608) shows general cytotoxicity in biliary tract cancer cells and reduces cancer stem cell characteristics. Cancers 11, 276 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  105. Froeling, F. E. M. et al. Bioactivation of napabucasin triggers reactive oxygen species-mediated cancer cell death. Clin. Cancer Res. 25, 7162–7174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kourie, H. R., Awada, G. & Awada, A. The second wave of immune checkpoint inhibitor tsunami: advance, challenges and perspectives. Immunotherapy 9, 647–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Hargadon, K. M., Johnson, C. E. & Williams, C. J. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62, 29–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Riviere, P. et al. High tumor mutational burden correlates with longer survival in immunotherapy-naive patients with diverse cancers. Mol. Cancer Ther. 19, 2139–2145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Subbiah, V., Solit, D. B., Chan, T. A. & Kurzrock, R. The FDA approval of pembrolizumab for adult and pediatric patients with tumor mutational burden (TMB) ≥10: a decision centered on empowering patients and their physicians. Ann. Oncol. 31, 1115–1118 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, A. K. et al. Multiple immune-suppressive mechanisms in fibrolamellar carcinoma. Cancer Immunol. Res. 7, 805–812 (2019). This study demonstrates that immune checkpoints are expressed in FLC tumours, suggesting the potential therapeutic value of ICIs.

    Article  CAS  PubMed  Google Scholar 

  115. Bauer, U. et al. Progression after immunotherapy for fibrolamellar carcinoma. Visc. Med. 35, 39–42 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yau, T. et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the CheckMate 040 randomized clinical trial. JAMA Oncol. 6, e204564 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. De Toni, E. N. & Roessler, D. Using dual checkpoint blockade to treat fibrolamellar hepatocellular carcinoma. Gut 69, 2056–2058 (2020).

    PubMed  Google Scholar 

  119. Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 569 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Chang, T. C. et al. The neoepitope landscape in pediatric cancers. Genome Med. 9, 78 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zamora, A. E. et al. Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8(+) T cell responses. Sci. Transl. Med. 11, eaat8549 (2019). A study that sets the precedent for targeted immune therapy against a junctional epitope in an oncogenic fusion protein.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Schnitzbauer, A. A. et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann. Surg. 255, 405–414 (2012).

    Article  PubMed  Google Scholar 

  123. Aloia, T. A. & Vauthey, J. N. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): what is gained and what is lost? Ann. Surg. 256, e9 (2012). author reply e16–19.

    Article  PubMed  Google Scholar 

  124. Lim, I. I., Farber, B. A. & LaQuaglia, M. P. Advances in fibrolamellar hepatocellular carcinoma: a review. Eur. J. Pediatr. Surg. 24, 461–466 (2014).

    Article  PubMed  Google Scholar 

  125. Kaseb, A. O. et al. Prognostic indicators and treatment outcome in 94 cases of fibrolamellar hepatocellular carcinoma. Oncology 85, 197–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Katzenstein, H. M. et al. Fibrolamellar hepatocellular carcinoma in children and adolescents. Cancer 97, 2006–2012 (2003).

    Article  PubMed  Google Scholar 

  127. Liu, L. et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66, 11851–11858 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Iyer, R., Fetterly, G., Lugade, A. & Thanavala, Y. Sorafenib: a clinical and pharmacologic review. Expert Opin. Pharmacother. 11, 1943–1955 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Keating, G. M. Sorafenib: a review in hepatocellular carcinoma. Target. Oncol. 12, 243–253 (2017).

    Article  PubMed  Google Scholar 

  130. Nair, A. et al. FDA supplemental approval summary: Lenvatinib for the treatment of unresectable hepatocellular carcinoma. Oncologist 26, e484–e491 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Gottlieb, S., Gliksberg, A., Schadde, E. & Kent, P. Novel systemic therapies in the treatment of fibrolamellar carcinoma [abstract]. J. Clin. Oncol. 39, e16161 (2021).

    Article  Google Scholar 

  132. Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Agarwal, V. R. et al. Molecular basis of severe gynecomastia associated with aromatase expression in a fibrolamellar hepatocellular carcinoma. J. Clin. Endocrinol. Metab. 83, 1797–1800 (1998).

    CAS  PubMed  Google Scholar 

  134. Muramori, K. et al. High aromatase activity and overexpression of epidermal growth factor receptor in fibrolamellar hepatocellular carcinoma in a child. J. Pediatr. Hematol. Oncol. 33, e195–e197 (2011).

    Article  PubMed  Google Scholar 

  135. El Dika, I. et al. A multicenter randomized three-arm phase II study of (1) everolimus, (2) estrogen deprivation therapy (EDT) with leuprolide + letrozole, and (3) everolimus + EDT in patients with unresectable fibrolamellar carcinoma. Oncologist 25, 925-e1603 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bavetsias, V. & Linardopoulos, S. Aurora kinase inhibitors: current status and outlook. Front. Oncol. 5, 278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fletcher, G. C. et al. ENMD-2076 is an orally active kinase inhibitor with antiangiogenic and antiproliferative mechanisms of action. Mol. Cancer Ther. 10, 126–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Abou-Alfa, G. K. et al. Phase II multicenter, open-label study of oral ENMD-2076 for the treatment of patients with advanced fibrolamellar carcinoma. Oncologist 25, e1837–e1845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Buckley, A. F., Burgart, L. J. & Kakar, S. Epidermal growth factor receptor expression and gene copy number in fibrolamellar hepatocellular carcinoma. Hum. Pathol. 37, 410–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Patonai, A. et al. Molecular characteristics of fibrolamellar hepatocellular carcinoma. Pathol. Oncol. Res. 19, 63–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Bose, P. & Ozer, H. Neratinib: an oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs 18, 1735–1751 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Abou-Alfa, G. K. et al. Evaluation of neratinib (N), pembrolizumab (P), everolimus (E), and nivolumab (V) in patients (pts) with fibrolamellar carcinoma (FLC) [abstract]. J. Clin. Oncol. 39 (3 Suppl.), 310 (2021).

    Article  Google Scholar 

  143. McFarland, J. M. et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 9, 4610 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Tseng, Y. Y. & Boehm, J. S. From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures. Curr. Opin. Genet. Dev. 54, 33–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vazquez, F. & Boehm, J. S. The Cancer Dependency Map enables drug mechanism-of-action investigations. Mol. Syst. Biol. 16, e9757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Nagourney, R. A. Ex vivo programmed cell death and the prediction of response to chemotherapy. Curr. Treat. Options Oncol. 7, 103–110 (2006).

    Article  PubMed  Google Scholar 

  148. Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 23, 1028–1035 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Kennedy, A. et al. Safety of selective internal radiation therapy (SIRT) with yttrium-90 microspheres combined with systemic anticancer agents: expert consensus. J. Gastrointest. Oncol. 8, 1079–1099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. De La Torre, M. et al. Abstract O-27. in ILCA Annual Conference, 2020: Book of Abstracts 16 (ILCA, 2020).

  151. Gottlieb, S., O’Grady, C., Gliksberg, A. & Kent, P. Early experiences with triple immunochemotherapy in adolescents and young adults with high-risk fibrolamellar carcinoma. Oncology 99, 310–317 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Fajgenbaum, D. C., Ruth, J. R., Kelleher, D. & Rubenstein, A. H. The collaborative network approach: a new framework to accelerate Castleman’s disease and other rare disease research. Lancet Haematol. 3, e150–e152 (2016).

    Article  PubMed  Google Scholar 

  154. Blay, J. Y., Coindre, J. M., Ducimetiere, F. & Ray-Coquard, I. The value of research collaborations and consortia in rare cancers. Lancet Oncol. 17, e62–e69 (2016).

    Article  PubMed  Google Scholar 

  155. Painter, C. A. et al. The Angiosarcoma Project: enabling genomic and clinical discoveries in a rare cancer through patient-partnered research. Nat. Med. 26, 181–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Komatsubara, K. M. & Carvajal, R. D. The promise and challenges of rare cancer research. Lancet Oncol. 17, 136–138 (2016).

    Article  PubMed  Google Scholar 

  157. Boyd, N., Dancey, J. E., Gilks, C. B. & Huntsman, D. G. Rare cancers: a sea of opportunity. Lancet Oncol. 17, e52–e61 (2016).

    Article  PubMed  Google Scholar 

  158. Sherman, R. E. et al. Real-world evidence–what is it and what can it tell us? N. Engl. J. Med. 375, 2293–2297 (2016).

    Article  PubMed  Google Scholar 

  159. Mathoulin-Pelissier, S. & Pritchard-Jones, K. Evidence-based data and rare cancers: the need for a new methodological approach in research and investigation. Eur. J. Surg. Oncol. 45, 22–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sharifnia, T., Hong, A. L., Painter, C. A. & Boehm, J. S. Emerging opportunities for target discovery in rare cancers. Cell Chem. Biol. 24, 1075–1091 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shimada, K., Bachman, J. A., Muhlich, J. L. & Mitchison, T. J. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data. eLife 10, e57116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Matossian, M. D. et al. Novel application of the published kinase inhibitor set to identify therapeutic targets and pathways in triple negative breast cancer subtypes. PLoS ONE 12, e0177802 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Elkins, J. M. et al. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol. 34, 95–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Hammond, W. J. et al. Intracranial metastasis in fibrolamellar hepatocellular carcinoma. Pediatr. Blood Cancer 65, e26919 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank participants at the 2019 Fibrolamellar Research Summit (funded and hosted by the Fibrolamellar Cancer Foundation) and many other members of the FLC research and patient/caregiver communities for their insightful contributions. The authors thank M. Torbenson for providing the histology micrograph in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

P.S., T.A.D., A.F.U. and M.E.F. researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission. K.C.B. wrote the article and reviewed/edited the manuscript before submission. A.F.O'N. made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission. All other authors reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Mark E. Furth or Praveen Sethupathy.

Ethics declarations

Competing interests

E.M.J. is a paid consultant for the following companies: Adaptive Biotech, Cstone Pharmaceuticals, Achilles Therapeutics, DragonFly Therapeutics, Candel Therapeutics and Genocea Biosciences. She receives funding from Lustgarten Foundation and Bristol Myers Squibb. She is the Chief Medical Advisor for Lustgarten and SAB advisor to the Parker Institute for Cancer Immunotherapy (PICI) and for the C3 Cancer Institute. She is a founding member of Abmeta. G.K.A.-A. has had research support from Arcus, Agios, AstraZeneca, Bayer, BioNtech, BMS, Celgene, Flatiron, Genentech/Roche, Genoscience, Incyte, Polaris, Puma, QED, Sillajen, and Yiviva. He has also provided consulting to Agios, AstraZeneca, Alnylam, Autem, Bayer, Beigene, Berry Genomics, Celgene, CytomX, Eisai, Eli Lilly, Exelixis, Flatiron, Genentech/Roche, Genoscience, Helio, Incyte, Ipsen, Legend Biotech, Loxo, Merck, MINA, QED, Redhill, Rafael, Silenseed, Sillajen, Sobi, Surface Oncology, Therabionics, Twoxar, Vector and Yiviva. M.E.F. is employed full-time by the Fibrolamellar Cancer Foundation, a registered non-profit corporation (501c3) in the USA. The following authors serve on the advisory board of the Fibrolamellar Cancer Foundation: E.M.J., J.D.S., J.D.G., G.K.A.-A., A.F.O'N. and J.Z.-R. The following authors are past or current recipients of grant funding from the Fibrolamellar Cancer Foundation: J.D.S., J.D.G., G.K.A.-A., K.C.B. and P.S. T.A.D., A.F.U. and R.M. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Lopa Mishra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Dependency Map: https://depmap.org/portal

ClinicalTrials.gov: https://clinicaltrials.gov/

European Union Drug Regulating Authorities Clinical Trials Database (EudraCT): https://eudract.ema.europa.eu/

Fibrolamellar Cancer Foundation Biobank: https://fibrofoundation.org/join-the-fight/donate-tissue/

FibroLamellar Omics (FLO): https://sethupathy-lab.shinyapps.io/flc_data/

Fibrolamellar Registry: https://fibroregistry.org/

Fibrolamellar Tissue Repository: https://fibrolamellar.rockefeller.edu/repository

Kinase Chemogenomic Set (KCGS): https://www.sgc-unc.org/kinase-chemogenomics

MyPART: https://www.cancer.gov/pediatric-adult-rare-tumor

Natural History Study of Rare Solid Tumors: https://www.cancer.gov/pediatric-adult-rare-tumor/participate/natural-history

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.A., Utria, A.F., Barry, K.C. et al. A framework for fibrolamellar carcinoma research and clinical trials. Nat Rev Gastroenterol Hepatol 19, 328–342 (2022). https://doi.org/10.1038/s41575-022-00580-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00580-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer