Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cirrhosis-associated immune dysfunction

Abstract

The term cirrhosis-associated immune dysfunction (CAID) comprises the distinctive spectrum of immune alterations associated with the course of end-stage liver disease. Systemic inflammation and immune deficiency are the key components of CAID. Their severity is highly dynamic and progressive, paralleling cirrhosis stage. CAID involves two different immune phenotypes: the low-grade systemic inflammatory phenotype and the high-grade systemic inflammatory phenotype. The low-grade systemic inflammatory phenotype can be found in patients with compensated disease or clinical decompensation with no organ failure. In this phenotype, there is an exaggerated immune activation but the effector response is not markedly compromised. The high-grade systemic inflammatory phenotype is present in patients with acute-on-chronic liver failure, a clinical situation characterized by decompensation, organ failure and high short-term mortality. Along with high-grade inflammation, this CAID phenotype includes intense immune paralysis that critically increases the risk of infections and worsens prognosis. The intensity of CAID has important consequences on cirrhosis progression and correlates with the severity of liver insufficiency, bacterial translocation and organ failure. Therapies targeting the modulation of the dysfunctional immune response are currently being evaluated in preclinical and clinical studies.

Key points

  • Systemic inflammation and immune deficiency are the key components of cirrhosis-associated immune dysfunction (CAID) and their intensity varies according to the stage of cirrhosis and the presence of incidental events.

  • The low-grade systemic inflammatory phenotype is present in patients with cirrhosis with no organ failure. It contributes to worsening systemic circulatory dysfunction, precipitating complications and acute decompensation.

  • The high-grade systemic inflammatory phenotype is the pathogenic driver of organ failure in acute-on-chronic liver failure.

  • A crucial component of the high-grade systemic inflammatory phenotype is an intense functional paralysis of immune system cells that critically increases the risk of infections.

  • An abnormal gut–liver axis, causing intestinal dysbiosis, a disrupted intestinal barrier and increased bacterial translocation, has a leading pathogenic role in systemic inflammation.

  • Treatment of CAID should involve strategies to modulate, rather than inhibit, the immune response as the abrogation or stimulation of the inflammatory response could respectively increase the infection risk or worsen immunopathology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Immune cells in the liver.
Fig. 2: Low-grade systemic inflammation in cirrhosis.
Fig. 3: Pathogenesis and consequences of low-grade systemic inflammation in cirrhosis.
Fig. 4: Pathogenic contribution of low-grade and high-grade systemic inflammation to hepatorenal syndrome.
Fig. 5: Cirrhosis-associated immune dysfunction in ACLF.
Fig. 6: Dynamics of cirrhosis-associated immune dysfunction.
Fig. 7: Disruption of the gut–liver axis in cirrhosis: contribution to cirrhosis-associated immune dysfunction.

References

  1. 1.

    Bonnel, A. R., Bunchorntavakul, C. & Reddy, K. R. Immune dysfunction and infections in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 9, 727–738 (2011).

    PubMed  Article  Google Scholar 

  2. 2.

    Albillos, A., Lario, M. & Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J. Hepatol. 61, 1385–1396 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Moreau, R. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    PubMed  Article  Google Scholar 

  4. 4.

    Martin-Mateos, R., Alvarez-Mon, M. & Albillos, A. Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front. Immunol. 10, 973 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  5. 5.

    Albillos, A. et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 37, 208–217 (2003).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Tilg, H. et al. Serum levels of cytokines in chronic liver diseases. Gastroenterology 103, 264–274 (1992).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Albillos, A. et al. Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin. J. Hepatol. 40, 624–631 (2004).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Trebicka, J. et al. The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology. J. Hepatol. 73, 842–854 (2020).

    PubMed  Article  Google Scholar 

  9. 9.

    Tritto, G. et al. Evidence of neutrophil functional defect despite inflammation in stable cirrhosis. J. Hepatol. 55, 574–581 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Rajkovic, I. A. & Williams, R. Abnormalities of neutrophil phagocytosis, intracellular killing and metabolic activity in alcoholic cirrhosis and hepatitis. Hepatology 6, 252–262 (1986).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Clària, J. et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 64, 1249–1264 (2016).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Wasmuth, H. E. et al. Patients with acute on chronic liver failure display ‘sepsis-like’ immune paralysis. J. Hepatol. 42, 195–201 (2005).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Korf, H. et al. Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity. Gut 68, 1872–1883 (2019).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Albillos, A., de Gottardi, A. & Rescigno, M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72, 558–577 (2020).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut-liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Wiest, R., Lawson, M. & Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 60, 197–209 (2014).

    PubMed  Article  Google Scholar 

  17. 17.

    Zhao, J. et al. Single-cell RNA sequencing reveals the heterogeneity of liver-resident immune cells in human. Cell Discov. 6, 22 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Franco, A. et al. Expression of class I and class II major histocompatibility complex antigens on human hepatocytes. Hepatology 8, 449–454 (1988).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Gao, B., Jeong, W.-I. & Tian, Z. Liver: an organ with predominant innate immunity. Hepatology 47, 729–736 (2007).

    Article  CAS  Google Scholar 

  20. 20.

    Kubes, P., Jenne, C. & Snyder, J. Immune responses in the liver. Annu. Rev. Immunol. 36, 1–31 (2018).

    Article  CAS  Google Scholar 

  21. 21.

    Hossain, M. & Kubes, P. Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. Eur. J. Immunol. 49, 831–841 (2019).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Knolle, P. A. Staying local-antigen presentation in the liver. Curr. Opin. Immunol. 40, 36–42 (2016).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Muñoz, L. et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70, 925–938 (2019).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Mörbe, U. M. et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 14, 793–802 (2021).

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Mowat, A. M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3, 331–341 (2003).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    MacPherson, G. et al. Uptake of antigens from the intestine by dendritic cells. Ann. N. Y. Acad. Sci. 1029, 75–82 (2004).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Ismail, A. S. et al. Gamma/Delta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl Acad. Sci. USA 108, 8743–8748 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Slack, E., Balmer, M. L. & Macpherson, A. J. B cells as a critical node in the microbiota-host immune system network. Immunol. Rev. 260, 50–66 (2014).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kirkland, D. et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 36, 228–238 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Kubes, P. & Mehal, W. Z. Sterile Inflammation in the Liver. Gastroenterology 143, 1158–1172 (2012).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Úbeda, M. et al. Critical role of the liver in the induction of systemic inflammation in rats with preascitic cirrhosis. Hepatology 52, 2086–2095 (2010).

    PubMed  Article  Google Scholar 

  36. 36.

    Wang, H. et al. Hepatoprotective versus oncogenic functions of STAT3 in liver tumorigenesis. Am. J. Pathol. 179, 714–724 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Muñoz, L. et al. Mesenteric Th1 polarization and monocyte TNF-α production: first steps to systemic inflammation in rats with cirrhosis. Hepatology 42, 411–419 (2005).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Guarner, C. et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology 18, 1139–1143 (1993).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    La Mura, V. et al. Von Willebrand factor levels predict clinical outcome in patients with cirrhosis and portal hypertension. Gut 60, 1133–1138 (2011).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Buck, M. et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients. Hepatology 59, 1052–1059 (2014).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Grünhage, F. et al. Elevated soluble tumor necrosis factor receptor 75 concentrations identify patients with liver cirrhosis at risk of death. Clin. Gastroenterol. Hepatol. 6, 1255–1262 (2008).

    PubMed  Article  Google Scholar 

  42. 42.

    Fiuza, C., Salcedo, M., Clemente, G. & Tellado, J. M. Granulocyte colony-stimulating factor improves deficient in vitro neutrophil transendothelial migration in patients with advanced liver disease. Clin. Vaccin. Immunol. 9, 433–439 (2002).

    Article  Google Scholar 

  43. 43.

    Girón, J. A. et al. Increased spontaneous and lymphokine-conditioned IgA and IgG synthesis by B cells from alcoholic cirrhotic patients. Hepatology 16, 664–670 (1992).

    PubMed  Article  Google Scholar 

  44. 44.

    Sun, H. Q. et al. Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J. Viral Hepat. 19, 396–403 (2012).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Trebicka, J. et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front. Immunol. 10, 476 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Solé, C. et al. Characterization of inflammatory response in acute-on-chronic liver failure and relationship with prognosis. Sci. Rep. 6, 32341 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Grønbæk, H. et al. The soluble macrophage activation markers sCD163 and mannose receptor (sMR) predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF). J. Hepatol. 64, 813–822 (2016).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Chen, P., Stärkel, P., Turner, J. R., Ho, S. B. & Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61, 883–894 (2015).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Viganò, E. et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6, 8761 (2015).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Christgen, S., Place, D. E. & Kanneganti, T.-D. Toward targeting inflammasomes: insights into their regulation and activation. Cell Res. 30, 315–327 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Monteiro, S. et al. Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation. Gut 70, 379–387 (2021).

    CAS  PubMed  Google Scholar 

  52. 52.

    Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Yang, A.-M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Crispe, I. N. Immune tolerance in liver disease. Hepatology 60, 2109–2117 (2014).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Navasa, M. et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology 27, 1227–1232 (1998).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Heller, J. et al. Effects of lipopolysaccharide on TNF-α production, hepatic NOS2 activity, and hepatic toxicity in rats with cirrhosis. J. Hepatol. 33, 376–381 (2000).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Tazi, K. A. et al. In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J. Hepatol. 46, 1075–1088 (2007).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Tazi, K. A. et al. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J. Hepatol. 45, 280–289 (2006).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Thompson, K. et al. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 28, 1597–1606 (1998).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Coant, N. et al. Glycogen synthase kinase 3 involvement in the excessive proinflammatory response to LPS in patients with decompensated cirrhosis. J. Hepatol. 55, 784–793 (2011).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Szabo, G. & Saha, B. Alcohol’s effect on host defense. Alcohol. Res. 37, 159–170 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gao, B. et al. Innate immunity in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G516–G525 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Bajaj, J. S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 235–246 (2019).

    PubMed  Article  Google Scholar 

  65. 65.

    Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Liu, J. et al. Toll-like receptor-4 signalling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice. Clin. Exp. Pharmacol. Physiol. 41, 482–488 (2014).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Stanton, M. C. et al. Inflammatory signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J. Inflamm. 8, 8 (2011).

    CAS  Article  Google Scholar 

  69. 69.

    Guo, J. & Friedman, S. L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenes. Tissue Repair. 3, 21 (2010).

    Article  CAS  Google Scholar 

  70. 70.

    Petrasek, J. et al. Interferon regulatory factor 3 and type I interferons are protective in alcoholic liver injury in mice by way of crosstalk of parenchymal and myeloid cells. Hepatology 53, 649–660 (2011).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Yan, A. W. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105 (2011).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Liver Physiol. 302, G966–G978 (2012).

    CAS  Article  Google Scholar 

  73. 73.

    Parlesak, A., Schäfer, C., Schütz, T., Bode, J. C. & Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747 (2000).

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Zhou, Z., Sun, X. & Kang, Y. J. Ethanol-induced apoptosis in mouse liver. Am. J. Pathol. 159, 329–338 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Lu, Y., Zhuge, J., Wang, X., Bai, J. & Cederbaum, A. I. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47, 1483–1494 (2008).

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Macdonald, S. et al. Cell death markers in patients with cirrhosis and acute decompensation. Hepatology 67, 989–1002 (2018).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Zheng, S.-J. et al. Prognostic value of M30/M65 for outcome of hepatitis B virus-related acute-on-chronic liver failure. World J. Gastroenterol. 20, 2403–2411 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Dear, J. W. et al. Cyclophilin A is a damage-associated molecular pattern molecule that mediates acetaminophen-induced liver injury. J. Immunol. 187, 3347–3352 (2011).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Guan, Z. et al. Extracellular gp96 is a crucial mediator for driving immune hyperactivation and liver damage. Sci. Rep. 10, 12596 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Yotti, R. et al. Left ventricular systolic function is associated with sympathetic nervous activity and markers of inflammation in cirrhosis. Hepatology 65, 2019–2030 (2017).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Tazi, K. A. et al. Norfloxacin reduces aortic no synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology 129, 303–314 (2005).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Téllez, L. et al. Non-selective beta-blockers impair global circulatory homeostasis and renal function in cirrhotic patients with refractory ascites. J. Hepatol. 73, 1404–1414 (2020).

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Wiest, R. et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J. Clin. Invest. 104, 1223–1233 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Bellot, P. et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology 52, 2044–2052 (2010).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Waidmann, O. et al. Macrophage activation is a prognostic parameter for variceal bleeding and overall survival in patients with liver cirrhosis. J. Hepatol. 58, 956–961 (2013).

    PubMed  Article  Google Scholar 

  86. 86.

    Grønbæk, H. et al. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF). J. Hepatol. 64, 813–822 (2016).

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Arroyo, V. et al. The systemic inflammation hypothesis: towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 74, 670–685 (2021).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Shah, N. et al. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int. 33, 398–409 (2013).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Shawcross, D. L., Davies, N. A., Williams, R. & Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol. 40, 247–254 (2004).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Wright, G. et al. Reduction in hyperammonaemia by ornithine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int. 32, 410–419 (2012).

    CAS  PubMed  Google Scholar 

  91. 91.

    D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factora signaling during peripheral organ inflammation. J. Neurosci. 29, 2089–2102 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Kerfoot, S. M. et al. TNF-α-secreting monocytes are recruited into the brain of cholestatic mice. Hepatology 43, 154–162 (2006).

    PubMed  Article  Google Scholar 

  93. 93.

    Bajaj, J. S. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Liver Physiol. 302, G168–G175 (2012).

    CAS  Google Scholar 

  94. 94.

    Liu, R. et al. Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant. Hepatology 71, 611–626 (2020).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Yang, Y. M., Kim, S. Y. & Seki, E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin. Liver Dis. 39, 26–42 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  Article  Google Scholar 

  97. 97.

    Inokuchi, S. et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl Acad. Sci. USA 107, 844–849 (2010).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Jalan, R. et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J. Hepatol. 61, 1038–1047 (2014).

    PubMed  Article  Google Scholar 

  100. 100.

    Hotchkiss, R. S. et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit. Care Med. 27, 1230–1251 (1999).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. & Arroyo, V. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis. J. Hepatol. 63, 1272–1284 (2015).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Gomez, H. et al. A unified theory of sepsis-induced acute kidney injury. Shock 41, 3–11 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Alobaidi, R., Basu, R. K., Goldstein, S. L. & Bagshaw, S. M. Sepsis-associated acute kidney injury. Semin. Nephrol. 35, 2–11 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Piano, S. et al. Association between grade of acute on chronic liver failure and response to terlipressin and albumin in patients with hepatorenal syndrome. Clin. Gastroenterol. Hepatol. 16, 1792–1800 (2018).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Rodrigo, R. et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology 139, 675–684 (2010).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Romero-Gómez, M., Montagnese, S. & Jalan, R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J. Hepatol. 62, 437–447 (2015).

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Ayres, J. S. Immunometabolism of infections. Nat. Rev. Immunol. 20, 79–80 (2020).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Chowdhury, D. et al. Metallothionein 3 controls the phenotype and metabolic programming of alternatively activated macrophages. Cell Rep. 27, 3873–3886 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Moreau, R. et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J. Hepatol. 72, 688–701 (2020).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Badawy, A. A. B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10, 1178646917691938 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Clària, J. et al. Orchestration of tryptophan–kynurenine pathway, acute decompensation, and acute–on–chronic liver failure in cirrhosis. Hepatology 69, 1686–1701 (2019).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Rimola, A. et al. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 4, 53–58 (1984).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Bolognesi, M. et al. Clinical significance of the evaluation of hepatic reticuloendothelial removal capacity in patients with cirrhosis. Hepatology 19, 628–634 (1994).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Laleman, W., Claria, J., Van der Merwe, S., Moreau, R. & Trebicka, J. Systemic inflammation and acute-on-chronic liver failure: too much, not enough. Can. J. Gastroenterol. Hepatol. 2018, 1027152 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Altorjay, I. et al. Mannose-binding lectin deficiency confers risk for bacterial infections in a large Hungarian cohort of patients with liver cirrhosis. J. Hepatol. 53, 484–491 (2010).

    PubMed  Article  Google Scholar 

  117. 117.

    Papp, M. et al. Acute phase proteins in the diagnosis and prediction of cirrhosis associated bacterial infections. Liver Int. 32, 603–611 (2012).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Homann, C. et al. Acquired C3 deficiency in patients with alcoholic cirrhosis predisposes to infection and increased mortality. Gut 40, 544–549 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Zimmermann, H. W. et al. Functional contribution of elevated circulating and hepatic non-classical CD14+CD16+ monocytes to inflammation and human liver fibrosis. PLoS ONE 5, e11049 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Nakagawara, A., Inokuchi, K., Ikeda, K., Kumashiro, R. & Tamada, R. Decreased superoxide (O2-)-generating activity of blood monocytes from patients with hepatic cirrhosis. Hepatogastroenterology 31, 201–203 (1984).

    CAS  PubMed  Google Scholar 

  121. 121.

    Gomez, F., Ruiz, P. & Schreiber, A. D. Impaired function of macrophage Fcγ receptors and bacterial infection in alcoholic cirrhosis. N. Engl. J. Med. 331, 1122–1128 (1994).

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Brenig, R. et al. Expression of AXL receptor tyrosine kinase relates to monocyte dysfunction and severity of cirrhosis. Life Sci. Alliance 3, e201900465 (2020).

    PubMed  Article  Google Scholar 

  123. 123.

    Berres, M.-L. et al. Longitudinal monocyte Human leukocyte antigen-DR expression is a prognostic marker in critically ill patients with decompensated liver cirrhosis. Liver Int. 29, 536–543 (2009).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Berry, P. A. et al. Severity of the compensatory anti-inflammatory response determined by monocyte HLA-DR expression may assist outcome prediction in cirrhosis. Intensive Care Med. 37, 453–460 (2011).

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Xing, T., Li, L., Cao, H. & Huang, J. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin. Exp. Immunol. 147, 184–188 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Weichselbaum, L. et al. Epigenetic basis for monocyte dysfunction in patients with severe alcoholic hepatitis. J. Hepatol. 73, 303–314 (2020).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Bernsmeier, C. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 148, 603–615 (2015).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Camenisch, T. D., Koller, B. H., Earp, H. S. & Matsushima, G. K. A novel receptor tyrosine kinase, Mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162, 3498–3503 (1999).

    CAS  PubMed  Google Scholar 

  129. 129.

    Bernsmeier, C. et al. CD14+CD15HLA-DR myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure. Gut 67, 1155–1167 (2018).

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Fiuza, C., Salcedo, M., Clemente, G. & Tellado, J. M. In vivo neutrophil dysfunction in cirrhotic patients with advanced liver disease. J. Infect. Dis. 182, 526–533 (2000).

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Mookerjee, R. P. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 46, 831–840 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Shawcross, D. L. et al. Ammonia impairs neutrophil phagocytic function in liver disease. Hepatology 48, 1202–1212 (2008).

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Bruns, T., Peter, J., Hagel, S., Herrmann, A. & Stallmach, A. The augmented neutrophil respiratory burst in response to Escherichia coli is reduced in liver cirrhosis during infection§. Clin. Exp. Immunol. 164, 346–356 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Tranah, T. H. et al. Dysfunctional neutrophil effector organelle mobilization and microbicidal protein release in alcohol-related cirrhosis. Am. J. Physiol. Liver Physiol. 313, G203–G211 (2017).

    Google Scholar 

  135. 135.

    Bukong, T. N. et al. Abnormal neutrophil traps and impaired efferocytosis contribute to liver injury and sepsis severity after binge alcohol use. J. Hepatol. 69, 1145–1154 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Moreau, R., Périanin, A. & Arroyo, V. Review of defective NADPH oxidase activity and myeloperoxidase release in neutrophils from patients with cirrhosis. Front. Immunol. 10, 1044 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Artru, F. et al. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J. Hepatol. 72, 1052–1061 (2020).

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Taylor, N. J. et al. The severity of circulating neutrophil dysfunction in patients with cirrhosis is associated with 90-day and 1-year mortality. Aliment. Pharmacol. Ther. 40, 705–715 (2014).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Lario, M. et al. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J. Hepatol. 59, 723–730 (2013).

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Riva, A. et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 67, 918–930 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Arruvito, L. et al. Identification and clinical relevance of naturally occurring Human CD8+HLA-DR+ regulatory T cells. J. Immunol. 193, 4469–4476 (2014).

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Machicote, A., Belén, S., Baz, P., Billordo, L. A. & Fainboim, L. Human CD8+HLA-DR+ regulatory T cells, similarly to classical CD4+Foxp3+ cells, suppress Immune responses via PD-1/PD-L1 axis. Front. Immunol. 9, 2788 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Lebossé, F. et al. CD8+ T cells from patients with cirrhosis display a phenotype that may contribute to cirrhosis-associated immune dysfunction. EBioMedicine 49, 258–268 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Peter, J., Frey, O., Stallmach, A. & Bruns, T. Attenuated antigen-specific T cell responses in cirrhosis are accompanied by elevated serum interleukin-10 levels and down-regulation of HLA-DR on monocytes. BMC Gastroenterol. 13, 37 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Laso, F. J. et al. Decreased natural killer cytotoxic activity in chronic alcoholism is associated with alcohol liver disease but not active ethanol consumption. Hepatology 25, 1096–1100 (1997).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Doi, H. et al. Dysfunctional B-cell activation in cirrhosis resulting from hepatitis C infection associated with disappearance of CD27-Positive B-cell population. Hepatology 55, 709–719 (2012).

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Bandyopadhyay, G. et al. Negative signaling contributes to T-cell anergy in trauma patients. Crit. Care Med. 35, 794–801 (2007).

    PubMed  Article  Google Scholar 

  148. 148.

    Monneret, G. et al. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol. Lett. 95, 193–198 (2004).

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Hynninen, M. et al. Predictive value of monocyte histocompatibility leukocyte antigen-DR expression and plasma interleukin-4 and -10 levels in critically ill patients with sepsis. Shock 20, 1–4 (2003).

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Oberholzer, A., Oberholzer, C. & Moldawer, L. L. Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit. Care Med. 30, S58–S63 (2002).

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Ward, N. S., Casserly, B. & Ayala, A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin. Chest Med. 29, 617–625 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Berry, P. A. et al. Admission levels and early changes in serum interleukin-10 are predictive of poor outcome in acute liver failure and decompensated cirrhosis. Liver Int. 30, 733–740 (2010).

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Markwick, L. J. L. et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 148, 590–602.e10 (2015).

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Hackstein, C.-P. et al. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 66, 507–518 (2017).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Jalan, R. et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 50, 555–564 (2009).

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Arroyo, V., García-Martinez, R. & Salvatella, X. Human serum albumin, systemic inflammation, and cirrhosis. J. Hepatol. 61, 396–407 (2014).

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    O’Brien, A. J. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat. Med. 20, 518–523 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  158. 158.

    Serezani, C. H. et al. Prostaglandin E2 suppresses bacterial killing in alveolar macrophages by inhibiting NADPH oxidase. Am. J. Respir. Cell Mol. Biol. 37, 562–570 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Aronoff, D. M., Canetti, C. & Peters-Golden, M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J. Immunol. 173, 559–565 (2004).

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Schmidl, C. et al. Transcription and enhancer profiling in human monocyte subsets. Blood 123, 90–99 (2014).

    Article  CAS  Google Scholar 

  161. 161.

    Davies, L. C. et al. Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat. Commun. 8, 2074 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  162. 162.

    Villanueva, C. et al. Bacterial infections in patients with compensated cirrhosis and clinically significant portal hypertension: implications on the risk of developing decompensation and on survival. Hepatology 70, 36A–37A (2019).

    Google Scholar 

  163. 163.

    Arvaniti, V. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 139, 1246–1256 (2010).

    PubMed  Article  Google Scholar 

  164. 164.

    Gustot, T. et al. Impact of infection on the prognosis of critically ill cirrhotic patients: results from a large worldwide study. Liver Int. 34, 1496–1503 (2014).

    PubMed  Article  Google Scholar 

  165. 165.

    Fernández, J. et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 67, 1870–1880 (2018).

    PubMed  Article  CAS  Google Scholar 

  166. 166.

    Rao, R. K. Acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Alcohol. Clin. Exp. Res. 22, 1724–1730 (1998).

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Du Plessis, J. et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J. Hepatol. 58, 1125–1132 (2013).

    PubMed  Article  CAS  Google Scholar 

  168. 168.

    Assimakopoulos, S. F. et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur. J. Clin. Invest. 42, 439–446 (2012).

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Pijls, K. E., Jonkers, D. M. A. E., Elamin, E. E., Masclee, A. A. M. & Koek, G. H. Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver Int. 33, 1457–1469 (2013).

    PubMed  Article  Google Scholar 

  170. 170.

    Shah, A. et al. Systematic review and meta-analysis: prevalence of small intestinal bacterial overgrowth in chronic liver disease. Semin. Liver Dis. 37, 388–400 (2017).

    PubMed  Article  Google Scholar 

  171. 171.

    Chen, Y. et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54, 562–572 (2011).

    PubMed  Article  Google Scholar 

  172. 172.

    Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    CAS  Article  Google Scholar 

  173. 173.

    Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014).

    CAS  PubMed  Article  Google Scholar 

  174. 174.

    Solé, C. et al. Alterations in gut microbiome in cirrhosis as assessed by quantitative metagenomics: relationship with acute-on-chronic liver failure and prognosis. Gastroenterology 160, 206–218 (2021).

    PubMed  Article  CAS  Google Scholar 

  175. 175.

    Bajaj, J. S. et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology 68, 234–247 (2018).

    CAS  PubMed  Article  Google Scholar 

  176. 176.

    Garcia-Tsao, G., Lee, F.-Y., Barden, G. E., Cartun, R. & Brian West, A. Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites. Gastroenterology 108, 1835–1841 (1995).

    CAS  PubMed  Article  Google Scholar 

  177. 177.

    Sorribas, M. et al. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J. Hepatol. 71, 1126–1140 (2019).

    CAS  PubMed  Article  Google Scholar 

  178. 178.

    Úbeda, M. et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J. Hepatol. 64, 1049–1057 (2016).

    PubMed  Article  CAS  Google Scholar 

  179. 179.

    Muñoz, L. et al. Interaction between intestinal dendritic cells and bacteria translocated from the gut in rats with cirrhosis. Hepatology 56, 1861–1869 (2012).

    PubMed  Article  CAS  Google Scholar 

  180. 180.

    Inamura, T. et al. Alteration of intestinal intraepithelial lymphocytes and increased bacterial translocation in a murine model of cirrhosis. Immunol. Lett. 90, 3–11 (2003).

    CAS  PubMed  Article  Google Scholar 

  181. 181.

    Tanoue, S., Chang, L.-Y., Li, Y. & Kaplan, D. E. Monocyte-derived dendritic cells from cirrhotic patients retain similar capacity for maturation/activation and antigen presentation as those from healthy subjects. Cell Immunol. 295, 36–45 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. 182.

    Kaliannan, K. Compromise of α-defensin function in liver cirrhosis facilitates the toxic relationship between gut permeability and endotoxemia. Dig. Dis. Sci. 63, 2492–2494 (2018).

    PubMed  Article  Google Scholar 

  183. 183.

    Teltschik, Z. et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised paneth cell antimicrobial host defense. Hepatology 55, 1154–1163 (2012).

    PubMed  Article  Google Scholar 

  184. 184.

    Hassan, M. et al. Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals. J. Hepatol. 73, 628–639 (2020).

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Genescà, J. et al. Increased tumour necrosis factor alpha production in mesenteric lymph nodes of cirrhotic patients with ascites. Gut 52, 1054–1059 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Schierwagen, R. et al. Circulating microbiome in blood of different circulatory compartments. Gut 68, 578–580 (2019).

    CAS  PubMed  Article  Google Scholar 

  187. 187.

    Alvarez-Silva, C. et al. Compartmentalization of immune response and microbial translocation in decompensated cirrhosis. Front. Immunol. 10, 69 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. 188.

    Bajaj, J. S. et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 62, 1260–1271 (2015).

    CAS  PubMed  Article  Google Scholar 

  189. 189.

    Bajaj, J. S. et al. Periodontal therapy favorably modulates the oral-gut-hepatic axis in cirrhosis. Am. J. Physiol. Liver Physiol. 315, G824–G837 (2018).

    Article  CAS  Google Scholar 

  190. 190.

    Grønkjær, L. L. et al. Periodontitis in patients with cirrhosis: a cross-sectional study. BMC Oral Health 18, 22 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Grønkjær, L. L. & Vilstrup, H. Oral health in patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 27, 834–839 (2015).

    PubMed  Article  Google Scholar 

  192. 192.

    Kubicka, U. et al. Normal human immune peritoneal cells: Subpopulations and functional characteristics. Scand. J. Immunol. 44, 157–163 (1996).

    CAS  PubMed  Article  Google Scholar 

  193. 193.

    Ruiz-Alcaraz, A. J. et al. Characterization of human peritoneal monocyte/macrophage subsets in homeostasis: phenotype, GATA6, phagocytic/oxidative activities and cytokines expression. Sci. Rep. 8, 12794 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  194. 194.

    Ibidapo-Obe, O. et al. Mucosal-associated invariant T cells redistribute to the peritoneal cavity during spontaneous bacterial peritonitis and contribute to peritoneal inflammation. Cell Mol. Gastroenterol. Hepatol. 9, 661–677 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Stengel, S. et al. Peritoneal level of CD206 associates with mortality and an inflammatory macrophage phenotype in patients with decompensated cirrhosis and spontaneous bacterial peritonitis. Gastroenterology 158, 1745–1761 (2020).

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Irvine, K. M. et al. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites. JCI Insight 1, e86914 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  197. 197.

    Lozano-Ruiz, B. et al. Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. J. Hepatol. 62, 64–71 (2015).

    CAS  PubMed  Article  Google Scholar 

  198. 198.

    Rasaratnam, B., Kaye, D., Jennings, G., Dudley, F. & Chin-Dusting, J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. Ann. Intern. Med. 139, 186 (2003).

    PubMed  Article  Google Scholar 

  199. 199.

    Chin-Dusting, J. P. F., Rasaratnam, B., Jennings, G. L. R. & Dudley, F. J. Effect of fluoroquinolone on the enhanced nitric oxide-induced peripheral vasodilation seen in cirrhosis. Ann. Intern. Med. 127, 985–988 (1997).

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Ginés, P. et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 12, 716–724 (1990).

    PubMed  Article  Google Scholar 

  201. 201.

    Moreau, R. et al. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology 155, 1816–1827 (2018).

    CAS  PubMed  Article  Google Scholar 

  202. 202.

    Bajaj, J. S. et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE 8, e60042 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Fernández, J. et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 55, 1551–1561 (2012).

    PubMed  Article  Google Scholar 

  204. 204.

    Horvath, A. et al. Randomised clinical trial: the effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis. Aliment. Pharmacol. Ther. 44, 926–935 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  205. 205.

    Macnaughtan, J. et al. Oral therapy with non-absorbable carbons of controlled porosity (YAQ-001) selectively modulates stool microbiome and its function and this is associated with restoration of immune function and inflammasome activation. J. Hepatol. 62, S240 (2015).

    Article  Google Scholar 

  206. 206.

    Rice, T. W. et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit. Care Med. 38, 1685–1694 (2010).

    CAS  PubMed  Article  Google Scholar 

  207. 207.

    Sort, P. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 341, 403–409 (1999).

    CAS  PubMed  Article  Google Scholar 

  208. 208.

    Caraceni, P. et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 391, 2417–2429 (2018).

    CAS  PubMed  Article  Google Scholar 

  209. 209.

    Fernández, J. et al. Efficacy of albumin treatment for patients with cirrhosis and infections unrelated to spontaneous bacterial peritonitis. Clin. Gastroenterol. Hepatol. 18, 963–973.e14 (2020).

    PubMed  Article  CAS  Google Scholar 

  210. 210.

    Lee, K. C. L. et al. Extracorporeal liver assist device to exchange albumin and remove endotoxin in acute liver failure: Results of a pivotal pre-clinical study. J. Hepatol. 63, 634–642 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. 211.

    Casulleras, M. et al. Albumin internalizes and inhibits endosomal TLR signaling in leukocytes from patients with decompensated cirrhosis. Sci. Transl. Med. 12, eaax5135 (2020).

    CAS  PubMed  Article  Google Scholar 

  212. 212.

    Dietrich, P. et al. Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y. J. Hepatol. 58, 254–261 (2013).

    CAS  PubMed  Article  Google Scholar 

  213. 213.

    Brinkman, D. J., ten Hove, A. S., Vervoordeldonk, M. J., Luyer, M. D. & de Jonge, W. J. Neuroimmune interactions in the gut and their significance for intestinal immunity. Cells 8, 670 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  214. 214.

    Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A. & Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135, 755s–765s (1985).

    CAS  PubMed  Google Scholar 

  215. 215.

    Henriksen, J. H., Ring-Larsen, H., Kanstrup, I. L. & Christensen, N. J. Splanchnic and renal elimination and release of catecholamines in cirrhosis. Evidence of enhanced sympathetic nervous activity in patients with decompensated cirrhosis. Gut 25, 1034–1043 (1984).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  216. 216.

    Freestone, P. P. et al. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18, 465–470 (2002).

    PubMed  Article  Google Scholar 

  217. 217.

    Chen, C., Brown, D. R., Xie, Y., Green, B. T. & Lyte, M. Catecholamines modulate escherichia coli O157:H7 adherence to murine cecal mucosa. Shock 20, 183–188 (2003).

    CAS  PubMed  Article  Google Scholar 

  218. 218.

    Piton, G. et al. Catecholamine use is associated with enterocyte damage in critically Ill patients. Shock 43, 437–442 (2015).

    CAS  PubMed  Article  Google Scholar 

  219. 219.

    Habes, Q. L. M., van Ede, L., Gerretsen, J., Kox, M. & Pickkers, P. Norepinephrine contributes to enterocyte damage in septic shock. Shock 49, 137–143 (2018).

    CAS  PubMed  Article  Google Scholar 

  220. 220.

    Green, B. T., Lyte, M., Kulkarni-Narla, A. & Brown, D. R. Neuromodulation of enteropathogen internalization in Peyer’s patches from porcine jejunum. J. Neuroimmunol. 141, 74–82 (2003).

    CAS  PubMed  Article  Google Scholar 

  221. 221.

    Hart, A. & Kamm, M. A. Review article: mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment. Pharmacol. Ther. 16, 2017–2028 (2002).

    CAS  PubMed  Article  Google Scholar 

  222. 222.

    Straub, R. H., Wiest, R., Strauch, U. G., Harle, P. & Scholmerich, J. The role of the sympathetic nervous system in intestinal inflammation. Gut 55, 1640–1649 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  223. 223.

    Worlicek, M. et al. Splanchnic sympathectomy prevents translocation and spreading of E coli but not S aureus in liver cirrhosis. Gut 59, 1127–1134 (2010).

    CAS  PubMed  Article  Google Scholar 

  224. 224.

    Mehta, G., Mookerjee, R. P., Sharma, V. & Jalan, R. Systemic inflammation is associated with increased intrahepatic resistance and mortality in alcohol-related acute-on-chronic liver failure. Liver Int. 35, 724–734 (2015).

    CAS  PubMed  Article  Google Scholar 

  225. 225.

    Mookerjee, R. P. et al. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure. J. Hepatol. 64, 574–582 (2016).

    CAS  PubMed  Article  Google Scholar 

  226. 226.

    Forrest, E. H. et al. Baseline neutrophil-to-lymphocyte ratio predicts response to corticosteroids and is associated with infection and renal dysfunction in alcoholic hepatitis. Aliment. Pharmacol. Ther. 50, 442–453 (2019).

    CAS  PubMed  Article  Google Scholar 

  227. 227.

    Bihari, C. et al. Bone marrow stem cells and their niche components are adversely affected in advanced cirrhosis of the liver. Hepatology 64, 1273–1288 (2016).

    CAS  PubMed  Article  Google Scholar 

  228. 228.

    Garg, V. et al. Granulocyte colony–stimulating factor mobilizes CD34+ cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142, 505–512 (2012).

    CAS  PubMed  Article  Google Scholar 

  229. 229.

    Verma, N. et al. Outcomes after multiple courses of granulocyte colony–stimulating factor and growth hormone in decompensated cirrhosis: a randomized trial. Hepatology 68, 1559–1573 (2018).

    CAS  PubMed  Article  Google Scholar 

  230. 230.

    Engelmann, C. et al. Granulocyte–colony stimulating factor (G–CSF) to treat acute–on–chronic liver failure (Graft Trial): interim analysis of the first randomised European multicentre trial. Hepatology 70, 17 (2019).

    Google Scholar 

  231. 231.

    Boussif, A. et al. Impaired intracellular signaling, myeloperoxidase release and bactericidal activity of neutrophils from patients with alcoholic cirrhosis. J. Hepatol. 64, 1041–1048 (2016).

    CAS  PubMed  Article  Google Scholar 

  232. 232.

    Lemmers, A. et al. An inhibitor of interleukin-6 trans-signalling, sgp130, contributes to impaired acute phase response in human chronic liver disease. Clin. Exp. Immunol. 156, 518–527 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  233. 233.

    Zimmermann, H. W. et al. Soluble urokinase plasminogen activator receptor is compartmentally regulated in decompensated cirrhosis and indicates immune activation and short-term mortality. J. Intern. Med. 274, 86–100 (2013).

    CAS  PubMed  Article  Google Scholar 

  234. 234.

    Lehmann, J. M. et al. Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation and predict ACLF and mortality. Liver Int. 38, 875–884 (2018).

    CAS  PubMed  Article  Google Scholar 

  235. 235.

    Khanam, A. et al. Blockade of Neutrophil’s chemokine receptors CXCR1/2 abrogate liver damage in acute-on-chronic liver failure. Front. Immunol. 8, 464 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  236. 236.

    Xiang, X. et al. Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J. Hepatol. 72, 736–745 (2020).

    CAS  PubMed  Article  Google Scholar 

  237. 237.

    Shubham, S. et al. Cellular and functional loss of liver endothelial cells correlates with poor hepatocyte regeneration in acute-on-chronic liver failure. Hepatol. Int. 13, 777–787 (2019).

    PubMed  Article  Google Scholar 

  238. 238.

    Rose, C. F. et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J. Hepatol. 73, 1526–1547 (2020).

    PubMed  Article  Google Scholar 

  239. 239.

    Lee, W.-Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  240. 240.

    Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47, 296–305 (2007).

    Article  CAS  Google Scholar 

  241. 241.

    Wang, Y. & Zhang, C. The roles of liver-resident lymphocytes in liver diseases. Front. Immunol. 10, 1582 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  242. 242.

    McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, 1996 (2017).

    Article  Google Scholar 

  243. 243.

    Shoukry, N. H. et al. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med. 197, 1645–1655 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  244. 244.

    Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  245. 245.

    Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    CAS  PubMed  Article  Google Scholar 

  246. 246.

    Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  247. 247.

    Clarembeau, F., Bale, G. & Lanthier, N. Cirrhosis and insulin resistance: current knowledge, pathophysiological mechanisms, complications and potential treatments. Clin. Sci. 134, 2117–2135 (2020).

    CAS  Article  Google Scholar 

  248. 248.

    Bhanji, R. A., Montano–Loza, A. J. & Watt, K. D. Sarcopenia in cirrhosis: looking beyond the skeletal muscle loss to see the systemic disease. Hepatology 70, 2193–2203 (2019).

    PubMed  Article  Google Scholar 

  249. 249.

    Angeli, P., Garcia-Tsao, G., Nadim, M. K. & Parikh, C. R. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. J. Hepatol. 71, 811–822 (2019).

    PubMed  Article  Google Scholar 

  250. 250.

    Yin, M. et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117, 942–952 (1999).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Spanish Ministry of Science and Innovation (SAF 2017-86343-R and Instituto de Salud Carlos III PI20/01302). CIBEREHD is funded by the Instituto de Salud Carlos III with grants co-financed by the European Development Regional Fund “A way to achieve Europe” (EDRF).

Author information

Affiliations

Authors

Contributions

A.A. researched data for the article, made a substantial contribution to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission. R.M.-M. made a substantial contribution to the discussion of content, wrote the article, and reviewed/edited the manuscript before submission. S.V.d.M., R.W. and R.J. researched data for the article, made a substantial contributions to the discussion of content, and wrote the article. M.Á.-M. researched data for the article and made a substantial contribution to the discussion of content.

Corresponding author

Correspondence to Agustín Albillos.

Ethics declarations

Competing interests

R.J. has research collaborations with Yaqrit and Takeda. R.J. is the inventor of L-ornithine phenylacetate, which has been patented by University College London and licensed to Mallinckrodt Pharma. He is also the founder of Yaqrit Ltd, a spin out company from University College London, Cyberliver Ltd. and Hepyx Ltd. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Jasmohan Bajaj, Tony Bruns and Frank Tacke for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cirrhosis-associated immune dysfunction

(CAID). Dysfunctional immune response associated with cirrhosis and characterized by systemic inflammation and immune paralysis.

Systemic inflammation

Increased expression of surface activation antigens in circulating immune cells and production of pro-inflammatory cytokines.

Acute-on-chronic liver failure

(ACLF). Acute decompensation of cirrhosis associated with organ failure and high short-term mortality.

Low-grade systemic inflammatory phenotype

Increased immune activation and mild to moderate compromise of the immune effector response in patients with compensated cirrhosis or acute decompensation with no organ failure.

High-grade systemic inflammatory phenotype

Extreme activation with a massive release of cytokines along with functional impairment of circulating immune system cells in patients with acute-on-chronic liver failure.

Gut–liver axis

Bidirectional functional connection between the liver and the intestine, particularly its microbiota and immune system.

Pathogen-associated molecular patterns

(PAMPs). Sets of microbial molecular patterns that can be recognized by specific receptors of immune system cells.

Damage-associated molecular patterns

(DAMPs). Intracellular molecules released by injured or dying cells that can be recognized by specific receptors of immune system cells.

Gut-associated lymphoid tissue

(GALT). Lymphoid tissue lining the intestine and composed of Peyer’s patches, intestinal lymphoid follicles, intraepithelial lymphocytes and mesenteric lymph nodes.

Immunopathology

Immune-mediated tissue damage due to excessive immune activation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albillos, A., Martin-Mateos, R., Van der Merwe, S. et al. Cirrhosis-associated immune dysfunction. Nat Rev Gastroenterol Hepatol (2021). https://doi.org/10.1038/s41575-021-00520-7

Download citation

Search

Quick links