Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Machine perfusion of the liver: applications in transplantation and beyond

Abstract

The shortage of donor livers considered suitable for transplantation has driven the development of novel methods for organ preservation and reconditioning. Machine perfusion techniques can improve the quality of marginal livers, extend the time for which they can be preserved and enable an objective assessment of their quality and viability. These benefits can help avoid the needless wastage of organs based on hypothetical concerns regarding quality. As machine perfusion techniques are gaining traction in clinical practice, attention has now shifted to their potential applications beyond transplantation. As well as providing an update on the current status of machine perfusion in clinical practice, this Perspective discusses how this technology is being used as a tool for therapeutic interventions including defatting of steatotic livers, immunomodulation and gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liver preservation.

Similar content being viewed by others

References

  1. Carrel, A. & Lindbergh, C. A. The culture of whole organs. Science 81, 621–623 (1935).

    Article  CAS  PubMed  Google Scholar 

  2. Starzl, T. E. et al. Orthotopic homotransplantation of the human liver. Ann Surg. 168, 392–415 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wahlberg, J. A., Southard, J. H. & Belzer, F. O. Development of a cold storage solution for pancreas preservation. Cryobiology 23, 477–482 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Adam, R. et al. Effect of extended cold ischaemia with UW solution on graft function after liver transplantation. Lancet 340, 1373–1376 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Nebrig, M., Neuhaus, P. & Pascher, A. Advances in the management of the explanted donor liver. Nat. Rev. Gastroenterol. Hepatol. 11, 489–496 (2014).

    Article  PubMed  Google Scholar 

  6. de Vries, R. J. et al. Supercooling extends preservation time of human livers. Nat. Biotechnol. 37, 1131–1136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. NHS Blood and Transplant. Organ Donation Activity. NHS https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/23468/section-3-organ-donation-activity.pdf (2021).

  8. Attia, M., Silva, M. A. & Mirza, D. F. The marginal liver donor–an update. Transpl. Int. 21, 713–724 (2008).

    Article  PubMed  Google Scholar 

  9. Starzl, T. E. et al. Liver transplantation: an unfinished product. Transpl. Proc. 21, 2197–2200 (1989).

    CAS  Google Scholar 

  10. NHS Blood and Transplant. Organ and Tissue Donation and Transplantation Activity Report 2020/21. NHS https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/24053/activity-report-2020-2021.pdf (2021).

  11. Wiesner, R. et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124, 91–96 (2003).

    Article  PubMed  Google Scholar 

  12. Freeman, R. B. Jr. et al. Model for end-stage liver disease (MELD) exception guidelines: results and recommendations from the MELD Exception Study Group and Conference (MESSAGE) for the approval of patients who need liver transplantation with diseases not considered by the standard MELD formula. Liver Transpl. 12 (Suppl. 3), 128–136 (2006).

    Article  Google Scholar 

  13. Dueland, S. et al. Survival following liver transplantation for patients with nonresectable liver-only colorectal metastases. Ann. Surg. 271, 212–218 (2019).

    Article  Google Scholar 

  14. Lunsford, K. E. et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: a prospective case-series. Lancet Gastroenterol. Hepatol. 3, 337–348 (2018).

    Article  PubMed  Google Scholar 

  15. Xu, X. et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut 65, 1035–1041 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Guarrera, J. V. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transpl. 10, 372–381 (2010).

    Article  CAS  Google Scholar 

  17. Guarrera, J. V. et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am. J. Transpl. 15, 161–169 (2015).

    Article  CAS  Google Scholar 

  18. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03484455 (2021).

  19. Schlegel, A. & Dutkowski, P. Role of hypothermic machine perfusion in liver transplantation. Transpl. Int. 28, 677–689 (2015).

    Article  PubMed  Google Scholar 

  20. Weeder, P. D., van Rijn, R. & Porte, R. J. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: rationale, current evidence and future directions. J. Hepatol. 63, 265–275 (2015).

    Article  PubMed  Google Scholar 

  21. Slieker, J. C. et al. Significant contribution of the portal vein to blood flow through the common bile duct. Ann. Surg. 255, 523–527 (2012).

    Article  PubMed  Google Scholar 

  22. Schlegel, A. et al. Is single portal vein approach sufficient for hypothermic machine perfusion of DCD liver grafts? J. Hepatol. 64, 239–241 (2016).

    Article  PubMed  Google Scholar 

  23. Dutkowski, P. et al. HOPE for human liver grafts obtained from donors after cardiac death. J. Hepatol. 60, 765–772 (2014).

    Article  PubMed  Google Scholar 

  24. Schlegel, A. et al. Outcomes of liver transplantations from donation after circulatory death (DCD) treated by hypothermic oxygenated perfusion (HOPE) before implantation. J. Hepatol. 70, 50–57 (2018).

    Article  PubMed  Google Scholar 

  25. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03124641 (2021).

  27. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01317342 (2021).

  28. van Rijn, R. et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br. J. Surg. 104, 907–917 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kamiike, W. et al. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 45, 138–143 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Palombo, J. D. et al. Decreased loss of liver adenosine triphosphate during hypothermic preservation in rats pretreated with glucose: implications for organ donor management. Gastroenterology 95, 1043–1049 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Cywes, R. et al. Effect of intraportal glucose infusion on hepatic glycogen content and degradation, and outcome of liver transplantation. Ann. Surg. 216, 235–246 (1992). discussion 246-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lanir, A. et al. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology 8, 471–475 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. van Rijn, R. et al. Hypothermic machine perfusion in liver transplantation–a randomized trial. N. Engl. J. Med. 384, 1391–1401 (2021).

    Article  PubMed  Google Scholar 

  34. Monbaliu, D. et al. Preserving the morphology and evaluating the quality of liver grafts by hypothermic machine perfusion: a proof-of-concept study using discarded human livers. Liver Transpl. 18, 1495–1507 (2012).

    Article  PubMed  Google Scholar 

  35. Liu, Q. et al. Assessing warm ischemic injury of pig livers at hypothermic machine perfusion. J. Surg. Res. 186, 379–389 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Dutkowski, P., Muller, X., Schlegel, A. & Clavien, P. A. Novel real time prediction of liver graft function during hypothermic oxygenated machine perfusion prior to liver transplantation. J. Hepatol. 70, e104–e105 (2019).

    Article  Google Scholar 

  37. Muller, X. et al. Novel real-time prediction of liver graft function during hypothermic oxygenated machine perfusion before liver transplantation. Ann. Surg. 270, 783–790 (2019).

    Article  PubMed  Google Scholar 

  38. Eshmuminov, D. et al. Perfusion settings and additives in liver normothermic machine perfusion with red blood cells as oxygen carrier. A systematic review of human and porcine perfusion protocols. Transpl. Int. 31, 956–969 (2018).

    Article  CAS  Google Scholar 

  39. Bodewes, S. B. et al. Oxygen transport during ex situ machine perfusion of donor livers using red blood cells or artificial oxygen carriers. Int. J. Mol. Sci. 22, 235 (2020).

    Article  PubMed Central  Google Scholar 

  40. Ikeda, T. et al. Hemodynamic and biochemical changes during normothermic and hypothermic sanguinous perfusion of the porcine hepatic graft. Transplantation 50, 564–567 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schon, M. R. et al. Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Ann. Surg. 233, 114–123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brockmann, J. et al. Normothermic perfusion: a new paradigm for organ preservation. Ann. Surg. 250, 1–6 (2009).

    Article  PubMed  Google Scholar 

  43. Ravikumar, R. et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am. J. Transplant. 16, 1779–1789 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Eisenbach, C. et al. An early increase in gamma glutamyltranspeptidase and low aspartate aminotransferase peak values are associated with superior outcomes after orthotopic liver transplantation. Transpl. Proc. 41, 1727–1730 (2009).

    Article  CAS  Google Scholar 

  46. Olthoff, K. M. et al. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transpl. 16, 943–949 (2010).

    Article  PubMed  Google Scholar 

  47. Reddy, S. et al. Non-heart-beating donor porcine livers: the adverse effect of cooling. Liver Transpl. 11, 35–38 (2005).

    Article  PubMed  Google Scholar 

  48. Reddy, S. P. et al. Preservation of porcine non-heart-beating donor livers by sequential cold storage and warm perfusion. Transplantation 77, 1328–1332 (2004).

    Article  PubMed  Google Scholar 

  49. Perera, T. et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl. 22, 120–124 (2016).

    Article  PubMed  Google Scholar 

  50. Mergental, H. et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am. J. Transpl. 16, 3235–3245 (2016).

    Article  CAS  Google Scholar 

  51. Ceresa, C. D. L. et al. Transient cold storage prior to normothermic liver perfusion may facilitate adoption of a novel technology. Liver Transpl. 25, 1503–1513 (2019).

    Article  PubMed  Google Scholar 

  52. Bral, M. et al. A back-to-base experience of human normothermic ex situ liver perfusion: does the chill kill? Liver Transpl. 25, 848–858 (2019).

    Article  PubMed  Google Scholar 

  53. & Xystrakis, E. et al. Normothemic machine perfusion of liver grafts promotes liver regeneration and inhibits tissue inflammation [abstract]. Am. J. Transpl. 15 (Suppl. 3), 509 (2015).

    Google Scholar 

  54. Selzner, M. et al. Normothermic ex vivo liver perfusion using Steen solution as perfusate for human liver transplantation: first North American results. Liver Transpl. 22, 1501–1508 (2016).

    Article  PubMed  Google Scholar 

  55. Javanbakht, M. et al. Cost-utility analysis of normothermic liver perfusion with the OrganOx metra compared to static cold storage in the United Kingdom. J. Med. Econ. 23, 1284–1292 (2020).

    Article  PubMed  Google Scholar 

  56. de Vries, Y. et al. Transplantation of high-risk donor livers after resuscitation and viability assessment using a combined protocol of oxygenated hypothermic, rewarming and normothermic machine perfusion: study protocol for a prospective, single-arm study (DHOPE-COR-NMP trial). BMJ Open 9, e028596 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. He, X. et al. The first case of ischemia-free organ transplantation in humans: a proof of concept. Am. J. Transpl. 18, 737–744 (2018).

    Article  Google Scholar 

  58. Guo, Z. et al. Ischaemia-free liver transplantation in humans: a first-in-human trial. Lancet Reg. Health West Pac. 16, 100260 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. van Leeuwen, O. B., Ubbink, R., de Meijer, V. E. & Porte, R. J. The first case of ischemia-free organ transplantation in humans: a proof of concept. Am. J. Transpl. 18, 2091 (2018).

    Article  Google Scholar 

  60. Imber, C. J. et al. Advantages of normothermic perfusion over cold storage in liver preservation. Transplantation 73, 701–709 (2002).

    Article  PubMed  Google Scholar 

  61. Mergental, H. et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 11, 2939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van Leeuwen, O. B. et al. Transplantation of high-risk donor livers after ex situ resuscitation and assessment using combined hypo- and normothermic machine perfusion: a prospective clinical trial. Ann. Surg. 270, 906–914 (2019).

    Article  PubMed  Google Scholar 

  63. Watson, C. J. E. et al. Observations on the ex situ perfusion of livers for transplantation. Am. J. Transpl. 18, 2005–2020 (2018).

    Article  CAS  Google Scholar 

  64. Ciria, R. et al. Rescue of discarded grafts for liver transplantation by ex vivo subnormothermic and normothermic oxygenated machine perfusion: first experience in Spain. Transpl. Proc. 51, 20–24 (2019).

    Article  CAS  Google Scholar 

  65. Ben-Moshe, S. & Itzkovitz, S. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019).

    Article  PubMed  Google Scholar 

  66. Linares-Cervantes, I. et al. Predictor parameters of liver viability during porcine normothermic ex situ liver perfusion in a model of liver transplantation with marginal grafts. Am. J. Transpl. 19, 2991–3005 (2019).

    Article  CAS  Google Scholar 

  67. Matton, A. P. M. et al. Biliary bicarbonate, pH, and glucose are suitable biomarkers of biliary viability during ex situ normothermic machine perfusion of human donor livers. Transplantation 103, 1405–1413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Matton, A. P. M. et al. Cell-free microRNAs as early predictors of graft viability during ex vivo normothermic machine perfusion of human donor livers. Clin. Transplant. 34, e13790 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Butler, A. J. et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation 73, 1212–1218 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Mergental,H. et al. Transplantation after viability testing of discarded livers with normothermic machine perfusion (NMP): the Vittal (VIability Testing and Transplantation of mArginal Livers) trial 90-day outcomes [abstract 1]. Hepatology 68 (Suppl. 1), 1A (2018).

    Google Scholar 

  71. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koneru, B. & Dikdan, G. Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 73, 325–330 (2002).

    Article  PubMed  Google Scholar 

  73. Dutkowski, P. et al. The use of fatty liver grafts in modern allocation systems: risk assessment by the balance of risk (BAR) score. Ann. Surg. 256, 861–868 (2012). discussion 868-9.

    Article  PubMed  Google Scholar 

  74. Nativ, N. I. et al. Liver defatting: an alternative approach to enable steatotic liver transplantation. Am. J. Transpl. 12, 3176–3183 (2012).

    Article  CAS  Google Scholar 

  75. Jamieson, R. W. et al. Hepatic steatosis and normothermic perfusion–preliminary experiments in a porcine model. Transplantation 92, 289–295 (2011).

    Article  PubMed  Google Scholar 

  76. Nagrath, D. et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab. Eng. 11, 274–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Banan, B., Watson, R., Xu, M., Lin, Y. & Chapman, W. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl. 22, 979–993 (2016).

    Article  PubMed  Google Scholar 

  78. Boteon, Y. L. et al. Manipulation of lipid metabolism during normothermic machine perfusion: effect of defatting therapies on donor liver functional recovery. Liver Transpl. 25, 1007–1022 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ceresa, C. D. L. et al. Exploring the structural and functional effects of normothermic machine perfusion and de-fatting interventions on human steatotic livers [abstract 3]. Hepatology 68 (Suppl. 1), 2A (2018).

    Google Scholar 

  80. Pruthi, J. et al. Analysis of causes of death in liver transplant recipients who survived more than 3 years. Liver Transpl. 7, 811–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Lau, A. H. et al. Mass cytometry reveals a distinct immunoprofile of operational tolerance in pediatric liver transplantation. Pediatr. Transpl. 20, 1072–1080 (2016).

    Article  CAS  Google Scholar 

  82. Schulz-Juergensen, S. et al. Markers of operational immune tolerance after pediatric liver transplantation in patients under immunosuppression. Pediatr. Transpl. 17, 348–354 (2013).

    Article  CAS  Google Scholar 

  83. Sakaguchi, S. et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  84. Todo, S. et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 64, 632–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Todo, S. & Yamashita, K. Anti-donor regulatory T cell therapy in liver transplantation. Hum. Immunol. 79, 288–293 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Feng, S. & Sanchez-Fueyo, A. in Pediatric Hepatology and Liver Transplantation (ed. D’Antiga, L.) 625–652 (Springer, 2019).

  87. Jassem, W. et al. Normothermic machine perfusion (NMP) inhibits proinflammatory responses in the liver and promotes regeneration. Hepatology 70, 682–695 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Goldaracena, N. et al. Inducing epatitis C virus resistance after pig liver transplantation-a proof of concept of liver graft modification using warm ex vivo perfusion. Am. J. Transpl. 17, 970–978 (2017).

    Article  CAS  Google Scholar 

  89. Machuca, T. N. et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Hum. Gene Ther. 28, 757–765 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Baruteau, J. et al. Delivering efficient liver-directed AAV-mediated gene therapy. Gene Ther. 24, 263–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Howick, J. et al. Explanation of the 2011 Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence (Background Document). Centre for Evidence-Based Medicine https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

  92. Bruggenwirth, I. M. A. et al. Extended hypothermic oxygenated machine perfusion enables ex situ preservation of porcine livers for up to 24 hours. JHEP Rep. 2, 100092 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussion of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David Nasralla.

Ethics declarations

Competing interests

P.J.F. is co-founder and Chief Medical Officer of OrganOx Ltd, a spin-out company from the University of Oxford that develops normothermic organ perfusion technology. C.D.L.C. has historically received income from OrganOx Ltd. for teaching and training and for carrying out normothermic preservations after normal working hours. The remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Cristiano Quintini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceresa, C.D.L., Nasralla, D., Pollok, JM. et al. Machine perfusion of the liver: applications in transplantation and beyond. Nat Rev Gastroenterol Hepatol 19, 199–209 (2022). https://doi.org/10.1038/s41575-021-00557-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00557-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research