Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting fibrosis in inflammatory bowel disease: the gut thickens

Abstract

Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.

Key points

  • Intestinal fibrosis — the excessive deposition of extracellular matrix (ECM) components by activated cells of mesenchymal origin in the intestinal wall — is a common complication of inflammatory bowel disease (IBD).

  • The main drivers of intestinal fibrosis are soluble molecules (for example, cytokines and growth factors), G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota.

  • Identification of biomarkers (such as antimicrobial antibodies, ECM components and clinical, endoscopic or environmental factors) might aid in the prediction or assessment of fibrosis in patients with Crohn’s disease.

  • No treatments are currently available for intestinal fibrosis in patients with IBD; however, several preclinical studies have shown the antifibrotic effect of newly identified compounds that might represent novel therapeutic approaches.

  • Standardized criteria for the diagnosis of small-bowel strictures and standardized definitions of outcome measures and treatment end points have now been published by a multidisciplinary panel of experts.

  • Fibrosis in patients with ulcerative colitis remains an underestimated issue; given its serious clinical implications, an urgent need exists for further studies to characterize, diagnose and treat this complication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular and cellular components involved in the pathogenesis of intestinal fibrosis.
Fig. 2: Microbial components that contribute to intestinal fibrosis.
Fig. 3: A possible approach to histopathological scoring of Crohn’s disease.
Fig. 4: Histopathological features of intestinal fibrosis in Crohn’s disease and ulcerative colitis.

Similar content being viewed by others

References

  1. Rieder, F., Fiocchi, C. & Rogler, G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology 152, 340–350.e6 (2017).

    Article  PubMed  Google Scholar 

  2. Latella, G. et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand. J. Gastroenterol. 50, 53–65 (2014).

    Article  Google Scholar 

  3. Speca, S. et al. Cellular and molecular mechanisms of intestinal fibrosis. World J. Gastroenterol. 18, 3635–3661 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cosnes, J. Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut 54, 237–241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spinelli, A., Correale, C., Szabo, H. & Montorsi, M. Intestinal fibrosis in Crohn’s disease: medical treatment or surgery? Curr. Drug Targets 11, 242–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Van Assche, G., Geboes, K. & Rutgeerts, P. Medical therapy for Crohn’s disease strictures. Inflamm. Bowel Dis. 10, 55–60 (2004).

    Article  PubMed  Google Scholar 

  7. Bruining, D. H. et al. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel Crohn’s disease. Radiology 286, 776–799 (2018).

    Article  PubMed  Google Scholar 

  8. Rieder, F. et al. An expert consensus to standardise definitions, diagnosis and treatment targets for anti-fibrotic stricture therapies in Crohn’s disease. Aliment. Pharmacol. Ther. 48, 347–357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkens, R. et al. Validity of contrast-enhanced ultrasonography and dynamic contrast-enhanced MR enterography in the assessment of transmural activity and fibrosis in Crohn′s disease. J. Crohns Colitis 12, 48–56 (2018).

    Article  PubMed  Google Scholar 

  10. Cosnes, J. et al. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140, 1785–1794.e4 (2011).

    Article  PubMed  Google Scholar 

  11. Ng, W. K. & Ng, S. C. in Fibrostenotic Inflammatory Bowel Disease (ed. Rieder, F.) 5–12 (Springer, 2018).

  12. Chang, C.-W. et al. Intestinal stricture in Crohn’s disease. Intest. Res. 13, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Quandalle, P., Gambiez, L., Colombel, J. F., Paris, J. C. & Cortot, A. Long-term follow-up of strictureplasty in Crohn’s disease. Acta Gastroenterol. Belg. 57, 314–319 (1994).

    CAS  PubMed  Google Scholar 

  14. Lawrance, I. C., Maxwell, L. & Doe, W. Altered response of intestinal mucosal fibroblasts to profibrogenic cytokines in inflammatory bowel disease. Inflamm. Bowel Dis. 7, 226–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Flier, S. N. et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J. Biol. Chem. 285, 20202–20212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uehara, H. et al. Emergence of fibrocytes showing morphological changes in the inflamed colonic mucosa. Dig. Dis. Sci. 55, 253–260 (2010).

    Article  PubMed  Google Scholar 

  17. Rieder, F. et al. Inflammation-induced endothelial-to-mesenchymal transition. Am. J. Pathol. 179, 2660–2673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordon, I. O. in Fibrostenotic Inflammatory Bowel Disease 159–171 (ed. Rieder, F.) 159–171 (Springer, 2018).

  19. Chen, W. et al. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn’s fibrostenosing bowel strictures: a semiquantitative analysis by using a novel histological grading scheme. J. Crohns Colitis 11, 92–104 (2017).

    Article  PubMed  Google Scholar 

  20. Vatn, M. H. Natural history and complications of IBD. Curr. Gastroenterol. Rep. 11, 481–487 (2009).

    Article  PubMed  Google Scholar 

  21. Bettenworth, D. et al. Assessment of Crohn’s disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut 68, 1115–1126 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Yoo, J. H., Holubar, S. & Rieder, F. Fibrostenotic strictures in Crohn’s disease. Intest. Res. 18, 379–401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cosnes, J. et al. Long-term evolution of disease behavior of Crohn’s disease. Inflamm. Bowel Dis. 8, 244–250 (2002).

    Article  PubMed  Google Scholar 

  24. Rimola, J. & Capozzi, N. Differentiation of fibrotic and inflammatory component of Crohn’s disease-associated strictures. Intest. Res. 18, 144–150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2013).

    Article  Google Scholar 

  26. Rieder, F. & Fiocchi, C. Intestinal fibrosis in IBD — a dynamic, multifactorial process. Nat. Rev. Gastroenterol. Hepatol. 6, 228–235 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Rogler, G. Pathogenesis of strictures in ulcerative colitis: a field to explore. Digestion 84, 10–11 (2011).

    Article  PubMed  Google Scholar 

  28. Hünerwadel, A. et al. Severity of local inflammation does not impact development of fibrosis in mouse models of intestinal fibrosis. Sci. Rep. 8, 15182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao, J. F. et al. Role of non-inflammatory factors in intestinal fibrosis. J. Dig. Dis. 21, 315–318 (2020).

    Article  PubMed  Google Scholar 

  30. Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

    Article  CAS  PubMed  Google Scholar 

  31. Leeb, S. N. et al. Regulation of migration of human colonic myofibroblasts. Growth Factors 20, 81–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Leeb, S. N. et al. Autocrine fibronectin-induced migration of human colonic fibroblasts. Am. J. Gastroenterol. 99, 335–340 (2004).

    Article  PubMed  Google Scholar 

  33. Burke, J. P. et al. N-cadherin is overexpressed in Crohn’s stricture fibroblasts and promotes intestinal fibroblast migration. Inflamm. Bowel Dis. 17, 1665–1673 (2011).

    Article  PubMed  Google Scholar 

  34. Lawrance, I. C. et al. Cellular and molecular mediators of intestinal fibrosis. J. Crohns Colitis 11, 1491–1503 (2015).

    PubMed Central  Google Scholar 

  35. Vallée, A., Lecarpentier, Y. & Vallée, J.-N. Thermodynamic aspects and reprogramming cellular energy metabolism during the fibrosis process. Int. J. Mol. Sci. 18, 2537 (2017).

    Article  PubMed Central  Google Scholar 

  36. Rieder, F. et al. European Crohn’s and Colitis Organisation topical review on prediction, diagnosis and management of fibrostenosing Crohn’s disease. J. Crohns Colitis 10, 873–885 (2016).

    Article  PubMed  Google Scholar 

  37. Jun, Y. K. et al. Toll-like receptor 4 regulates intestinal fibrosis via cytokine expression and epithelial-mesenchymal transition. Sci. Rep. 10, 19867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovisa, S., Genovese, G. & Danese, S. Role of epithelial-to-mesenchymal transition in inflammatory bowel disease. J. Crohns Colitis 13, 659–668 (2019).

    Article  PubMed  Google Scholar 

  39. Ibba-Manneschi, L., Rosa, I. & Manetti, M. Telocytes in chronic inflammatory and fibrotic diseases. Adv. Exp. Med. Biol. 913, 51–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Manetti, M. et al. Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J. Cell Mol. Med. 19, 62–73 (2015).

    Article  PubMed  Google Scholar 

  41. Bei, Y. et al. Telocytes in regenerative medicine. J. Cell Mol. Med. 19, 1441–1454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Monticelli, L. A. et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proc. Natl Acad. Sci. USA 112, 10762–10767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lo, B. C. et al. The orphan nuclear receptor RORα and group 3 innate lymphoid cells drive fibrosis in a mouse model of Crohn’s disease. Sci. Immunol. 1, eaaf8864 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gieseck, R. L., Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Petrey, A. C. & de la Motte, C. A. The extracellular matrix in IBD. Curr. Opin. Gastroenterol. 33, 234–238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rieder, F. et al. Wound healing and fibrosis in intestinal disease. Gut 56, 130–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lenti, M. V. & Di Sabatino, A. Intestinal fibrosis. Mol. Asp. Med. 65, 100–109 (2019).

    Article  Google Scholar 

  49. Ravi, A., Garg, P. & Sitaraman, S. V. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm. Bowel Dis. 13, 97–107 (2007).

    Article  PubMed  Google Scholar 

  50. Warnaar, N. et al. Matrix metalloproteinases as profibrotic factors in terminal ileum in Crohn’s disease. Inflamm. Bowel Dis. 12, 863–869 (2006).

    Article  PubMed  Google Scholar 

  51. Kuroda, N. et al. Infiltrating CCR2+ monocytes and their progenies, fibrocytes, contribute to colon fibrosis by inhibiting collagen degradation through the production of TIMP-1. Sci. Rep. 9, 8568 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Truffi, M. et al. Inhibition of fibroblast activation protein restores a balanced extracellular matrix and reduces fibrosis in Crohn’s disease strictures ex vivo. Inflamm. Bowel Dis. 24, 332–345 (2018).

    Article  PubMed  Google Scholar 

  53. Imai, J. et al. Inhibition of plasminogen activator inhibitor-1 attenuates against intestinal fibrosis in mice. Intest. Res. 18, 219–228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Franzè, E. et al. Cadherin-11 is a regulator of intestinal fibrosis. J. Crohns Colitis 14, 406–417 (2020).

    Article  PubMed  Google Scholar 

  55. Zhao, S. et al. Selective deletion of MyD88 signaling in α-SMA positive cells ameliorates experimental intestinal fibrosis via post-transcriptional regulation. Mucosal Immunol. 13, 665–678 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Inoue, R., Kurahara, L.-H. & Hiraishi, K. TRP channels in cardiac and intestinal fibrosis. Semin. Cell Dev. Biol. 94, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Kurahara, L. H. et al. Activation of myofibroblast TRPA1 by steroids and pirfenidone ameliorates fibrosis in experimental Crohn’s disease. Cell Mol. Gastroenterol. Hepatol. 5, 299–318 (2018).

    Article  PubMed  Google Scholar 

  58. Hutter, S. et al. Intestinal activation of pH-sensing receptor OGR1 [GPR68] contributes to fibrogenesis. J. Crohns Colitis 12, 1348–1358 (2018).

    PubMed  Google Scholar 

  59. Ortiz-Masià, D. et al. WNT2b activates epithelial-mesenchymal transition through FZD4: relevance in penetrating Crohn´s disease. J. Crohns Colitis 14, 230–239 (2020).

    Article  PubMed  Google Scholar 

  60. Neufert, C., Neurath, M. F. & Atreya, R. Rationale for IL-36 receptor antibodies in ulcerative colitis. Expert Opin. Biol. Ther. 20, 339–342 (2020).

    Article  PubMed  Google Scholar 

  61. Scheibe, K. et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 156, 1082–1097.e11 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Nishida, A. et al. Increased expression of interleukin-36, a member of the interleukin-1 cytokine family, in inflammatory bowel disease. Inflamm. Bowel Dis. 22, 303–314 (2016).

    Article  PubMed  Google Scholar 

  63. Scheibe, K. et al. IL-36R signalling activates intestinal epithelial cells and fibroblasts and promotes mucosal healing in vivo. Gut 66, 823–838 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Kotsiou, O. S., Gourgoulianis, K. I. & Zarogiannis, S. G. IL-33/ST2 axis in organ fibrosis. Front. Immunol. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Imai, J. et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol. 12, 632–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masterson, J. C. et al. Eosinophils and IL-33 perpetuate chronic inflammation and fibrosis in a pediatric population with stricturing Crohn’s ileitis. Inflamm. Bowel Dis. 21, 2429–2440 (2015).

    PubMed  Google Scholar 

  67. Guan, Q. et al. Reversing ongoing chronic intestinal inflammation and fibrosis by sustained block of IL-12 and IL-23 using a vaccine in mice. Inflamm. Bowel Dis. 24, 1941–1952 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Latella, G. & Viscido, A. Controversial contribution of Th17/IL-17 toward the immune response in intestinal fibrosis. Dig. Dis. Sci. 65, 1299–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, H.-J. et al. IL-17A promotes initiation and development of intestinal fibrosis through EMT. Dig. Dis. Sci. 63, 2898–2909 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Biancheri, P. et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 6, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yun, S.-M., Kim, S.-H. & Kim, E.-H. The molecular mechanism of transforming growth factor-β signaling for intestinal fibrosis: a mini-review. Front. Pharmacol. 10, 162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, J. et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol. Rev. 302, 211–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, S.-Y. et al. Ro60 inhibits colonic inflammation and fibrosis in a mouse model of dextran sulfate sodium-induced colitis. Immunol. Lett. 201, 45–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Macias-Ceja, D. C. et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol. 12, 178–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Ungaro, F. et al. The gut virome in inflammatory bowel disease pathogenesis: from metagenomics to novel therapeutic approaches. U. Eur. Gastroenterol. J. 7, 999–1007 (2019).

    Article  CAS  Google Scholar 

  76. Koh, A. & Bäckhed, F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol. Cell. 78, 584–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Mentella, M. C. et al. Nutrition, IBD and gut microbiota: a review. Nutrients 12, 944 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  78. Mow, W. S. et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology 126, 414–424 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Rieder, F. et al. Predictors of fibrostenotic Crohn’s disease. Inflamm. Bowel Dis. 17, 2000–2007 (2011).

    Article  PubMed  Google Scholar 

  80. Zhao, Z. et al. Antibiotic alleviates radiation-induced intestinal injury by remodeling microbiota, reducing inflammation, and inhibiting fibrosis. ACS Omega 5, 2967–2977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ellermann, M. et al. Yersiniabactin-producing adherent/invasive Escherichia coli promotes inflammation-associated fibrosis in gnotobiotic Il10–/– mice. Infect. Immun. 87, e00587-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Small, C.-L. N. et al. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat. Commun. 4, 1957 (2013).

    Article  PubMed  Google Scholar 

  83. Chokr, D. et al. Adherent invasive Escherichia coli (AIEC) strain LF82, but not Candida albicans, plays a profibrogenic role in the intestine. Gut Pathog. 13, 5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiménez-Saiz, R. et al. Microbial regulation of enteric eosinophils and its impact on tissue remodeling and Th2 immunity. Front. Immunol. 11, 155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Takemura, N. et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 10, eaan0333 (2018).

    Article  PubMed  Google Scholar 

  86. Jacob, N. et al. Inflammation-independent TL1A-mediated intestinal fibrosis is dependent on the gut microbiome. Mucosal Immunol. 11, 1466–1476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Park, J.-S. et al. Lactobacillus acidophilus improves intestinal inflammation in an acute colitis mouse model by regulation of Th17 and Treg cell balance and fibrosis development. J. Med. Food 21, 215–224 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Yoo, J. H. et al. Antifibrogenic effects of the antimicrobial peptide cathelicidin in murine colitis-associated fibrosis. Cell Mol. Gastroenterol. Hepatol. 1, 55–74.e1 (2015).

    Article  PubMed  Google Scholar 

  89. Magro, F. et al. Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J. Crohns Colitis 11, 649–670 (2017).

    Article  PubMed  Google Scholar 

  90. Allocca, M. et al. Noninvasive multimodal methods to differentiate inflamed vs fibrotic strictures in patients with Crohn’s disease. Clin. Gastroenterol. Hepatol. 17, 2397–2415 (2019).

    Article  PubMed  Google Scholar 

  91. Zappa, M. et al. Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn’s disease? A retrospective comparison with surgical pathologic analysis. Inflamm. Bowel Dis. 17, 984–993 (2011).

    Article  PubMed  Google Scholar 

  92. Sagami, S. et al. Combination of colonoscopy and magnetic resonance enterography is more useful for clinical decision making than colonoscopy alone in patients with complicated Crohn’s disease. PLoS ONE 14, e0212404 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gordon, I. O. et al. Histopathology scoring systems of stenosis associated with small bowel Crohn’s disease: a systematic review. Gastroenterology 158, 137–150.e1 (2020).

    Article  PubMed  Google Scholar 

  94. Fitch K. et al. The RAND/UCLA Appropriateness Method User’s Manual (RAND, 2001).

  95. Lu, C. et al. Systematic review: medical therapy for fibrostenosing Crohn’s disease. Aliment. Pharmacol. Ther. 51, 1233–1246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rieder, F. et al. Crohn’s disease complicated by strictures: a systematic review. Gut 62, 1072–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Yaffe, B. H. & Korelitz, B. I. Prognosis for nonoperative management of small-bowel obstruction in Crohn’s disease. J. Clin. Gastroenterol. 5, 211–216 (1983).

    Article  CAS  PubMed  Google Scholar 

  98. Caprilli, R., Latella, G. & Frieri, G. Treatment of inflammatory bowel diseases: to heal the wound or to heal the sick? J. Crohns Colitis 6, 621–625 (2012).

    Article  PubMed  Google Scholar 

  99. Latella, G., Caprilli, R. & Travis, S. In favour of early surgery in Crohn’s disease: a hypothesis to be tested. J. Crohns Colitis 5, 1–4 (2011).

    Article  PubMed  Google Scholar 

  100. Van Assche, G. et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: special situations. J. Crohns Colitis 4, 63–101 (2010).

    Article  PubMed  Google Scholar 

  101. Dignass, A. et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: current management. J. Crohns Colitis 4, 28–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Toy, L. S. et al. Complete bowel obstruction following initial response to infliximab therapy for Crohn’s disease: a series of a newly described complication [abstract 2974]. Gastroenterology 118, A569 (2000).

    Google Scholar 

  103. Vasilopoulos, S. Intestinal strictures complicating initially successful infliximab treatment for luminal Crohn’s disease [abstract]. Am. J. Gastroenterol. 95, 2503 (2000).

    Google Scholar 

  104. Pallotta, N. et al. Effect of infliximab on small bowel stenoses in patients with Crohn’s disease. World J. Gastroenterol. 14, 1885–1890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hanauer, S. B. et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359, 1541–1549 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Bouhnik, Y. et al. Efficacy of adalimumab in patients with Crohn’s disease and symptomatic small bowel stricture: a multicentre, prospective, observational cohort (CREOLE) study. Gut 67, 53–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Allocca, M. et al. Efficacy of tumour necrosis factor antagonists in stricturing Crohn’s disease: a tertiary center real-life experience. Dig. Liver Dis. 49, 872–877 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Schwab, R., Lim, R. & Goldberg, R. Resolving intestinal fibrosis through regenerative medicine. Curr. Opin. Pharmacol. 49, 90–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Molendijk, I. et al. Allogeneic bone marrow–derived mesenchymal stromal cells promote healing of refractory perianal fistulas in patients with Crohn’s disease. Gastroenterology 149, 918–927.e6 (2015).

    Article  PubMed  Google Scholar 

  110. Cho, Y. B. et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula. Stem Cell Transl. Med. 4, 532–537 (2015).

    Article  Google Scholar 

  111. Panés, J. et al. Long-term efficacy and safety of stem cell therapy (Cx601) for complex perianal fistulas in patients with Crohn’s disease. Gastroenterology 154, 1334–1342.e4 (2018).

    Article  PubMed  Google Scholar 

  112. Danese, S. et al. Identification of endpoints for development of antifibrosis drugs for treatment of Crohn’s disease. Gastroenterology 155, 76–87 (2018).

    Article  PubMed  Google Scholar 

  113. Bettenworth, D. et al. A pooled analysis of efficacy, safety, and long-term outcome of endoscopic balloon dilation therapy for patients with stricturing Crohn’s disease. Inflamm. Bowel Dis. 23, 133–142 (2017).

    Article  PubMed  Google Scholar 

  114. Lopes, S. et al. Endoscopic balloon dilation of Crohn’s disease strictures – safety, efficacy and clinical impact. World J. Gastroenterol. 23, 7397–7406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Navaneethan, U. et al. Endoscopic balloon dilation in the management of strictures in Crohn’s disease: a systematic review and meta-analysis of non-randomized trials. Surg. Endosc. 30, 5434–5443 (2016).

    Article  PubMed  Google Scholar 

  116. Bemelman, W. A. et al. ECCO-ESCP consensus on surgery for Crohn’s disease. J. Crohns Colitis 12, 1–16 (2018).

    PubMed  Google Scholar 

  117. Eshuis, E. J., Stokkers, P. C. & Bemelman, W. A. Decision-making in ileocecal Crohn’s disease management: surgery versus pharmacotherapy. Expert Rev. Gastroenterol. Hepatol. 4, 181–189 (2010).

    Article  PubMed  Google Scholar 

  118. Spinelli, A. et al. Intestinal fibrosis in Crohns disease: medical treatment or surgery? Curr. Drug Targets 11, 242–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Aratari, A. et al. Early versus late surgery for ileo-caecal Crohn’s disease. Aliment. Pharmacol. Ther. 26, 1303–1312 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Latella, G. et al. Clinical course of Crohn’s disease first diagnosed at surgery for acute abdomen. Dig. Liver Dis. 41, 269–276 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Golovics, P. A. et al. Is early limited surgery associated with a more benign disease course in Crohn’s disease? World J. Gastroenterol. 19, 7701–7710 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kulungowski, A. M. et al. Initial operative treatment of isolated ileal Crohn’s disease in adolescents. Am. J. Surg. 210, 141–145 (2015).

    Article  PubMed  Google Scholar 

  123. Ma, C. et al. Corrigendum: surgical rates for Crohn’s disease are decreasing: a population-based time trend analysis and validation study. Am. J. Gastroenterol. 113, 310 (2018).

    Article  PubMed  Google Scholar 

  124. Tilney, H. S. et al. Comparison of laparoscopic and open ileocecal resection for Crohn’s disease: a metaanalysis. Surg. Endosc. 20, 1036–1044 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Lee, Y. et al. A laparoscopic approach reduces short-term complications and length of stay following ileocolic resection in Crohn’s disease: an analysis of outcomes from the NSQIP database. Colorectal Dis. 14, 572–577 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Polle, S. W. et al. Short-term outcomes after laparoscopic ileocolic resection for Crohn’s disease. A systematic review. Dig. Surg. 23, 346–357 (2006).

    Article  PubMed  Google Scholar 

  127. Patel, S. V. et al. Laparoscopic surgery for Crohn’s disease: a meta-analysis of perioperative complications and long term outcomes compared with open surgery. BMC Surg. 13, 14 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Selvaggi, F. et al. A new type of strictureplasty for the treatment of multiple long stenosis in Crohn’s disease. Inflamm. Bowel Dis. 13, 641–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Michelassi, F. et al. An international, multicenter, prospective, observational study of the side-to-side isoperistaltic strictureplasty in Crohn’s disease. Dis. Colon. Rectum 50, 277–284 (2007).

    Article  PubMed  Google Scholar 

  130. Poggioli, G. et al. A new model of strictureplasty for multiple and long stenoses in Crohn’s ileitis: side-to-side diseased to disease-free anastomosis. Dis. Colon. Rectum 46, 127–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Sampietro, G. M. et al. A prospective, longitudinal study of nonconventional strictureplasty in Crohn’s disease. J. Am. Coll. Surg. 199, 8–20 (2004).

    Article  PubMed  Google Scholar 

  132. Campbell, L. et al. Comparison of conventional and nonconventional strictureplasties in Crohn’s disease: a systematic review and meta-analysis. Dis. Colon. Rectum 55, 714–726 (2012).

    Article  PubMed  Google Scholar 

  133. de Buck van Overstraeten, A. et al. Modified side-to-side isoperistaltic strictureplasty over the ileocaecal valve: an alternative to ileocaecal resection in extensive terminal ileal Crohn’s disease. J. Crohns Colitis 10, 437–442 (2016).

    Article  PubMed  Google Scholar 

  134. Friedman, S. et al. Screening and surveillance colonoscopy in chronic Crohn’s colitis. Gastroenterology 120, 820–826 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Yamazaki, Y. et al. Malignant colorectal strictures in Crohn’s disease. Am. J. Gastroenterol. 86, 882–885 (1991).

    CAS  PubMed  Google Scholar 

  136. Lian, L. et al. Comparison of endoscopic dilation vs surgery for anastomotic stricture in patients with Crohn’s disease following ileocolonic resection. Clin. Gastroenterol. Hepatol. 15, 1226–1231 (2017).

    Article  PubMed  Google Scholar 

  137. Scaringi, S. et al. Totally robotic intracorporeal side-to-side isoperistaltic strictureplasty for Crohn’s disease. J. Minim. Access. Surg. 14, 341–344 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Beaugerie, L. et al. Predictors of Crohn’s disease. Gastroenterology 130, 650–656 (2006).

    Article  PubMed  Google Scholar 

  139. Loly, C., Belaiche, J. & Louis, E. Predictors of severe Crohn’s disease. Scand. J. Gastroenterol. 43, 948–954 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Lakatos, P. L. et al. Perianal disease, small bowel disease, smoking, prior steroid or early azathioprine/biological therapy are predictors of disease behavior change in patients with Crohn’s disease. World J. Gastroenterol. 15, 3504–3510 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Allez, M. Role of endoscopy in predicting the disease course in inflammatory bowel disease. World J. Gastroenterol. 16, 2626–2632 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Louis, E. Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 52, 552–557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Di Sabatino, A. & Giuffrida, P. in Fibrostenotic Inflammatory Bowel Disease (ed. Rieder, F.) 173–181 (Springer, 2018).

  144. Higgins, P. D. R. Measurement of fibrosis in Crohn’s disease strictures with imaging and blood biomarkers to inform clinical decisions. Dig. Dis. 35, 32–37 (2017).

    Article  PubMed  Google Scholar 

  145. Pellino, G., Pallante, P. & Selvaggi, F. Novel biomarkers of fibrosis in Crohn’s disease. World J. Gastrointest. Pathophysiol. 7, 266–275 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Kugathasan, S. et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: a multicentre inception cohort study. Lancet 389, 1710–1718 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen, P. et al. Serum biomarkers for inflammatory bowel disease. Front. Med. 7, 123 (2020).

    Article  Google Scholar 

  148. He, J. S. et al. Serum biomarkers of fibrostenotic Crohn’s disease: where are we now? J. Dig. Dis. 21, 336–341 (2020).

    Article  PubMed  Google Scholar 

  149. Li, J. et al. Pathogenesis of fibrostenosing Crohn’s disease. Transl. Res. 209, 39–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Wallach, T. E. & Bayrer, J. R. Intestinal organoids: new frontiers in the study of intestinal disease and physiology. J. Pediatr. Gastroenterol. Nutr. 64, 180–185 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Dedhia, P. H. et al. Organoid models of human gastrointestinal development and disease. Gastroenterology 150, 1098–1112 (2016).

    Article  PubMed  Google Scholar 

  152. Mithal, A. et al. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat. Commun. 11, 215 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sato, T. & Clevers, H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340, 1190–1194 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Giuffrida, P. et al. Decellularized human gut as a natural 3D platform for research in intestinal fibrosis. Inflamm. Bowel Dis. 25, 1740–1750 (2019).

    Article  PubMed  Google Scholar 

  155. Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl. Med. 9, eaal3765 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vijayaraj, P. et al. Modeling progressive fibrosis with pluripotent stem cells identifies an anti-fibrotic small molecule. Cell Rep. 29, 3488–3505.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Onozato, D. et al. Application of human induced pluripotent stem cell-derived intestinal organoids as a model of epithelial damage and fibrosis in inflammatory bowel disease. Biol. Pharm. Bull. 43, 1088–1095 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Rieder, F. et al. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G786–G801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, C. et al. Pravastatin treatment attenuates interstitial inflammation and fibrosis in a rat model of chronic cyclosporine-induced nephropathy. Am. J. Physiol. Physiol. 286, F46–F57 (2004).

    Article  CAS  Google Scholar 

  161. Abe, Y. et al. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis. Dig. Dis. Sci. 57, 335–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Burke, J. P. et al. Simvastatin impairs SMAD-3 phosphorylation and modulates transforming growth factor β1-mediated activation of intestinal fibroblasts. Br. J. Surg. 96, 541–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Li, G. et al. Oral pirfenidone protects against fibrosis by inhibiting fibroblast proliferation and TGF-β signaling in a murine colitis model. Biochem. Pharmacol. 117, 57–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Sun, Y., Zhang, Y. & Chi, P. Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol. Med. Rep. 18, 3907–3913 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cui, Y. et al. Pirfenidone inhibits cell proliferation and collagen I production of primary human intestinal fibroblasts. Cells 9, 775 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  166. Kadir, S.-I. et al. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn’s disease. Scand. J. Gastroenterol. 51, 1321–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Sun, Y.-W. et al. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF-β1/Smad/CTGF signaling pathway. Eur. J. Pharmacol. 822, 199–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Meier, R. et al. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflamm. Bowel Dis. 22, 569–582 (2016).

    Article  PubMed  Google Scholar 

  169. Holvoet, T. et al. Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local Rho kinase inhibitor. Gastroenterology 153, 1054–1067 (2017).

    Article  CAS  PubMed  Google Scholar 

  170. Johnson, L. A. et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β–induced fibrogenesis in human colonic myofibroblasts. Inflamm. Bowel Dis. 20, 154–165 (2014).

    Article  PubMed  Google Scholar 

  171. Bian, H. et al. Rho-kinase signaling pathway promotes the expression of PARP to accelerate cardiomyocyte apoptosis in ischemia/reperfusion. Mol. Med. Rep. 16, 2002–2008 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kim, M. J. et al. TGF-β type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1α-induced epithelial mesenchymal transition. Cell Physiol. Biochem. 38, 571–588 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Park, S. A. et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell Mol. Life Sci. 72, 2023–2039 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Binabaj, M. M. et al. EW-7197 prevents ulcerative colitis-associated fibrosis and inflammation. J. Cell Physiol. 234, 11654–11661 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Dai, Y. et al. Effects of tert-butylhydroquinone on intestinal inflammatory response and apoptosis following traumatic brain injury in mice. Mediators Inflamm. 2010, 502564 (2011).

    PubMed Central  Google Scholar 

  176. Guan, Y. et al. NF-E2-related factor 2 suppresses intestinal fibrosis by inhibiting reactive oxygen species-dependent TGF-β1/SMADs pathway. Dig. Dis. Sci. 63, 366–380 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Fichtner-Feigl, S. et al. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12, 99–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. MacDonald, T. T. Decoy receptor springs to life and eases fibrosis. Nat. Med. 12, 13–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Spencer, D. M. et al. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 122, 94–105 (2002).

    Article  PubMed  Google Scholar 

  180. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 213, 199–210 (2008).

    Article  Google Scholar 

  181. Fuss, I. J. et al. Induction of IL-13 triggers TGF-1-dependent tissue fibrosis in chronic 2,4,6-trinitrobenzene sulfonic acid colitis. J. Immunol. 178, 5859–5870 (2014).

    Google Scholar 

  182. Gordon, J. R. et al. Amelioration of pathology by ELR-CXC chemokine antagonism in a swine model of airway endotoxin exposure. J. Agromedicine 14, 235–241 (2009).

    Article  PubMed  Google Scholar 

  183. Gordon, J. R. et al. ELR-CXC chemokine receptor antagonism targets inflammatory responses at multiple levels. J. Immunol. 182, 3213–3222 (2009).

    Article  PubMed  Google Scholar 

  184. Stillie, R. et al. The functional significance behind expressing two IL-8 receptor types on PMN. J. Leukoc. Biol. 86, 529–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Walana, W. et al. IL-8 antagonist, CXCL8(3-72)K11R/G31P coupled with probiotic exhibit variably enhanced therapeutic potential in ameliorating ulcerative colitis. Biomed. Pharmacother. 103, 253–261 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. da Cunha, V. P. et al. Mycobacterial Hsp65 antigen delivered by invasive Lactococcus lactis reduces intestinal inflammation and fibrosis in TNBS-induced chronic colitis model. Sci. Rep. 10, 20123 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Prados, M. E. et al. Betulinic acid hydroxamate prevents colonic inflammation and fibrosis in murine models of inflammatory bowel disease. Acta Pharmacol. Sin. 42, 1124–1138 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Steiner, C. A. et al. AXL is a potential target for the treatment of intestinal fibrosis. Inflamm. Bowel Dis. 27, 303–316 (2021).

    Article  PubMed  Google Scholar 

  189. Speca, S. et al. Novel PPARγ modulator GED-0507-34 levo ameliorates inflammation-driven intestinal fibrosis. Inflamm. Bowel Dis. 22, 279–292 (2016).

    Article  PubMed  Google Scholar 

  190. Gumaste, V., Sachar, D. B. & Greenstein, A. J. Benign and malignant colorectal strictures in ulcerative colitis. Gut 33, 938–941 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hunt, R. H. et al. Colonoscopy in management of colonic strictures. BMJ 3, 360–361 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. De Dombal, F. T. et al. Local complications of ulcerative colitis: stricture, pseudopolyposis, and carcinoma of colon and rectum. Br. Med. J. 1, 1442–1447 (1966).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Edwards, F. C. & Truelove, S. C. The course and prognosis of ulcerative colitis. III. Complications. Gut 5, 1–22 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lashner, B. A. et al. Dysplasia and cancer complicating strictures in ulcerative colitis. Dig. Dis. Sci. 35, 349–352 (1990).

    Article  CAS  PubMed  Google Scholar 

  195. Warren, S. & Sommers, S. C. Pathogenesis of ulcerative colitis. Am. J. Pathol. 25, 657–679 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Gordon, I. O. et al. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm. Bowel Dis. 20, 2198–2206 (2014).

    Article  PubMed  Google Scholar 

  197. Rieder, F. & Fiocchi, C. Intestinal fibrosis in inflammatory bowel disease — current knowledge and future perspectives. J. Crohns Colitis 2, 279–290 (2008).

    Article  PubMed  Google Scholar 

  198. de Bruyn, J. R. et al. Development of fibrosis in acute and longstanding ulcerative colitis. J. Crohns Colitis 9, 966–972 (2015).

    Article  PubMed  Google Scholar 

  199. Goulston, S. J. M. & McGovern, V. J. The nature of benign strictures in ulcerative colitis. N. Engl. J. Med. 281, 290–295 (1969).

    Article  CAS  PubMed  Google Scholar 

  200. Gore, R. M. Colonic contour changes in chronic ulcerative colitis: reappraisal of some old concepts. Am. J. Roentgenol. 158, 59–61 (1992).

    Article  CAS  Google Scholar 

  201. Gordon, I. O. et al. Fibrosis in ulcerative colitis is directly linked to severity and chronicity of mucosal inflammation. Aliment. Pharmacol. Ther. 47, 922–939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mitomi, H. et al. Comparative histologic assessment of proctocolectomy specimens from Japanese and American patients with ulcerative colitis with or without dysplasia. Int. J. Surg. Pathol. 13, 259–265 (2006).

    Article  Google Scholar 

  203. Yamagata, M. et al. Submucosal fibrosis and basic-fibroblast growth factor-positive neutrophils correlate with colonic stenosis in cases of ulcerative colitis. Digestion 84, 12–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Yamamoto, T., Fazio, V. W. & Tekkis, P. P. Safety and efficacy of strictureplasty for Crohn’s disease: a systematic review and meta-analysis. Dis. Colon. Rectum 50, 1968–1986 (2007).

    Article  PubMed  Google Scholar 

  205. Sparberg, M., Fennessy, J. & Kirsner, J. B. Ulcerative proctitis and mild ulcerative colitis: a study of 220 patients. Medicine 45, 391–412 (1966).

    Article  CAS  PubMed  Google Scholar 

  206. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ko, J. Z., Abraham, J. P. & Shih, D. Q. in Interventional Inflammatory Bowel Disease: Endoscopic Management and Treatment of Complications (ed. Shen, B.) 35–41 (Elsevier, 2018).

  208. Sponheim, J. et al. Inflammatory bowel disease-associated interleukin-33 is preferentially expressed in ulceration-associated myofibroblasts. Am. J. Pathol. 177, 2804–2815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kurahara, L. H. et al. Significant contribution of TRPC6 channel-mediated Ca2+ influx to the pathogenesis of Crohn’s disease fibrotic stenosis. J. Smooth Muscle Res. 52, 78–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. van Haaften, W. T. et al. Misbalance in type III collagen formation/degradation as a novel serological biomarker for penetrating (Montreal B3) Crohn’s disease. Aliment. Pharmacol. Ther. 46, 26–39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Mortensen, J. H. et al. Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J. Crohns Colitis 9, 863–872 (2015).

    Article  PubMed  Google Scholar 

  212. You, J. et al. Wnt pathway-related gene expression in inflammatory bowel disease. Dig. Dis. Sci. 53, 1013–1019 (2008).

    Article  CAS  PubMed  Google Scholar 

  213. Sadler, T. et al. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis. Clin. Epigenetics 8, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Billioud, V. et al. Ulcerative colitis as a progressive disease: the forgotten evidence. Inflamm. Bowel Dis. 18, 1356–1363 (2011).

    PubMed  Google Scholar 

  215. Laurain, P.-A. et al. Incidence of and risk factors for colorectal strictures in ulcerative colitis: a multicenter study. Clin. Gastroenterol. Hepatol. 19, 1899–1905.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. D’Haens, G. et al. Challenges in the pathophysiology, diagnosis and management of intestinal fibrosis in inflammatory bowel disease. Gastroenterology S0016-5085, 41035–4 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.D. made a substantial contribution to discussion of content and reviewed or edited the manuscript before submission. S.D.’A. researched data for the article, made a substantial contribution to discussion of content, wrote, and reviewed or edited the manuscript before submission. F.U. researched data for the article, made a substantial contribution to discussion of content and wrote the article. D.N. researched data for the article and wrote the article. S.L. and L.P.-B. reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Silvio Danese.

Ethics declarations

Competing interests

S.D. declares that she has served as a speaker, consultant, and advisory board member for Abbott (AbbVie), Actelion, Alfa Wasserman, Astra Zeneca, Cellerix, Ferring, Genentech, Grunenthal, Johnson and Johnson, Merck and Co, Millennium Takeda, Novo Nordisk, Nycomed, Pfizer, Pharmacosmos, Schering-Plough, UCB Pharma and Vifor. L.P.-B. declares that he has received personal fees from AbbVie, Allergan, Alma, Amgen, Applied Molecular Transport, Arena, Biogen, Boerhinger Ingelheim, Bristol Myers Squibb, Celgene, Celltrion, Enterome, Enthera, Ferring, Fresenius Kabi, Galapagos, Genentech, Gilead, Hikma, Index Pharmaceuticals, Inotrem, Janssen, Lilly, Merck Sharp & Dohme, Mylan, Nestlé, Norgine, Oppilan, OSE Immunotherapeutics, Pfizer, Pharmacosmos, Roche, Samsung Bioepis, Sandoz, Sterna, Sublimity Therapeutics, Takeda, Theravance, Tillots and Vifor; L.P.-B. also declares that he has received research grants from Abbvie, Merck Sharp & Dohme and Takeda and that he owns stock options in Clinical Trials Mobile Application (CTMA). The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks R. Mao, who co-reviewed with X. Zhuang, G. Latella and G. Bamias for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Alessio, S., Ungaro, F., Noviello, D. et al. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 19, 169–184 (2022). https://doi.org/10.1038/s41575-021-00543-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00543-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing