Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Re-examining chemically defined liquid diets through the lens of the microbiome

Abstract

Trends in nutritional science are rapidly shifting as information regarding the value of eating unprocessed foods and its salutary effect on the human microbiome emerge. Unravelling the evolution and ecology by which humans have harboured a microbiome that participates in every facet of health and disease is daunting. Most strikingly, the host habitat has sought out naturally occurring foodstuff that can fulfil its own metabolic needs and also the needs of its microbiota, each of which remain inexorably connected to one another. With the introduction of modern medicine and complexities of critical care, came the assumption that the best way to feed a critically ill patient is by delivering fibre-free chemically defined sterile liquid foods (that is, total enteral nutrition). In this Perspective, we uncover the potential flaws in this assumption and discuss how emerging technology in microbiome sciences might inform the best method of feeding malnourished and critically ill patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compositionally defined diets do not recapitulate the complexity and heterogeneity of unprocessed, whole foods.
Fig. 2: The advantages and disadvantages of enteral and parenteral nutrition.
Fig. 3: The dynamic interplay between the gut, the microbiota and delivery of luminal nutrition.
Fig. 4: Numerous clinical stressors effect the composition of the gut microbiota.
Fig. 5: Future investigations have the potential to elucidate the links between the microbiota, nutrition and a web of everyday interactions.

Similar content being viewed by others

References

  1. Vincent, J.-L. Critical care — where have we been and where are we going? Crit. Care 17 (Suppl. 1), S2–S2 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Shikora, S. A. & Ogawa, A. M. Enteral nutrition and the critically ill. Postgrad. Med. J. 72, 395–402 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Limketkai, B. N., Shah, N. D., Sheikh, G. N. & Allen, K. Classifying enteral nutrition: tailored for clinical practice. Curr. Gastroenterol. Rep. 21, 47 (2019).

    PubMed  Google Scholar 

  4. Sax, H. et al. Overall burden of healthcare-associated infections among surgical patients. Results of a national study. Ann. Surg. 253, 365–370 (2011).

    PubMed  Google Scholar 

  5. Demling, R. H. Nutrition, anabolism, and the wound healing process: an overview. Eplasty 9, e9 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2793–2807 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Barabási, A.-L., Menichetti, G. & Loscalzo, J. The unmapped chemical complexity of our diet. Nat. Food 1, 33–37 (2020).

    Google Scholar 

  8. Ma, N. et al. Nutrients mediate intestinal bacteria–mucosal immune crosstalk. Front. Immunol. 9, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017).

    CAS  PubMed  Google Scholar 

  10. Goldsmith, J. R. & Sartor, R. B. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol. 49, 785–798 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Statovci, D., Aguilera, M., MacSharry, J. & Melgar, S. The impact of western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front. Immunol. 8, 838 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 12, 2221–2236 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wynder, E. L. & Reddy, B. S. Metabolic epidemiology of colorectal cancer. Cancer 34, 801–806 (1974).

    Google Scholar 

  14. Manzel, A. et al. Role of “Western Diet” in inflammatory autoimmune diseases. Curr. Allergy Asthma Rep. 14, 404 (2013).

    Google Scholar 

  15. Peterson, G., Kumar, A., Gart, E. & Narayanan, S. Catecholamines increase conjugative gene transfer between enteric bacteria. Microb. Pathog. 51, 1–8 (2011).

    CAS  PubMed  Google Scholar 

  16. Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl Acad. Sci. USA 109, 1269–1274 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  18. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Krezalek, M. A., DeFazio, J., Zaborina, O., Zaborin, A. & Alverdy, J. C. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock 45, 475–482 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Krezalek, M. A., Yeh, A., Alverdy, J. C. & Morowitz, M. Influence of nutrition therapy on the intestinal microbiome. Curr. Opin. Clin. Nutr. Metab. Care 20, 131–137 (2017).

    PubMed  Google Scholar 

  21. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    PubMed  PubMed Central  Google Scholar 

  22. McDonald, D. et al. Extreme dysbiosis of the microbiome in critical illness. mSphere 1, e00199-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Lankelma, J. M. et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med. 43, 59–68 (2017).

    CAS  PubMed  Google Scholar 

  24. Zaborin, A. et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness. mBio 5, e01361-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  25. Hyoju, S. K. et al. Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: an experimental model. BJS 107, 743–755 (2020).

    CAS  Google Scholar 

  26. Keskey, R. et al. Defining microbiome readiness for surgery: dietary pre-habilitation and stool biomarkers as predictive tools to improve outcome. Ann. Surg. https://doi.org/10.1097/SLA.0000000000004578 (2020).

    Article  PubMed  Google Scholar 

  27. Winitz, M., Graff, J., Gallagher, N., Narkin, A. & Seedman, D. A. Nature, Volume 205, 1965: evaluation of chemical diets as nutrition for man-in-space. Nutr. Rev. 49, 141–143 (1991).

    CAS  PubMed  Google Scholar 

  28. Harkness, L. The history of enteral nutrition therapy: from raw eggs and nasal tubes to purified amino acids and early postoperative jejunal delivery. J. Am. Diet. Assoc. 102, 399–404 (2002).

    PubMed  Google Scholar 

  29. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016).

    PubMed  Google Scholar 

  30. Muller, M. The Baby Killer: A War on Want Investigation into the Promotion and Sale of Powdered Baby Milks in the Third World (War on Want, 1974).

  31. Chen, A. & Rogan, W. J. Breastfeeding and the risk of postneonatal death in the United States. Pediatrics 113, e435–e439 (2004).

    PubMed  Google Scholar 

  32. Russel, R. I. Elemental diets. Gut 16, 68–79 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrie, S. & East, V. Managing diarrhoea in intensive care. Aust. Crit. Care 20, 7–13 (2007).

    PubMed  Google Scholar 

  34. van der Spoel, J. I. et al. Laxation of critically ill patients with lactulose or polyethylene glycol: a two-center randomized, double-blind, placebo-controlled trial. Crit. Care Med. 35, 2726–2731 (2007).

    PubMed  Google Scholar 

  35. van der Spoel, J. I., Schultz, M. J., van der Voort, P. H. & de Jonge, E. Influence of severity of illness, medication and selective decontamination on defecation. Intensive Care Med. 32, 875–880 (2006).

    PubMed  Google Scholar 

  36. Fukuda, S. et al. Risk factors for late defecation and its association with the outcomes of critically ill patients: a retrospective observational study. J. Intensive Care 4, 33–33 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Husebye, E. The pathogenesis of gastrointestinal bacterial overgrowth. Chemotherapy 51 (Suppl. 1), 1–22 (2005).

    CAS  PubMed  Google Scholar 

  38. Triantafillidis, J. K., Vagianos, C. & Papalois, A. E. The role of enteral nutrition in patients with inflammatory bowel disease: current aspects. Biomed. Res. Int. 2015, 197167–197167 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Koretz, R. L. & Meyer, J. H. Elemental diets–facts and fantasies. Gastroenterology 78, 393–410 (1980).

    CAS  PubMed  Google Scholar 

  40. Dudrick, S. J. & Palesty, J. A. Historical highlights of the development of enteral nutrition. Surg. Clin. North Am. 91, 945–964 (2011).

    PubMed  Google Scholar 

  41. Alexander, D. D., Bylsma, L. C., Elkayam, L. & Nguyen, D. L. Nutritional and health benefits of semi-elemental diets: a comprehensive summary of the literature. World J. Gastrointest. Pharmacol. Ther. 7, 306–319 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Gill, B. D., Indyk, H. E. & Woollard, D. C. Current methods for the analysis of selected novel nutrients in infant formulas and adult nutritionals. J. AOAC Int. 99, 30–41 (2016).

    CAS  PubMed  Google Scholar 

  43. Booth, I. W. Enteral nutrition as primary therapy in short bowel syndrome. Gut 35, S69–S72 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanes, C. et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 29, 394–407.e395 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Damas, O. M., Garces, L. & Abreu, M. T. Diet as adjunctive treatment for inflammatory bowel disease: review and update of the latest literature. Curr. Treat. Options Gastroenterol. 17, 313–325 (2019).

    PubMed  PubMed Central  Google Scholar 

  46. Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 67–77.e63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nickerson, K. P., Chanin, R. & McDonald, C. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes 6, 78–83 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Scott, S. H., Mota, A. L. S., Loffelmann, C., Fettke, G. & Crofts, C. Doubt about pre-operative carbohydrate supplementation. Anaesthesia 74, 540–541 (2019).

    CAS  PubMed  Google Scholar 

  49. Birchenough, G., Schroeder, B. O., Bäckhed, F. & Hansson, G. C. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes 10, 246–250 (2019).

    CAS  PubMed  Google Scholar 

  50. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chassaing, B., Raja, S. M., Lewis, J. D., Srinivasan, S. & Gewirtz, A. T. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell Mol. Gastroenterol. Hepatol. 4, 205–221 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    CAS  PubMed  Google Scholar 

  53. Haskel, Y., Udassin, R., Freund, H. R., Zhang, J. M. & Hanani, M. Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility. JPEN 25, 60–64 (2001).

    CAS  Google Scholar 

  54. Kajiura, T. et al. Change of intestinal microbiota with elemental diet and its impact on therapeutic effects in a murine model of chronic colitis. Dig. Dis. Sci. 54, 1892–1900 (2009).

    CAS  PubMed  Google Scholar 

  55. Andoh, A. et al. Elemental diet induces alterations of the gut microbial community in mice. J. Clin. Biochem. Nutr. 65, 118–124 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bennett, K., Hjelmgren, B. & Piazza, J. Blenderized tube feeding: health outcomes and review of homemade and commercially prepared products. Nutr. Clin. Pract. 35, 417–431 (2020).

    PubMed  Google Scholar 

  57. Fu, Y. et al. Relationship between dietary fiber intake and short-chain fatty acid-producing bacteria during critical illness: a prospective cohort study. JPEN 44, 463–471 (2020).

    CAS  Google Scholar 

  58. Makki, K., Deehan, E. C., Walter, J. & Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23, 705–715 (2018).

    CAS  PubMed  Google Scholar 

  59. McClave, S. A. & Martindale, R. G. Why do current strategies for optimal nutritional therapy neglect the microbiome? Nutrition 60, 100–105 (2019).

    PubMed  Google Scholar 

  60. Ng, K. M. et al. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host Microbe 26, 650–665.e654 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Barone, M. et al. Gut microbiome response to a modern paleolithic diet in a western lifestyle context. PLoS ONE 14, e0220619 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dudrick, S. J. History of parenteral nutrition. J. Am. Coll. Nutr. 28, 243–251 (2009).

    PubMed  Google Scholar 

  63. Driscoll, D. & Bistrian, B. Total parenteral nutrition 1990: a review of its current status in hospitalised patients, and the need for patient-specific feeding. Drugs 40, 346–363 (1990).

    CAS  PubMed  Google Scholar 

  64. Ralls, M. W. et al. Bacterial nutrient foraging in a mouse model of enteral nutrient deprivation: insight into the gut origin of sepsis. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G734–G743 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. O’Leary, M. J. et al. Parenteral versus enteral nutrition: effect on serum cytokines and the hepatic expression of mRNA of suppressor of cytokine signaling proteins, insulin-like growth factor-1 and the growth hormone receptor in rodent sepsis. Crit. Care 11, R79 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Delany, H. M. et al. Contrasting effects of identical nutrients given parenterally or enterally after 70% hepatectomy. Am. J. Surg. 167, 135–144 (1994).

    CAS  PubMed  Google Scholar 

  67. Braunschweig, C. L., Levy, P., Sheean, P. M. & Wang, X. Enteral compared with parenteral nutrition: a meta-analysis. Am. J. Clin. Nutr. 74, 534–542 (2001).

    CAS  PubMed  Google Scholar 

  68. Kudsk, K. A., Stone, J. M., Carpenter, G. & Sheldon, G. F. Enteral and parenteral feeding influences mortality after hemoglobin-E. coli peritonitis in normal rats. J. Trauma. 23, 605–609 (1983).

    CAS  PubMed  Google Scholar 

  69. Alverdy, J., Chi, H. S. & Sheldon, G. F. The effect of parenteral nutrition on gastrointestinal immunity. The importance of enteral stimulation. Ann. Surg. 202, 681–684 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fong, Y. M. et al. Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann. Surg. 210, 449–457 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Demehri, F. et al. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front. Cell. Infect. Microbiol. 3, 105 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McClave, S. A. & Heyland, D. K. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr. Clin. Pract. 24, 305–315 (2009).

    PubMed  Google Scholar 

  73. Hadfield, R. J., Sinclair, D. G., Houldsworth, P. E. & Evans, T. W. Effects of enteral and parenteral nutrition on gut mucosal permeability in the critically ill. Am. J. Respir. Crit. Care Med. 152, 1545–1548 (1995).

    CAS  PubMed  Google Scholar 

  74. Martindale, R. G. & Warren, M. Should enteral nutrition be started in the first week of critical illness? Curr. Opin. Clin. Nutr. Metab. Care 18, 202–206 (2015).

    CAS  PubMed  Google Scholar 

  75. Pierre, J. F. et al. Route and type of nutrition and surgical stress influence secretory phospholipase A2 secretion of the murine small intestine. JPEN 35, 748–756 (2011).

    CAS  Google Scholar 

  76. Sigalet, D. L., Mackenzie, S. L. & Hameed, S. M. Enteral nutrition and mucosal immunity: implications for feeding strategies in surgery and trauma. Can. J. Surg. 47, 109–116 (2004).

    PubMed  PubMed Central  Google Scholar 

  77. Kudsk, K. A. et al. Visceral protein response to enteral versus parenteral nutrition and sepsis in patients with trauma. Surgery 116, 516–523 (1994).

    CAS  PubMed  Google Scholar 

  78. Lewis, S. R., Schofield-Robinson, O. J., Alderson, P. & Smith, A. F. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst. Rev. 6, CD012276 (2018).

    PubMed  Google Scholar 

  79. Hull, S. Enteral versus parenteral nutrition support-rationale for increased use of enteral feeding. Z. Gastroenterol. 23 (Suppl.), 55–63 (1985).

    PubMed  Google Scholar 

  80. Zhou, X., Li, Y. X., Li, N. & Li, J. S. Effect of bowel rehabilitative therapy on structural adaptation of remnant small intestine: animal experiment. World J. Gastroenterol. 7, 66–73 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Dwyer, S. T., Smith, R. J., Hwang, T. L. & Wilmore, D. W. Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. J. Parenter. Enteral Nutr. 13, 579–585 (1989).

    Google Scholar 

  82. Ziegler, T. R., Evans, M. E., Fernández-Estívariz, C. & Jones, D. P. Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu. Rev. Nutr. 23, 229–261 (2003).

    CAS  PubMed  Google Scholar 

  83. Bragg, L. E., Thompson, J. S. & Rikkers, L. F. Influence of nutrient delivery on gut structure and function. Nutrition 7, 237–243 (1991).

    CAS  PubMed  Google Scholar 

  84. Souba, W. W., Smith, R. J. & Wilmore, D. W. Glutamine metabolism by the intestinal tract. J. Parenter. Enteral Nutr. 9, 608–617 (1985).

    CAS  Google Scholar 

  85. Lacey, J. M. & Wilmore, D. W. Is glutamine a conditionally essential amino acid? Nutr. Rev. 48, 297–309 (1990).

    CAS  PubMed  Google Scholar 

  86. Bollhalder, L., Pfeil, A. M., Tomonaga, Y. & Schwenkglenks, M. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin. Nutr. 32, 213–223 (2013).

    CAS  PubMed  Google Scholar 

  87. Vanek, V. W. et al. A.S.P.E.N. position paper: parenteral nutrition glutamine supplementation. Nutr. Clin. Pract. 26, 479–494 (2011).

    PubMed  Google Scholar 

  88. Bounous, G. in Uses of Elemental Diets in Clinical Situations (CRC Press, 2018).

  89. Pratt, V. C., Tappenden, K. A., McBurney, M. I. & Field, C. J. Short-chain fatty acid-supplemented total parenteral nutrition improves nonspecific immunity after intestinal resection in rats. J. Parenter. Enteral Nutr. 20, 264–271 (1996).

    CAS  Google Scholar 

  90. Guzman, M. et al. Impaired gut-systemic signaling drives total parenteral nutrition-associated Injury. Nutrients 12, 1493 (2020).

    CAS  PubMed Central  Google Scholar 

  91. Keith, A. The functional nature of the caecum and appendix. Br. Med. J. 2, 1599–1602 (1912).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chang, S. J. & Huang, H. H. Diarrhea in enterally fed patients: blame the diet? Curr. Opin. Clin. Nutr. Metab. Care 16, 588–594 (2013).

    CAS  PubMed  Google Scholar 

  93. Venegas-Borsellino, C. & Kwon, M. Impact of soluble fiber in the microbiome and outcomes in critically Ill patients. Curr. Nutr. Rep. 8, 347–355 (2019).

    PubMed  Google Scholar 

  94. Reis, A. M. D., Fruchtenicht, A. V., Loss, S. H. & Moreira, L. F. Use of dietary fibers in enteral nutrition of critically ill patients: a systematic review. Rev. Bras. Ter. Intensiv. 30, 358–365 (2018).

    Google Scholar 

  95. Montejo, J. C. Enteral nutrition-related gastrointestinal complications in critically ill patients: a multicenter study. The Nutritional and Metabolic Working Group of the Spanish Society of Intensive Care Medicine and Coronary Units. Crit. Care Med. 27, 1447–1453 (1999).

    CAS  PubMed  Google Scholar 

  96. Gonlachanvit, S., Coleski, R., Owyang, C. & Hasler, W. Inhibitory actions of a high fibre diet on intestinal gas transit in healthy volunteers. Gut 53, 1577–1582 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Altintoprak, F., Gemici, E., Yildiz, Y. A., Yener Uzunoglu, M. & Kivilcim, T. Intestinal obstruction due to bezoar in elderly patients: risk factors and treatment results. Emerg. Med. Int. 2019, 3647356 (2019).

    PubMed  PubMed Central  Google Scholar 

  98. Parada Venegas, D. et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10, 277 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Frampton, J., Murphy, K. G., Frost, G. & Chambers, E. S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2, 840–848 (2020).

    CAS  PubMed  Google Scholar 

  100. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Google Scholar 

  101. Hayakawa, M. et al. Dramatic changes of the gut flora immediately after severe and sudden insults. Dig. Dis. Sci. 56, 2361–2365 (2011).

    CAS  PubMed  Google Scholar 

  102. Feng, Y., Huang, Y., Wang, Y., Wang, P. & Wang, F. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice. Burns Trauma 7, 20 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Kuethe, J. W. et al. Fecal microbiota transplant restores mucosal integrity in a murine model of burn injury. Shock 45, 647–652 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Bachmann, M., Meissner, C., Pfeilschifter, J. & Mühl, H. Cooperation between the bacterial-derived short-chain fatty acid butyrate and interleukin-22 detected in human Caco2 colon epithelial/carcinoma cells. Biofactors 43, 283–292 (2017).

    CAS  PubMed  Google Scholar 

  105. Schulthess, J. et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50, 432–445.e437 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Martin, F.-P. J. et al. Panorganismal gut microbiome−host metabolic crosstalk. J. Proteome Res. 8, 2090–2105 (2009).

    CAS  PubMed  Google Scholar 

  107. Jacobson, A., Yang, D., Vella, M. & Chiu, I. M. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol. 14, 555–565 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Riva, A. et al. A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nat. Commun. 10, 4366 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Drozdowski, L. A., Dixon, W. T., McBurney, M. I. & Thomson, A. B. Short-chain fatty acids and total parenteral nutrition affect intestinal gene expression. J. Parenter. Enteral Nutr. 26, 145–150 (2002).

    CAS  Google Scholar 

  110. Bartholome, A. L., Albin, D. M., Baker, D. H., Holst, J. J. & Tappenden, K. A. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunoileal resection in neonatal piglets. J. Parenter. Enteral Nutr. 28, 210–222 (2004).

    CAS  Google Scholar 

  111. Liu, H. et al. Butyrate: a double-edged sword for health? Adv. Nutr. 9, 21–29 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology:short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  113. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e1321 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gill, S. K., Rossi, M., Bajka, B. & Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 18, 101–116 (2021).

    CAS  PubMed  Google Scholar 

  115. Ljungqvist, O., Scott, M. & Fearon, K. C. Enhanced recovery after surgery: a review. JAMA Surg. 152, 292–298 (2017).

    PubMed  Google Scholar 

  116. Freestone, P. P. E., Sandrini, S. M., Haigh, R. D. & Lyte, M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 16, 55–64 (2008).

    CAS  PubMed  Google Scholar 

  117. Jernberg, C., Löfmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 3216–3223 (2010).

    CAS  PubMed  Google Scholar 

  118. Charani, E. et al. Opportunities for system level improvement in antibiotic use across the surgical pathway. Int. J. Infect. Dis. 60, 29–34 (2017).

    CAS  PubMed  Google Scholar 

  119. Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).

    PubMed  PubMed Central  Google Scholar 

  120. Institute of Medicine. The Social Biology of Microbial Communities: Workshop Summary (National Academies Press, 2012).

  121. Ji, B. & Nielsen, J. From next-generation sequencing to systematic modeling of the gut microbiome. Front. Genet. 6, 2019 (2015).

    Google Scholar 

  122. Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. La Rosa, P. S. et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl Acad. Sci. USA 111, 12522–12527 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    PubMed  PubMed Central  Google Scholar 

  125. Nesse, R. M., Stearns, S. C. & Omenn, G. S. Medicine needs evolution. Science 311, 1071–1071 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.G. and J.A. were responsible for conception and design, including substantial contribution to discussion of content. V.G., T.T., and J.A. were responsible for researching data for the article, drafting the manuscript, reviewing and editing manuscript before submission.

Corresponding author

Correspondence to Victoria Gershuni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Gail Cresci and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toni, T., Alverdy, J. & Gershuni, V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat Rev Gastroenterol Hepatol 18, 903–911 (2021). https://doi.org/10.1038/s41575-021-00519-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00519-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing