Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liver ischaemia–reperfusion injury: a new understanding of the role of innate immunity

Abstract

Liver ischaemia–reperfusion injury (LIRI), a local sterile inflammatory response driven by innate immunity, is one of the primary causes of early organ dysfunction and failure after liver transplantation. Cellular damage resulting from LIRI is an important risk factor not only for graft dysfunction but also for acute and even chronic rejection and exacerbates the shortage of donor organs for life-saving liver transplantation. Hepatocytes, liver sinusoidal endothelial cells and Kupffer cells, along with extrahepatic monocyte-derived macrophages, neutrophils and platelets, are all involved in LIRI. However, the mechanisms underlying the responses of these cells in the acute phase of LIRI and how these responses are orchestrated to control and resolve inflammation and achieve homeostatic tissue repair are not well understood. Technological advances allow the tracking of cells to better appreciate the role of hepatic macrophages and platelets (such as their origin and immunomodulatory and tissue-remodelling functions) and hepatic neutrophils (such as their selective recruitment, anti-inflammatory and tissue-repairing functions, and formation of extracellular traps and reverse migration) in LIRI. In this Review, we summarize the role of macrophages, platelets and neutrophils in LIRI, highlight unanswered questions, and discuss prospects for innovative therapeutic regimens against LIRI in transplant recipients.

Key points

  • Novel therapies are needed to mitigate liver ischaemia–reperfusion injury (LIRI) in liver transplant recipients as it is an inevitable detrimental event following surgery that affects clinical outcomes and contributes to donor organ shortage.

  • A mixture of cell death pathways — apoptosis, necrosis, necroptosis, pyroptosis and ferroptosis — facilitate LIRI-triggered hepatocellular damage, each of which, except apoptosis, provokes an inflammatory immune cascade in the stressed liver.

  • In both the acute and resolution phase of LIRI, macrophages, neutrophils and platelets communicate, regulate one another and have competing and/or opposing roles in the resulting pathogenesis.

  • During LIRI, neutrophils not only elicit local inflammation but reversely transmigrate into the circulation and, in coordination with platelets, promote distal organ injury by neutrophil extracellular trap-associated thrombosis.

  • Macrophage reprogramming at the LIRI site — phagocytosis via efferocytosis and bi-directional crosstalk with neutrophils — is crucial for the resolution of inflammation and eventual return to homeostasis.

  • Novel macrophage and neutrophil-targeted therapeutic strategies imposing reparative phenotypes and inhibition of NETosis are now in preclinical development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular and molecular pathways in ischaemia–reperfusion-triggered hepatocellular death.
Fig. 2: Macrophage–neutrophil–platelet interactions in the acute phase of LIRI.
Fig. 3: Macrophage–neutrophil–platelet crosstalk in the resolution phase of LIRI.

Similar content being viewed by others

References

  1. Dutkowski, P., Linecker, M., DeOliveira, M. L., Müllhaupt, B. & Clavien, P. A. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 148, 307–323 (2015).

    PubMed  Google Scholar 

  2. Wertheim, J. A., Petrowsky, H., Saab, S., Kupiec-Weglinski, J. W. & Busuttil, R. W. Major challenges limiting liver transplantation in the United States. Am. J. Transplant. 11, 1773–1784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhai, Y., Petrowsky, H., Hong, J. C., Busuttil, R. W. & Kupiec-Weglinski, J. W. Ischaemia-reperfusion injury in liver transplantation — from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 10, 79–89 (2013).

    CAS  PubMed  Google Scholar 

  4. Selzner, M., Selzner, N., Jochum, W., Graf, R. & Clavien, P. A. Increased ischemic injury in old mouse liver: an ATP-dependent mechanism. Liver Transplant. Soc. 13, 382–390 (2007).

    Google Scholar 

  5. Guan, L. Y. et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J. Gastrointest. Surg. 6, 122–128 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    CAS  PubMed  Google Scholar 

  7. Nakamura, K. et al. Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/reperfusion: from mouse to human. Liver Transplant. 23, 1282–1293 (2017).

    Google Scholar 

  8. Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol. 66, 1300–1312 (2017).

    CAS  PubMed  Google Scholar 

  9. Bilzer, M., Roggel, F. & Gerbes, A. L. Role of Kupffer cells in host defense and liver disease. Liver Intern. 26, 1175–1186 (2006).

    CAS  Google Scholar 

  10. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  11. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  PubMed  Google Scholar 

  12. Schofield, Z. V., Woodruff, T. M., Halai, R., Wu, M. C. & Cooper, M. A. Neutrophils — a key component of ischemia-reperfusion injury. Shock 40, 463–470 (2013).

    CAS  PubMed  Google Scholar 

  13. Kageyama, S. et al. Recombinant relaxin protects liver transplants from ischemia damage by hepatocyte glucocorticoid receptor: from bench-to-bedside. Hepatology 68, 258–273 (2018).

    CAS  PubMed  Google Scholar 

  14. Dib, P. R. B. et al. Innate immune receptors in platelets and platelet-leukocyte interactions. J. Leukoc. Biol. 108, 1157–1182 (2020).

    CAS  PubMed  Google Scholar 

  15. Eisinger, F., Patzelt, J. & Langer, H. F. The platelet response to tissue injury. Front. Med. 5, 317 (2018).

    Google Scholar 

  16. Mandili, G. et al. Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. J. Hepatol. 62, 573–580 (2015).

    CAS  PubMed  Google Scholar 

  17. Dery, K. J. et al. Human antigen R (HuR): a regulator of heme oxygenase-1 cytoprotection in mouse and human liver transplant injury. Hepatology 72, 1056–1072 (2020).

    CAS  PubMed  Google Scholar 

  18. Zhou, Z., Xu, M. J. & Gao, B. Hepatocytes: a key cell type for innate immunity. Cell. Mol. Immunol. 13, 301–315 (2016).

    CAS  PubMed  Google Scholar 

  19. Peralta, C., Jiménez-Castro, M. B. & Gracia-Sancho, J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J. Hepatol. 59, 1094–1106 (2013).

    PubMed  Google Scholar 

  20. Nakamura, K. et al. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. J. Clin. Invest. 130, 2689–2704 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rauen, U. et al. Involvement of reactive oxygen species in the preservation injury to cultured liver endothelial cells. Free Radic. Biol. Med. 22, 17–24 (1997).

    CAS  PubMed  Google Scholar 

  22. Russo, L. et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 55, 921–930 (2012).

    CAS  PubMed  Google Scholar 

  23. Kim, M. S., Lee, K. H., Lee, W. M., Jun, J. H. & Kim, D. H. CD44 disruption attenuates murine hepatic ischemia/reperfusion injury. J. Korean Med. Sci. 26, 919–926 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, J. et al. The impact of ischemia/reperfusion injury on liver allografts from deceased after cardiac death versus deceased after brain death donors. PLoS One 11, e0148815 (2016).

    PubMed  PubMed Central  Google Scholar 

  25. Savage, B., Saldívar, E. & Ruggeri, Z. M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289–297 (1996).

    CAS  PubMed  Google Scholar 

  26. Jaeschke, H. & Lemasters, J. J. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125, 1246–1257 (2003).

    CAS  PubMed  Google Scholar 

  27. Schwabe, R. F. & Luedde, T. Apoptosis and necroptosis in the liver: a matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 15, 738–752 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Szondy, Z., Sarang, Z., Kiss, B., Garabuczi, É. & Köröskényi, K. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Gujral, J. S., Bucci, T. J., Farhood, A. & Jaeschke, H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis? Hepatology 33, 397–405 (2001).

    CAS  PubMed  Google Scholar 

  30. Jaeschke, H. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1083–G1088 (2006).

    CAS  PubMed  Google Scholar 

  31. McDonald, B. & Kubes, P. Innate immune cell trafficking and function during sterile inflammation of the liver. Gastroenterology 151, 1087–1095 (2016).

    CAS  PubMed  Google Scholar 

  32. Baidya, R., Crawford, D. H. G., Gautheron, J., Wang, H. & Bridle, K. R. Necroptosis in hepatosteatotic ischaemia-reperfusion injury. Int. J. Mol. Sci. 21, 5931 (2020).

    CAS  PubMed Central  Google Scholar 

  33. Gong, Y. N. et al. ESCRT-III Acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Villeret, F., Dumortier, J. & Erard-Poinsot, D. How will NAFLD change the liver transplant landscape in the 2020s? Clin. Res. Hepatol. Gastroenterol. 46, 101759 (2021).

    PubMed  Google Scholar 

  35. Afonso, M. B. et al. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin. Sci. 129, 721–739 (2015).

    CAS  Google Scholar 

  36. Zhang, Y. et al. Catalytically inactive RIP1 and RIP3 deficiency protect against acute ischemic stroke by inhibiting necroptosis and neuroinflammation. Cell Death Dis. 11, 565 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, H. et al. RIPK3-MLKL-mediated necroinflammation contributes to AKI progression to CKD. Cell Death Dis. 9, 878 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Luedde, M. et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc. Res. 103, 206–216 (2014).

    CAS  PubMed  Google Scholar 

  39. Hong, J. M., Kim, S. J. & Lee, S. M. Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion. Toxicol. Appl. Pharmacol. 308, 1–10 (2016).

    CAS  PubMed  Google Scholar 

  40. Saeed, W. K. et al. Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury? PLoS One 12, e0184752 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Liss, K. H. H. et al. The impact of diet-induced hepatic steatosis in a murine model of hepatic ischemia/reperfusion injury. Liver Transpl. 24, 908–921 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Yang, F. et al. TNFα-mediated necroptosis aggravates ischemia-reperfusion injury in the fatty liver by regulating the inflammatory response. Oxid. Med. Cell. Longev. 2019, 2301903 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Kolachala, V. L. et al. Influence of fat on differential receptor interacting serine/threonine protein kinase 1 activity leading to apoptotic cell death in murine liver ischemia reperfusion injury through caspase 8. Hepatol. Commun. 3, 925–942 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kovacs, S. B. & Miao, E. A. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 27, 673–684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamo, N. et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 58, 351–362 (2013).

    CAS  PubMed  Google Scholar 

  46. Hua, S. et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated Kupffer cells pyroptosis. Int. Immunopharmacol. 68, 145–155 (2019).

    CAS  PubMed  Google Scholar 

  47. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    CAS  PubMed  Google Scholar 

  48. Li, J. et al. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia-reperfusion injury. Cell Death Dis. 11, 244 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    CAS  PubMed  Google Scholar 

  50. Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest. 129, 2293–2304 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    CAS  PubMed  Google Scholar 

  52. Pefanis, A., Ierino, F. L., Murphy, J. M. & Cowan, P. J. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 96, 291–301 (2019).

    PubMed  Google Scholar 

  53. Li, Y. et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26, 2284–2299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamada, N. et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis. Am. J. Transplant. 20, 1606–1618 (2020).

    CAS  PubMed  Google Scholar 

  55. Kapralov, A. A. et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat. Chem. Biol. 16, 278–290 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sarhan, M., Land, W. G., Tonnus, W., Hugo, C. P. & Linkermann, A. Origin and consequences of necroinflammation. Physiol. Rev. 98, 727–780 (2018).

    CAS  PubMed  Google Scholar 

  57. Scott, C. L. et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat. Commun. 7, 10321 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Guillot, A. & Tacke, F. Liver macrophages: old dogmas and new insights. Hepatol. Commun. 3, 730–743 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Yue, S. et al. Prolonged ischemia triggers necrotic depletion of tissue-resident macrophages to facilitate inflammatory immune activation in liver ischemia reperfusion injury. J. Immunol. 198, 3588–3595 (2017).

    CAS  PubMed  Google Scholar 

  61. Li, P., He, K., Li, J., Liu, Z. & Gong, J. The role of Kupffer cells in hepatic diseases. Mol. Immunol. 85, 222–229 (2017).

    CAS  PubMed  Google Scholar 

  62. Ingersoll, M. A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Takenaka, E., Van Vo, A., Yamashita-Kanemaru, Y., Shibuya, A. & Shibuya, K. Selective DNAM-1 expression on small peritoneal macrophages contributes to CD4+ T cell costimulation. Sci. Rep. 8, 15180 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Wang, J. & Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 165, 668–678 (2016).

    CAS  PubMed  Google Scholar 

  65. Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47, 374–388.e6 (2017).

    CAS  PubMed  Google Scholar 

  66. Zhang, J. et al. CCL2-CCR2 signaling promotes hepatic ischemia/reperfusion injury. J. Surg. Res. 202, 352–362 (2016).

    CAS  PubMed  Google Scholar 

  67. Lai, X. et al. Acetyl-3-aminoethyl salicylate ameliorates hepatic ischemia/reperfusion injury and liver graft survival through a high-mobility group box 1/toll-like receptor 4-dependent mechanism. Liver Transpl. 25, 1220–1232 (2019).

    PubMed  Google Scholar 

  68. Yang, X. et al. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget 7, 1084–1095 (2016).

    PubMed  Google Scholar 

  69. Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mossanen, J. C. et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64, 1667–1682 (2016).

    CAS  PubMed  Google Scholar 

  71. Krenkel, O. et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270–1283 (2018).

    CAS  PubMed  Google Scholar 

  72. Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Amersi, F. et al. P-selectin glycoprotein ligand-1 (rPSGL-Ig)-mediated blockade of CD62 selectin molecules protects rat steatotic liver grafts from ischemia/reperfusion injury. Am. J. Transplant. 2, 600–608 (2002).

    CAS  PubMed  Google Scholar 

  74. Busuttil, R. W. et al. rPSGL-Ig for improvement of early liver allograft function: a double-blind, placebo-controlled, single-center phase II study. Am. J. Transplant. 11, 786–797 (2011).

    CAS  PubMed  Google Scholar 

  75. Jaeschke, H. et al. Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology 17, 915–923 (1993).

    CAS  PubMed  Google Scholar 

  76. Nakano, H., Kuzume, M., Namatame, K., Yamaguchi, M. & Kumada, K. Efficacy of intraportal injection of anti-ICAM-1 monoclonal antibody against liver cell injury following warm ischemia in the rat. Am. J. Surg. 170, 64–66 (1995).

    CAS  PubMed  Google Scholar 

  77. Choudhury, S. R. et al. Dipeptidase-1 is an adhesion receptor for neutrophil recruitment in lungs and liver. Cell 178, 1205–1221.e17 (2019).

    PubMed  Google Scholar 

  78. Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).

    CAS  PubMed  Google Scholar 

  79. Marra, F. & Tacke, F. Roles for chemokines in liver disease. Gastroenterology 147, 577–594.e1 (2014).

    CAS  PubMed  Google Scholar 

  80. Su, L. et al. Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death Dis. 9, 323 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. de Oliveira, T. H. C. et al. Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. Front. Immunol. 8, 1917 (2017).

    PubMed  Google Scholar 

  82. Alvarenga, D. M., Mattos, M. S., Araújo, A. M., Antunes, M. M. & Menezes, G. B. Neutrophil biology within hepatic environment. Cell Tissue Res. 371, 589–598 (2018).

    CAS  PubMed  Google Scholar 

  83. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Honda, M. et al. Intravital imaging of neutrophil recruitment reveals the efficacy of FPR1 blockade in hepatic ischemia-reperfusion injury. J. Immunol. 198, 1718–1728 (2017).

    CAS  PubMed  Google Scholar 

  85. Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    CAS  PubMed  Google Scholar 

  87. Duarte, S., Matian, P., Ma, S., Busuttil, R. W. & Coito, A. J. Adeno-associated virus-mediated gene transfer of tissue inhibitor of metalloproteinases-1 impairs neutrophil extracellular trap formation and ameliorates hepatic ischemia and reperfusion injury. Am. J. Pathol. 188, 1820–1832 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Moore, C., Shen, X. D., Gao, F., Busuttil, R. W. & Coito, A. J. Fibronectin-alpha4beta1 integrin interactions regulate metalloproteinase-9 expression in steatotic liver ischemia and reperfusion injury. Am. J. Pathol. 170, 567–577 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hamada, T., Fondevila, C., Busuttil, R. W. & Coito, A. J. Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury. Hepatology 47, 186–198 (2008).

    CAS  PubMed  Google Scholar 

  90. Kuyvenhoven, J. P. et al. Assessment of serum matrix metalloproteinases MMP-2 and MMP-9 after human liver transplantation: increased serum MMP-9 level in acute rejection. Transplantation 77, 1646–1652 (2004).

    CAS  PubMed  Google Scholar 

  91. Klebanoff, S. J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    CAS  PubMed  Google Scholar 

  92. Hervera, A. et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 20, 307–319 (2018).

    CAS  PubMed  Google Scholar 

  93. Yang, W. et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10, 1076 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Reber, L. L. et al. Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J. Exp. Med. 214, 1249–1258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).

    CAS  PubMed  Google Scholar 

  96. Huang, H. et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62, 600–614 (2015).

    CAS  PubMed  Google Scholar 

  97. Nakazawa, D. et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 28, 1753–1768 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sayah, D. M. et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 191, 455–463 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. von Meijenfeldt, F. A. et al. Elevated plasma levels of cell-free DNA during liver transplantation are associated with activation of coagulation. Liver Transplant. 24, 1716–1725 (2018).

    Google Scholar 

  100. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    CAS  PubMed  Google Scholar 

  101. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shiraki, R. et al. Expression of Toll-like receptors on human platelets. Thromb. Res. 113, 379–385 (2004).

    CAS  PubMed  Google Scholar 

  103. Semple, J. W., Italiano, J. E. Jr. & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    CAS  PubMed  Google Scholar 

  104. Stegner, D., Klaus, V. & Nieswandt, B. Platelets as modulators of cerebral ischemia/reperfusion injury. Front. Immunol. 10, 2505 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Schanze, N., Bode, C. & Duerschmied, D. Platelet contributions to myocardial ischemia/reperfusion injury. Front. Immunol. 10, 1260 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mende, K. et al. Targeting platelet migration in the postischemic liver by blocking protease-activated receptor 4. Transplantation 97, 154–160 (2014).

    CAS  PubMed  Google Scholar 

  107. Pak, S. et al. Platelet adhesion in the sinusoid caused hepatic injury by neutrophils after hepatic ischemia reperfusion. Platelets 21, 282–288 (2010).

    CAS  PubMed  Google Scholar 

  108. Tamura, T., Kondo, T., Ogawa, K., Fukunaga, K. & Ohkohchi, N. Protective effect of heme oxygenase-1 on hepatic ischemia-reperfusion injury through inhibition of platelet adhesion to the sinusoids. J. Gastroenterol. Hepatol. 28, 700–706 (2013).

    CAS  PubMed  Google Scholar 

  109. Ogawa, K. et al. Influence of Kupffer cells and platelets on ischemia-reperfusion injury in mild steatotic liver. World J. Gastroenterol. 19, 1396–1404 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Konstantinides, S. et al. Distinct antithrombotic consequences of platelet glycoprotein Ibalpha and VI deficiency in a mouse model of arterial thrombosis. J. Thromb. Haemost. 4, 2014–2021 (2006).

    CAS  PubMed  Google Scholar 

  111. Lecut, C. et al. Principal role of glycoprotein VI in alpha2beta1 and alphaIIbbeta3 activation during collagen-induced thrombus formation. Arterioscler. Thromb. Vasc. Biol. 24, 1727–1733 (2004).

    CAS  PubMed  Google Scholar 

  112. Khandoga, A., Biberthaler, P., Messmer, K. & Krombach, F. Platelet-endothelial cell interactions during hepatic ischemia-reperfusion in vivo: a systematic analysis. Microvasc. Res. 65, 71–77 (2003).

    CAS  PubMed  Google Scholar 

  113. Takahashi, K., Nagai, S., Safwan, M., Liang, C. & Ohkohchi, N. Thrombocytopenia after liver transplantation: should we care? World J. Gastroenterol. 24, 1386–1397 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Takahashi, K. et al. Prognostic impact of postoperative low platelet count after liver transplantation. Clin. Transplant. https://doi.org/10.1111/ctr.12891 (2017).

    Article  PubMed  Google Scholar 

  115. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Suzuki, J. et al. Cytokine secretion from human monocytes potentiated by P-selectin-mediated cell adhesion. Int. Arch. Allergy Immunol. 160, 152–160 (2013).

    CAS  PubMed  Google Scholar 

  117. Singh, M. V. et al. Characterization of platelet-monocyte complexes in HIV-1-infected individuals: possible role in HIV-associated neuroinflammation. J. Immunol. 192, 4674–4684 (2014).

    CAS  PubMed  Google Scholar 

  118. Hwaiz, R., Rahman, M., Zhang, E. & Thorlacius, H. Platelet secretion of CXCL4 is Rac1-dependent and regulates neutrophil infiltration and tissue damage in septic lung damage. Br. J. Pharmacol. 172, 5347–5359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuligowski, M. P., Kitching, A. R. & Hickey, M. J. Leukocyte recruitment to the inflamed glomerulus: a critical role for platelet-derived P-selectin in the absence of rolling. J. Immunol. 176, 6991–6999 (2006).

    CAS  PubMed  Google Scholar 

  120. Elzey, B. D., Ratliff, T. L., Sowa, J. M. & Crist, S. A. Platelet CD40L at the interface of adaptive immunity. Thromb. Res. 127, 180–183 (2011).

    CAS  PubMed  Google Scholar 

  121. Wan, P., Tan, X., Xiang, Y., Tong, H. & Yu, M. PI3K/AKT and CD40L signaling regulate platelet activation and endothelial cell damage in sepsis. Inflammation 41, 1815–1824 (2018).

    CAS  PubMed  Google Scholar 

  122. Jin, R. et al. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One 8, e64631 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hwaiz, R., Rahman, M., Zhang, E. & Thorlacius, H. Rac1 regulates platelet shedding of CD40L in abdominal sepsis. Lab. Invest. 94, 1054–1063 (2014).

    CAS  PubMed  Google Scholar 

  124. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).

    CAS  PubMed  Google Scholar 

  125. Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    CAS  PubMed  Google Scholar 

  126. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Blander, J. M. The many ways tissue phagocytes respond to dying cells. Immunol. Rev. 277, 158–173 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Proto, J. D. et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution. Immunity 49, 666–677.e6 (2018).

    CAS  PubMed  Google Scholar 

  129. Dal-Secco, D. et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212, 447–456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Braza, M. S. et al. Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am. J. Transpl. 18, 1247–1255 (2018).

    CAS  Google Scholar 

  131. Munder, M. et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556 (2005).

    CAS  PubMed  Google Scholar 

  132. Ingersoll, S. A. et al. Mature cystic fibrosis airway neutrophils suppress T cell function: evidence for a role of arginase 1 but not programmed death-ligand 1. J. Immunol. 194, 5520–5528 (2015).

    CAS  PubMed  Google Scholar 

  133. Fletcher, M. et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    CAS  PubMed  Google Scholar 

  134. Döring, G. et al. Cleavage of lymphocyte surface antigens CD2, CD4, and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in patients with cystic fibrosis. J. Immunol. 154, 4842–4850 (1995).

    PubMed  Google Scholar 

  135. Luo, Q. et al. PD-L1-expressing neutrophils as a novel indicator to assess disease activity and severity of systemic lupus erythematosus. Arthritis Res. Ther. 18, 47 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Wang, J. F. et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology 122, 852–863 (2015).

    CAS  PubMed  Google Scholar 

  137. Klemke, M. et al. Oxidation of cofilin mediates T cell hyporesponsiveness under oxidative stress conditions. Immunity 29, 404–413 (2008).

    CAS  PubMed  Google Scholar 

  138. Mougiakakos, D., Johansson, C. C. & Kiessling, R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113, 3542–3545 (2009).

    CAS  PubMed  Google Scholar 

  139. Nicolás-Ávila, J., Adrover, J. M. & Hidalgo, A. Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017).

    PubMed  Google Scholar 

  140. Hampton, H. R., Bailey, J., Tomura, M., Brink, R. & Chtanova, T. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes. Nat. Commun. 6, 7139 (2015).

    CAS  PubMed  Google Scholar 

  141. Duffy, D. et al. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity 37, 917–929 (2012).

    CAS  PubMed  Google Scholar 

  142. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–e72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Calvente, C. J. et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J. Clin. Invest. 129, 4091–4109 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Gastardelo, T. S. et al. Functional and ultrastructural analysis of annexin A1 and its receptor in extravasating neutrophils during acute inflammation. Am. J. Pathol. 174, 177–183 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    CAS  PubMed  Google Scholar 

  146. McArthur, S. et al. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J. Clin. Invest. 130, 1156–1167 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Senchenkova, E. Y. et al. Novel role for the AnxA1-Fpr2/ALX signaling axis as a key regulator of platelet function to promote resolution of inflammation. Circulation 140, 319–335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Shapouri-Moghaddam, A. et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 233, 6425–6440 (2018).

    CAS  PubMed  Google Scholar 

  149. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M. & Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tsuda, Y. et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215–226 (2004).

    CAS  PubMed  Google Scholar 

  151. Shaul, M. E. et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 5, e1232221 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Zou, J. M. et al. IL-35 induces N2 phenotype of neutrophils to promote tumor growth. Oncotarget 8, 33501–33514 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2016).

    CAS  PubMed  Google Scholar 

  154. Ma, Y. et al. Temporal neutrophil polarization following myocardial infarction. Cardiovasc. Res. 110, 51–61 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cuartero, M. I. et al. N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508 (2013).

    CAS  PubMed  Google Scholar 

  156. García-Culebras, A. et al. Role of TLR4 (Toll-like receptor 4) in N1/N2 neutrophil programming after. Stroke Stroke 50, 2922–2932 (2019).

    PubMed  Google Scholar 

  157. Schrijver, I. T., Théroude, C. & Roger, T. Myeloid-derived suppressor cells in sepsis. Front. Immunol. 10, 327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hammerich, L. et al. Cyclic adenosine monophosphate-responsive element modulator alpha overexpression impairs function of hepatic myeloid-derived suppressor cells and aggravates immune-mediated hepatitis in mice. Hepatology 61, 990–1002 (2015).

    CAS  PubMed  Google Scholar 

  159. Nachmany, I. et al. CD11b+Ly6G+ myeloid-derived suppressor cells promote liver regeneration in a murine model of major hepatectomy. FASEB J. 33, 5967–5978 (2019).

    CAS  PubMed  Google Scholar 

  160. Li, S. et al. Expansion of granulocytic, myeloid-derived suppressor cells in response to ethanol-induced acute liver damage. Front. Immunol. 9, 1524 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Wang, J. Neutrophils in tissue injury and repair. Cell Tissue Res. 371, 531–539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    CAS  PubMed  Google Scholar 

  163. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I. & Quigley, J. P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 104, 20262–20267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Cauwe, B., Martens, E., Proost, P. & Opdenakker, G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr. Biol. 1, 404–426 (2009).

    CAS  Google Scholar 

  165. Christoffersson, G. et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 120, 4653–4662 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Massena, S. et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126, 2016–2026 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lin, R. Z. et al. Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat. Biomed. Eng. 1, 0081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Marwick, J. A. et al. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation. Cell Death Dis. 9, 665 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–769 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Owen-Woods, C. et al. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J. Clin. Invest. 130, 2301–2318 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wu, D. et al. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep. 6, 20545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Buckley, C. D. et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J. Leukoc. Biol. 79, 303–311 (2006).

    CAS  PubMed  Google Scholar 

  173. Schwartzkopff, F., Petersen, F., Grimm, T. A. & Brandt, E. CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes. Innate Immun. 18, 124–139 (2012).

    CAS  PubMed  Google Scholar 

  174. Mack, M. et al. Chondroitin sulfate A released from platelets blocks RANTES presentation on cell surfaces and RANTES-dependent firm adhesion of leukocytes. Eur. J. Immunol. 32, 1012–1020 (2002).

    CAS  PubMed  Google Scholar 

  175. Gudbrandsdottir, S., Hasselbalch, H. C. & Nielsen, C. H. Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes. J. Immunol. 191, 4059–4067 (2013).

    CAS  PubMed  Google Scholar 

  176. Linke, B. et al. Activated Platelets induce an anti-inflammatory response of monocytes/macrophages through cross-regulation of PGE(2) and cytokines. Med. Inflamm. 2017, 1463216 (2017).

    Google Scholar 

  177. Sadallah, S., Amicarella, F., Eken, C., Iezzi, G. & Schifferli, J. A. Ectosomes released by platelets induce differentiation of CD4+ T cells into T regulatory cells. Thromb. Haemost. 112, 1219–1229 (2014).

    CAS  PubMed  Google Scholar 

  178. Ando, Y., Oku, T. & Tsuji, T. Platelets attenuate production of cytokines and nitric oxide by macrophages in response to bacterial endotoxin. Platelets 27, 344–350 (2016).

    CAS  PubMed  Google Scholar 

  179. Carestia, A. et al. Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice. Cell Rep. 28, 896–908.e5 (2019).

    CAS  PubMed  Google Scholar 

  180. Kerrigan, A. M. et al. Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. J. Throm. Haemost. 10, 484–486 (2012).

    CAS  Google Scholar 

  181. Meng, D. et al. A role of the podoplanin-CLEC-2 axis in promoting inflammatory response after ischemic stroke in mice. Neurotox. Res. 39, 477–488 (2021).

    CAS  PubMed  Google Scholar 

  182. Wu, X. et al. Plasma C-type lectin-like receptor 2 as a predictor of death and vascular events in patients with acute ischemic stroke. Eur. J. Neurol. 26, 1334–1340 (2019).

    CAS  PubMed  Google Scholar 

  183. Chauhan, A. et al. The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure. Nat. Commun. 11, 1939 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kojima, H., Nakamura, K. & Kupiec-Weglinski, J. W. Therapeutic targets for liver regeneration after acute severe injury: a preclinical overview. Expert Opin. Ther. Targets 24, 13–24 (2020).

    PubMed  PubMed Central  Google Scholar 

  185. Nakamura, K. et al. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J. Clin. Invest. 129, 3420–3434 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Devey, L. et al. Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism. Mol. Ther. 17, 65–72 (2009).

    CAS  PubMed  Google Scholar 

  187. Gonzales, E. et al. ATP release after partial hepatectomy regulates liver regeneration in the rat. J. Hepatol. 52, 54–62 (2010).

    CAS  PubMed  Google Scholar 

  188. Bird, T. G. et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc. Natl Acad. Sci. USA 110, 6542–6547 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. McDonald, K. A. et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol. Med. 20, 639–648 (2015).

    PubMed  PubMed Central  Google Scholar 

  190. Kadono, K. et al. Thrombomodulin attenuates inflammatory damage due to liver ischemia and reperfusion injury in mice in toll-like receptor 4-dependent manner. Am. J. Transplant. 17, 69–80 (2017).

    CAS  PubMed  Google Scholar 

  191. Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135–1143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Corbitt, N. et al. Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. Am. J. Pathol. 182, 180–191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Song, P. et al. Hepatic recruitment of CD11b+Ly6C+ inflammatory monocytes promotes hepatic ischemia/reperfusion injury. Int. J. Mol. Med. 41, 935–945 (2018).

    CAS  PubMed  Google Scholar 

  194. Ratziu, V. et al. Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR Study. Hepatology 73, 892–905 (2020).

    Google Scholar 

  195. Nakamura, K. et al. Heme oxygenase-1 regulates sirtuin-1-autophagy pathway in liver transplantation: from mouse to human. Am. J. Transplant. 18, 1110–1121 (2018).

    CAS  PubMed  Google Scholar 

  196. Thomsen, K. L. et al. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats. World J. Hepatol. 8, 726–730 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Aouadi, M. et al. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 458, 1180–1184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Braza, M. S. et al. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity 49, 819–828.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Riquelme, P. et al. IFN-γ-induced iNOS expression in mouse regulatory macrophages prolongs allograft survival in fully immunocompetent recipients. Mol. Ther. 21, 409–422 (2013).

    CAS  PubMed  Google Scholar 

  200. Riquelme, P. et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat. Commun. 9, 2858 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Ge, L. et al. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am. J. Physiol. Heart Circ. Physiol. 308, H500–H509 (2015).

    CAS  PubMed  Google Scholar 

  202. Bilyy, R. et al. Neutrophil extracellular traps form a barrier between necrotic and viable areas in acute abdominal inflammation. Front. Immunol. 7, 424 (2016).

    PubMed  PubMed Central  Google Scholar 

  203. Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 (2006).

    CAS  PubMed  Google Scholar 

  204. Malehmir, M. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat. Med. 25, 641–655 (2019).

    CAS  PubMed  Google Scholar 

  205. Zhao, X. et al. Neutrophils undergo switch of apoptosis to NETosis during murine fatty liver injury via S1P receptor 2 signaling. Cell Death Dis. 11, 379 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Zhang, H. et al. Hepatic surgical stress promotes systemic immunothrombosis that results in distant organ injury. Front. Immunol. 11, 987 (2020).

    PubMed  PubMed Central  Google Scholar 

  207. Papayannopoulos, V., Staab, D. & Zychlinsky, A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One 6, e28526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Egholm, C., Heeb, L. E. M., Impellizzieri, D. & Boyman, O. The regulatory effects of interleukin-4 receptor signaling on neutrophils in type 2 immune responses. Front. Immunol. 10, 2507 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sydlik, U. et al. Recovery of neutrophil apoptosis by ectoine: a new strategy against lung inflammation. Eur. Respir. J. 41, 433–442 (2013).

    CAS  PubMed  Google Scholar 

  210. Unfried, K. et al. Reduction of neutrophilic lung inflammation by inhalation of the compatible solute ectoine: a randomized trial with elderly individuals. Int. J. Chron. Obstr. Pulmon. Dis. 11, 2573–2583 (2016).

    CAS  Google Scholar 

  211. Sosa, R. A. et al. Pattern recognition receptor-reactivity screening of liver transplant patients: potential for personalized and precise organ matching to reduce risks of ischemia-reperfusion injury. Ann. Surg. 271, 922–931 (2020).

    PubMed  Google Scholar 

  212. Nakamura, K., Kageyama, S. & Kupiec-Weglinski, J. W. The evolving role of neutrophils in liver transplant ischemia-reperfusion injury. Curr. Transplant. Rep. 6, 78–89 (2019).

    PubMed  PubMed Central  Google Scholar 

  213. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Ostanin, D. V. et al. Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J. Immunol. 188, 1491–1502 (2012).

    CAS  PubMed  Google Scholar 

  215. Matsushima, H. et al. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 121, 1677–1689 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Bai, H. et al. Blockade of the Notch1/Jagged1 pathway in Kupffer cells aggravates ischemia-reperfusion injury of orthotopic liver transplantation in mice. Autoimmunity 52, 176–184 (2019).

    CAS  PubMed  Google Scholar 

  218. Ouzounidis, N. et al. Interleukin 18 binding protein ameliorates ischemia/reperfusion-induced hepatic injury in mice. Liver Transplant. 22, 237–246 (2016).

    Google Scholar 

  219. Xu, J. et al. Inhibition of cyclin-dependent kinase 2 signaling prevents liver ischemia and reperfusion injury. Transplantation 103, 724–732 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Huang, H. et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology 54, 999–1008 (2011).

    CAS  PubMed  Google Scholar 

  221. Yaron, J. R. et al. Serp-2, a virus-derived apoptosis and inflammasome inhibitor, attenuates liver ischemia-reperfusion injury in mice. J. Inflamm. 16, 12 (2019).

    CAS  Google Scholar 

  222. Froh, M. et al. New method of delivering gene-altered Kupffer cells to rat liver: studies in an ischemia-reperfusion model. Gastroenterology 124, 172–183 (2003).

    PubMed  Google Scholar 

  223. Kato, A., Yoshidome, H., Edwards, M. J. & Lentsch, A. B. Reduced hepatic ischemia/reperfusion injury by IL-4: potential anti-inflammatory role of STAT6. Inflamm. Res. 49, 275–279 (2000).

    CAS  PubMed  Google Scholar 

  224. Ke, B., Shen, X. D., Gao, F., Busuttil, R. W. & Kupiec-Weglinski, J. W. Interleukin 13 gene transfer in liver ischemia and reperfusion injury: role of Stat6 and TLR4 pathways in cytoprotection. Hum. Gene Ther. 15, 691–698 (2004).

    CAS  PubMed  Google Scholar 

  225. Loi, P. et al. Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated liver ischemia-reperfusion injury. Hepatology 57, 351–361 (2013).

    CAS  PubMed  Google Scholar 

  226. Yazdani, H. O. et al. IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J. Hepatol. https://doi.org/10.1016/j.jhep.2017.09.010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Liu, A. et al. The fibrin-derived peptide bβ15-42 attenuates liver damage in a rat model of liver ischemia/reperfusion injury. Shock 39, 397–403 (2013).

    CAS  PubMed  Google Scholar 

  228. Uchida, Y., Freitas, M. C., Zhao, D., Busuttil, R. W. & Kupiec-Weglinski, J. W. The protective function of neutrophil elastase inhibitor in liver ischemia/reperfusion injury. Transplantation 89, 1050–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Palumbo, T. et al. Bruton tyrosine kinase inhibition attenuates liver damage in a mouse warm ischemia and reperfusion model. Transplantation 101, 322–331 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kimura, K. et al. Ischemia-reperfusion injury in fatty liver is mediated by activated NADPH oxidase 2 in rats. Transplantation 100, 791–800 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Dery and K. Faull for helpful discussion and critically reading the manuscript. The authors were supported by NIH Grants P01 AI120944, R01 DK062357, R01 DK107533 and R01 AI155856 (J.W.K.-W).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Jerzy W. Kupiec-Weglinski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Hartmut Jaeschke, Frank Tacke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirao, H., Nakamura, K. & Kupiec-Weglinski, J.W. Liver ischaemia–reperfusion injury: a new understanding of the role of innate immunity. Nat Rev Gastroenterol Hepatol 19, 239–256 (2022). https://doi.org/10.1038/s41575-021-00549-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00549-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing