Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications

Abstract

Hepatocellular carcinoma (HCC) is an aggressive disease with a poor clinical outcome. The cancer stem cell (CSC) model states that tumour growth is powered by a subset of tumour stem cells within cancers. This model explains several clinical observations in HCC (as well as in other cancers), including the almost inevitable recurrence of tumours after initial successful chemotherapy and/or radiotherapy, as well as the phenomena of tumour dormancy and treatment resistance. The past two decades have seen a marked increase in research on the identification and characterization of liver CSCs, which has encouraged the design of novel diagnostic and treatment strategies for HCC. These studies revealed novel aspects of liver CSCs, including their heterogeneity and unique immunobiology, which are suggestive of opportunities for new research directions and potential therapies. In this Review, we summarize the present knowledge of liver CSC markers and the regulators of stemness in HCC. We also comprehensively describe developments in the liver CSC field with emphasis on experiments utilizing single-cell transcriptomics to understand liver CSC heterogeneity, lineage-tracing and cell-ablation studies of liver CSCs, and the influence of the CSC niche and tumour microenvironment on liver cancer stemness, including interactions between CSCs and the immune system. We also discuss the potential application of liver CSC-based therapies for treatment of HCC.

Key points

  • Liver cancer stem cells (CSCs), a unique subset of hepatocellular carcinoma cells with stem cell features, dictate a hierarchical organization and contribute to treatment resistance and tumour recurrence.

  • Early studies using cell-sorting and xenotransplantation techniques identified various liver CSC markers that have laid important groundwork for current research in the field.

  • Lineage-tracing and cell-ablation studies in intact mouse tumours have provided insights into liver CSC plasticity, quiescence, renewal and treatment response.

  • Liver CSCs are capable of sustaining tumours by altering intrinsic regulators that converge into common signalling pathways.

  • Liver CSCs reside in dedicated niches where they interact reciprocally with cells and/or factors in the tumour microenvironment to regulate stemness.

  • Understanding the key traits and mechanisms of liver CSC survival provides opportunities to improve patient outcomes through improving prognostic models and therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones of cancer stemness-related discoveries in hepatocellular carcinoma.
Fig. 2: Tumour microenvironmental influences on liver cancer stem cells.
Fig. 3: Liver cancer stem cell–immune system interactions.
Fig. 4: Proposed therapeutic approaches to target liver cancer stem cells.

Similar content being viewed by others

References

  1. Huang, A., Yang, X. R., Chung, W. Y., Dennison, A. R. & Zhou, J. Targeted therapy for hepatocellular carcinoma. Signal Transduct. Target. Ther. 5, 146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Craig, A. J., von Felden, J., Garcia-Lezana, T., Sarcognato, S. & Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 17, 139–152 (2020).

    Article  PubMed  Google Scholar 

  3. Yamashita, T. & Wang, X. W. Cancer stem cells in the development of liver cancer. J. Clin. Invest. 123, 1911–1918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, J.-L. et al. Advances in surface markers of liver cancer stem cell. Hepatoma Res. 5, 27 (2019).

    CAS  Google Scholar 

  5. Tsui, Y. M., Chan, L. K. & Ng, I. O. Cancer stemness in hepatocellular carcinoma: mechanisms and translational potential. Br. J. Cancer 122, 1428–1440 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang, X. R. et al. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59, 953–962 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Miltiadous, O. et al. Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation. J. Hepatol. 63, 1368–1377 (2015).

    Article  PubMed  Google Scholar 

  8. Yamashita, T. et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 68, 1451–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, H. et al. Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68, 127–140 (2018). This study provides the first evidence of liver CSC biodiversity at the single-cell level.

    Article  PubMed  Google Scholar 

  10. Ho, D. W. et al. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett. 459, 176–185 (2019). This study uses single-cell RNA sequencing to dissect the intratumoural heterogeneity of HCC and identifies that enrichment of CD24+CD44+ cells within the EpCAM+ subpopulation represents an important stemness-related subclone in HCC.

    Article  CAS  PubMed  Google Scholar 

  11. Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tummala, K. S. et al. Hepatocellular carcinomas originate predominantly from hepatocytes and benign lesions from hepatic progenitor cells. Cell Rep. 19, 584–600 (2017). This study uses genetic lineage tracing of HPCs and hepatocytes in a HCC mouse model, which showed that HCC originates primarily from hepatocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mu, X. et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J. Clin. Invest. 125, 3891–3903 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jors, S. et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. J. Clin. Invest. 125, 2445–2457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shin, S. et al. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology 64, 1163–1177 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. He, G. et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155, 384–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto, T. et al. Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res. 77, 6131–6143 (2017). This genetic lineage-tracing study provides the first evidence that EpCAM-expressing proliferating ductal cells represent one cellular origin of HCC, which suggests the existence of stem cell-derived or progenitor cell-derived hepatocarcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  18. Ang, C. H. et al. Lgr5+ pericentral hepatocytes are self-maintained in normal liver regeneration and susceptible to hepatocarcinogenesis. Proc. Natl Acad. Sci. USA 116, 19530–19540 (2019). This genetic lineage-tracing study identifies LGR5+ pericentral hepatocytes as major cells of origin in diethylnitrosamine-induced HCC development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao, W. et al. LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nat. Commun. 11, 1961 (2020). This cell-ablation study of intact HCC mouse tumours provides evidence that the LGR5+ compartment in HCC is the strongest contributor to both tumour initiation and therapy resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, J. N. et al. MicroRNA-125b attenuates epithelial–mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology 62, 801–815 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, S. et al. Mir-130b promotes CD133+ liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7, 694–707 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Li, L. et al. Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology 61, 574–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Ji, J. et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50, 472–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Gu, Y. et al. Mir-192-5p silencing by genetic aberrations is a key event in hepatocellular carcinomas with cancer stem cell features. Cancer Res. 79, 941–953 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Ji, J. et al. Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology 62, 829–840 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Han, H. et al. PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells. Nat. Commun. 6, 8271 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Li, L. et al. Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4. Gut 64, 156–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Chai, S. et al. Octamer 4/microRNA-1246 signaling axis drives Wnt/β-catenin activation in liver cancer stem cells. Hepatology 64, 2062–2076 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. et al. Long non-coding RNA DILC regulates liver cancer stem cells via IL-6/STAT3 axis. J. Hepatol. 64, 1283–1294 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Zhu, P. et al. LncBRM initiates Yap1 signalling activation to drive self-renewal of liver cancer stem cells. Nat. Commun. 7, 13608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, J. et al. The long non-coding RNA lncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. J. Hepatol. 70, 918–929 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, P. et al. Lnc-β-Catm elicits EZH2-dependent β-catenin stabilization and sustains liver CSC self-renewal. Nat. Struct. Mol. Biol. 23, 631–639 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y. et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell 16, 413–425 (2015). This is one of the first studies to demonstrate the involvement of lncRNAs in promoting tumorigenic activity in liver CSCs through a regulatory circuit involving WNT signalling.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan, S. X. et al. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of Ctnnb1. Hepatology 63, 499–511 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, Z. Z. et al. LncSOX4 promotes the self-renewal of liver tumour-initiating cells through STAT3-mediated SOX4 expression. Nat. Commun. 7, 12598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo, W. et al. Icam-1-related noncoding RNA in cancer stem cells maintains ICAM-1 expression in hepatocellular carcinoma. Clin. Cancer Res. 22, 2041–2050 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, F. et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology 60, 1278–1290 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Ignatova, V. V. et al. METTL6 is a tRNA m3c methyltransferase that regulates pluripotency and tumor cell growth. Sci. Adv. 6, eaaz4551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan, L. H. et al. PRMT6 regulates Ras/Raf binding and MEK/ERK-mediated cancer stemness activities in hepatocellular carcinoma through cRaf methylation. Cell Rep. 25, 690–701.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Nio, K. et al. Defeating EpCAM+ liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J. Hepatol. 63, 1164–1172 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Lo Re, O. et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology 67, 636–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, L. et al. SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology 64, 814–827 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, C. et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6a RNA methylation. Oncogene 39, 4507–4518 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, C. et al. LSD1 stimulates cancer-associated fibroblasts to drive NOTCH3-dependent self-renewal of liver cancer stem-like cells. Cancer Res. 78, 938–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Lei, Z. J. et al. Lysine-specific demethylase 1 promotes the stemness and chemoresistance of LGR5+ liver cancer initiating cells by suppressing negative regulators of beta-catenin signaling. Oncogene 34, 3188–3198 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Chiba, T. et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 68, 7742–7749 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. You, H., Ding, W. & Rountree, C. B. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology 51, 1635–1644 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Raggi, C. et al. Epigenetic reprogramming modulates malignant properties of human liver cancer. Hepatology 59, 2251–2262 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X. et al. RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nat. Commun. 12, 1518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song, Y. et al. Loss of ATOH8 increases stem cell features of hepatocellular carcinoma cells. Gastroenterology 149, 1068–1081.e5 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Zhu, P. et al. ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. J. Clin. Invest. 125, 3795–3808 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, N. et al. ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH1 signaling pathway. Cancer Lett. 472, 70–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, C. et al. SOX9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology 64, 117–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Zhu, P. et al. C8orf4 negatively regulates self-renewal of liver cancer stem cells via suppression of NOTCH2 signalling. Nat. Commun. 6, 7122 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Oikawa, T. et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 57, 1469–1483 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, S. S. et al. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J. Hepatol. 60, 127–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Fan, H. et al. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with hepatitis B or C virus infection. Oncogene 36, 2435–2445 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Luk, S. T. et al. Deficiency in embryonic stem cell marker reduced expression 1 activates mitogen-activated protein kinase kinase 6-dependent p38 mitogen-activated protein kinase signaling to drive hepatocarcinogenesis. Hepatology 72, 183–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, X. et al. Integrative genomics identifies YY1AP1 as an oncogenic driver in EpCAM+ AFP+ hepatocellular carcinoma. Oncogene 34, 5095–5104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kopanja, D. et al. Essential roles of FOXM1 in ras-induced liver cancer progression and in cancer cells with stem cell features. J. Hepatol. 63, 429–436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qin, X. Y. et al. Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc. Natl Acad. Sci. USA 115, 4969–4974 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma, M. K. F. et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-induced differentiation. J. Hepatol. 67, 979–990 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Budhu, A. et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144, 1066–1075.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Lai, K. K. Y. et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152, 1477–1491 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Wei, Z. et al. Sirtuin-1/mitochondrial ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells. Hepatology 70, 1197–1213 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Chen, C. L. et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 23, 206–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Takai, A. et al. Genome-wide RNAi screen identifies pmpcb as a therapeutic vulnerability in EpCAM+ hepatocellular carcinoma. Cancer Res. 79, 2379–2391 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fekir, K. et al. Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance. Cancer Res. 79, 1869–1883 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Sun, Q. et al. Loss of xanthine oxidoreductase potentiates propagation of hepatocellular carcinoma stem cells. Hepatology 71, 2033–2049 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Umemura, A. et al. P62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29, 935–948 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cheng, B. Y. et al. IRAK1 augments cancer stemness and drug resistance via the AP-1/AKR1B10 signaling cascade in hepatocellular carcinoma. Cancer Res. 78, 2332–2342 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Xiang, D. et al. SHP2 promotes liver cancer stem cell expansion by augmenting beta-catenin signaling and predicts chemotherapeutic response of patients. Hepatology 65, 1566–1580 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Leung, C. O. N. et al. Overriding adaptive resistance to sorafenib through combination therapy with Src homology 2 domain-containing phosphatase 2 blockade in hepatocellular carcinoma. Hepatology 72, 155–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Tang, K. H. et al. CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 55, 807–820 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Pan, Q. Z. et al. Annexin A3 as a potential target for immunotherapy of liver cancer stem-like cells. Stem Cell 33, 354–366 (2015).

    Article  CAS  Google Scholar 

  76. Pan, Q. Z. et al. Annexin A3 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma. Mol. Carcinog. 54, 598–607 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Tong, M. et al. ANXA3/JNK signaling promotes self-renewal and tumor growth, and its blockade provides a therapeutic target for hepatocellular carcinoma. Stem Cell Rep. 5, 45–59 (2015). This study describes the development and characterization of a novel ANXA3-neutralizing monoclonal antibody that can be used in combination with cisplatin to target the CD133+ liver CSC subset in HCC.

    Article  CAS  Google Scholar 

  78. Tong, M. et al. Efficacy of annexin A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and regorafenib. J. Hepatol. 69, 826–839 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Mitra, A. et al. IL6-mediated inflammatory loop reprograms normal to epithelial–mesenchymal transition+ metastatic cancer stem cells in preneoplastic liver of transforming growth factor β-deficient β2-spectrin+/– mice. Hepatology 65, 1222–1236 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Yamashita, T. et al. Oncostatin M renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-fluorouracil by inducing hepatocytic differentiation. Cancer Res. 70, 4687–4697 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Tovar, V. et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 66, 530–540 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, H. A. et al. Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma. Hepatology 64, 1637–1651 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, T. K. et al. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60, 179–191 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Bai, H. Y. et al. Eukaryotic initiation factor 5A2 contributes to the maintenance of CD133+ hepatocellular carcinoma cells via the c-Myc/microRNA-29b axis. Stem Cell 36, 180–191 (2018).

    Article  CAS  Google Scholar 

  85. Qian, Y. W. et al. p28GANK prevents degradation of OCT4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology 142, 1547–1558.e14 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Sun, W. et al. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology 54, 1259–1272 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Shan, J. et al. NANOG regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology 56, 1004–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Chen, C. L. et al. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J. Clin. Invest. 123, 2832–2849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Uthaya Kumar, D. B. et al. TLR4 signaling via NANOG cooperates with STAT3 to activate TWIST1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology 150, 707–719 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, J. et al. A transforming growth factor-β and H19 signaling axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis. Hepatology 69, 1549–1563 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Wu, K. et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56, 2255–2267 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Mokkapati, S. et al. Beta-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Res. 74, 4515–4525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhi, X. et al. βII-Spectrin (Sptbn1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatin. Hepatology 61, 598–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Chua, H. H. et al. RBMY, a novel inhibitor of glycogen synthase kinase 3β, increases tumor stemness and predicts poor prognosis of hepatocellular carcinoma. Hepatology 62, 1480–1496 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Ho, N. P. Y. et al. The interplay of UBE2T and MULE in regulating Wnt/β-catenin activation to promote hepatocellular carcinoma progression. Cell Death Dis. 12, 148 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Leung, H. W. et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res. 81, 3229–3240 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W. & Guan, X. Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the AKT/PKB survival pathway. Oncogene 27, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Hu, C. et al. Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by AKT signaling. Carcinogenesis 29, 2289–2297 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, X. Q. et al. Octamer 4 (OCT4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential OCT4–AKT–ATP-binding cassette G2 pathway. Hepatology 52, 528–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Guan, D. X. et al. Sorafenib enriches epithelial cell adhesion molecule-positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2–AKT cascade. Hepatology 62, 1791–1803 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, L. et al. Maelstrom promotes hepatocellular carcinoma metastasis by inducing epithelial–mesenchymal transition by way of AKT/GSK-3β/SNAIL signaling. Hepatology 59, 531–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Toh, T. B., Lim, J. J., Hooi, L., Rashid, M. & Chow, E. K. Targeting JAK/STAT pathway as a therapeutic strategy against SP/CD44+ tumorigenic cells in AKT/β-catenin-driven hepatocellular carcinoma. J. Hepatol. 72, 104–118 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Hayashi, H. et al. An imbalance in TAZ and YAP expression in hepatocellular carcinoma confers cancer stem cell-like behaviors contributing to disease progression. Cancer Res. 75, 4985–4997 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, L. et al. BMP4 administration induces differentiation of CD133+ hepatic cancer stem cells, blocking their contributions to hepatocellular carcinoma. Cancer Res. 72, 4276–4285 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Lau, C. K. et al. An AKT/hypoxia-inducible factor-1α/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin. Cancer Res. 15, 3462–3471 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Won, C. et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 62, 1160–1173 (2015). This is one of the first studies to show enrichment of CD133+ cells in the hypoxic liver microenvironment through STAT3-activated binding of IL-6 to the PROM1 promoter.

    Article  CAS  PubMed  Google Scholar 

  107. Cui, C. P. et al. SENP1 promotes hypoxia-induced cancer stemness by HIF-1α desumoylation and SENP1/HIF-1α positive feedback loop. Gut 66, 2149–2159 (2017). This study describes the relevance of the positive-feedback loop between HIF1α and SENP1 in contributing to the increase in cancer stemness in HCC under hypoxic conditions.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, H. L. et al. Blocking preferential glucose uptake sensitizes liver tumor-initiating cells to glucose restriction and sorafenib treatment. Cancer Lett. 388, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Loong, J. H. et al. Glucose deprivation-induced aberrant FUT1-mediated fucosylation drives cancer stemness in hepatocellular carcinoma. J. Clin. Invest. 131, e143377 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  110. Kohga, K. et al. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. J. Hepatol. 52, 872–879 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Govaere, O. et al. Laminin-332 sustains chemoresistance and quiescence as part of the human hepatic cancer stem cell niche. J. Hepatol. 64, 609–617 (2016). This study shows that HCC tumour cells are plastic and that their behaviour depends on the microenvironment. Specifically, this work demonstrates a critical role for the basement membrane component laminin-332 and more specifically its γ2 chain in maintaining stemness in HCC.

    Article  CAS  PubMed  Google Scholar 

  112. Sun, J., Luo, Q., Liu, L. & Song, G. Low-level shear stress induces differentiation of liver cancer stem cells via the Wnt/β-catenin signalling pathway. Exp. Cell Res. 375, 90–96 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. You, Y. et al. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget 7, 32221–32231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schrader, J. et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53, 1192–1205 (2011). This is the first study to show that (CSC enriched) surviving cells from soft supports exhibit significantly higher clonogenic capacity than do surviving cells from a stiff microenvironment following cisplatin treatment, suggesting that a soft environment in HCC reversibly induces cellular dormancy and stem cell characteristics.

    Article  CAS  PubMed  Google Scholar 

  115. Tian, B., Luo, Q., Ju, Y. & Song, G. A soft matrix enhances the cancer stem cell phenotype of HCC cells. Int. J. Mol. Sci. 20, 2831 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  116. Ng, K. Y. et al. Chemotherapy-enriched THBS2-deficient cancer stem cells drive hepatocarcinogenesis through matrix softness induced histone H3 modifications. Adv. Sci. 8, 2002483 (2021).

    Article  CAS  Google Scholar 

  117. Martin-Padura, I. et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab. Invest. 92, 952–966 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, K., Hao, M., Ouyang, Y., Zheng, J. & Chen, D. CD133+ cancer stem cells promoted by VEGF accelerate the recurrence of hepatocellular carcinoma. Sci. Rep. 7, 41499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Conigliaro, A. et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing h19 lncRNA. Mol. Cancer 14, 155 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tarao, K. et al. Real impact of liver cirrhosis on the development of hepatocellular carcinoma in various liver diseases — meta-analytic assessment. Cancer Med. 8, 1054–1065 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ji, J. et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 62, 481–495 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Lau, E. Y. et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-MET/FRA1/HEY1 signaling. Cell Rep. 15, 1175–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Rhee, H. et al. Keratin 19 expression in hepatocellular carcinoma is regulated by fibroblast-derived HGF via a MET–ERK1/2–AP1 and SP1 axis. Cancer Res. 78, 1619–1631 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Xiong, S. et al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/NOTCH signaling. Am. J. Cancer Res. 8, 302–316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao, Z. et al. Cancer-associated fibroblasts endow stem-like qualities to liver cancer cells by modulating autophagy. Cancer Manag. Res. 11, 5737–5744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jiang, J. et al. Peri-tumor associated fibroblasts promote intrahepatic metastasis of hepatocellular carcinoma by recruiting cancer stem cells. Cancer Lett. 404, 19–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Firtina Karagonlar, Z. et al. Effect of adipocyte-secreted factors on EpCAM+/CD133+ hepatic stem cell population. Biochem. Biophys. Res. Commun. 474, 482–490 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Arzumanyan, A. et al. Does the hepatitis B antigen HBx promote the appearance of liver cancer stem cells? Cancer Res. 71, 3701–3708 (2011). This study is the first to demonstrate that HBx can promote stemness in HCC pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fan, H., Zhang, H., Pascuzzi, P. E. & Andrisani, O. Hepatitis B virus x protein induces EpCAM expression via active DNA demethylation directed by rela in complex with EZH2 and TET2. Oncogene 35, 715–726 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Li, C. H. et al. Hepatic oval cell lines generate hepatocellular carcinoma following transfection with HBX gene and treatment with aflatoxin B1 in vivo. Cancer Lett. 311, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Wang, C. et al. Hepatitis B virus x protein promotes the stem-like properties of OV6+ cancer cells in hepatocellular carcinoma. Cell Death Dis. 8, e2560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, C. et al. Hepatitis B virus x (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine-treated HBx transgenic mice. Hepatology 55, 108–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Liu, Z. et al. Hepatitis B virus Pres1 facilitates hepatocellular carcinoma development by promoting appearance and self-renewal of liver cancer stem cells. Cancer Lett. 400, 149–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Kwon, Y. C. et al. Promotion of cancer stem-like cell properties in hepatitis C virus-infected hepatocytes. J. Virol. 89, 11549–11556 (2015). This is the first study to show that chronic HCV infection predisposes HCC cells towards the acquisition of CSC-like traits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ali, N. et al. Hepatitis C virus-induced cancer stem cell-like signatures in cell culture and murine tumor xenografts. J. Virol. 85, 12292–12303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Muramatsu, S. et al. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor–host interaction and clinical course. Hepatology 58, 218–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Xiao, P. et al. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of tumor-associated macrophages and epithelial–mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology 7, e1440166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wan, S. et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147, 1393–1404 (2014). This study shows that TAMs affect the activities of CSCs in the microenvironment of HCC; IL-6 produced by TAMs promotes the expansion of CD44+ liver CSCs and drives tumorigenesis through an altered STAT3 signalling cascade.

    Article  CAS  PubMed  Google Scholar 

  139. Chen, Y. et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial–mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp. Cell Res. 378, 41–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Fan, Q. M. et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-β1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Wang, Y., Wang, B., Xiao, S., Li, Y. & Chen, Q. miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90. J. Cell Biochem. 120, 3046–3055 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Lo, J. et al. Nuclear factor κB-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology 62, 534–545 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Yang, H. D. et al. HDAC6 suppresses let-7i-5p to elicit TSP1/CD47-mediated anti-tumorigenesis and phagocytosis of hepatocellular carcinoma. Hepatology 70, 1262–1279 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Barkal, A. A. et al. CD24 signalling through macrophage siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, T. K. et al. CD24+ liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9, 50–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Zhou, S. L. et al. A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology 70, 1214–1230 (2019). Data presented in this study demonstrate a positive-feedback loop involving cancer stem-like cells and TANs that controls HCC tumour progression and influences patient outcome.

    Article  CAS  PubMed  Google Scholar 

  147. Cheung, S. T., Cheung, P. F., Cheng, C. K., Wong, N. C. & Fan, S. T. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology 140, 344–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Cheung, P. F. et al. Granulin-epithelin precursor renders hepatocellular carcinoma cells resistant to natural killer cytotoxicity. Cancer Immunol. Res. 2, 1209–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Park, D. J. et al. EpCAM-high liver cancer stem cells resist natural killer cell-mediated cytotoxicity by upregulating CEACAM1. J. Immunother. Cancer 8, e000301 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Xu, M. et al. Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Exp. Cell Res. 351, 142–149 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Pardee, A. D., Shi, J. & Butterfield, L. H. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J. Immunol. 193, 5723–5732 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Zhong, M. et al. Induction of tolerogenic dendritic cells by activated TGF-β/AKT/SMAD2 signaling in RIG-I-deficient stemness-high human liver cancer cells. BMC Cancer 19, 439 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ruiz de Galarreta, M. et al. Beta-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9, 1124–1141 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Yamashita, T. et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 136, 1012–1024 (2009).

    Article  CAS  PubMed  Google Scholar 

  155. Kurebayashi, Y. et al. Landscape of immune microenvironment in hepatocellular carcinoma and its additional impact on histological and molecular classification. Hepatology 68, 1025–1041 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Zhong, F., Cheng, X., Sun, S. & Zhou, J. Transcriptional activation of PD-L1 by SOX2 contributes to the proliferation of hepatocellular carcinoma cells. Oncol. Rep. 37, 3061–3067 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Chan, L. C. et al. IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. J. Clin. Invest. 129, 3324–3338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ren, L. et al. Hypoxia-induced CCL28 promotes recruitment of regulatory T cells and tumor growth in liver cancer. Oncotarget 7, 75763–75773 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Mima, K. et al. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72, 3414–3423 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Yang, P. et al. TGF-β–miR-34a–CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 22, 291–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16, 1235–1244 (2015). This is the first study to detect abundant ELSs in HCC tumours and show that their presence contributes to an immunopathological microniche in which malignant HPCs thrive and maintain self-sufficiency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meylan, M. et al. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules. Clin. Cancer Res. 26, 4381–4389 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Calderaro, J. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).

    Article  PubMed  Google Scholar 

  164. Haraguchi, N. et al. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326–3339 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng, Y. B., Gong, J. H., Liu, X. J., Li, Y. & Zhen, Y. S. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis. Mol. Carcinog. 56, 1395–1404 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Toshiyama, R. et al. Poly(ethylene glycol)-poly(lysine) block copolymer-ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells. Oncogene 38, 244–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Lo, J. et al. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int. 36, 737–745 (2016).

    Article  CAS  PubMed  Google Scholar 

  168. Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer 127, 2209–2221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lindhofer, H. et al. Elimination of cancer stem cells (CD133+/EpCAM+) from malignant ascites by the trifunctional antibody catumaxomab: results from a pivotal phase II/III study. J. Clin. Oncol. 27, 3014–3014 (2009).

    Article  Google Scholar 

  170. Wang, T. et al. A bispecific protein rG7S–MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 372, 166–178 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Zhao, L. et al. Targeting CD133high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J. Immunother. 38, 217–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Huang, J. et al. Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133high cancer stem cells in vitro and in vivo. Clin. Immunol. 149, 156–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yang, X. D. et al. PARP inhibitor olaparib overcomes sorafenib resistance through reshaping the pluripotent transcriptome in hepatocellular carcinoma. Mol. Cancer 20, 20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kong, F. E. et al. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody–drug conjugate. Sci. Transl. Med. 13, eabb6282 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Yin, C. et al. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4α gene. Hepatology 48, 1528–1539 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, Y. et al. All-trans retinoic acid potentiates the chemotherapeutic effect of cisplatin by inducing differentiation of tumor initiating cells in liver cancer. J. Hepatol. 59, 1255–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Tan, J. L. et al. New high-throughput screening identifies compounds that reduce viability specifically in liver cancer cells that express high levels of SALL4 by inhibiting oxidative phosphorylation. Gastroenterology 157, 1615–1629.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Lee, T. K. et al. Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology 53, 160–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Wu, R. et al. Baicalein targets GTPase-mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition. Hepatology 68, 1726–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Marquardt, J. U. et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol. 63, 661–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sun, J. C. et al. Dendritic cells-mediated CTLs targeting hepatocellular carcinoma stem cells. Cancer Biol. Ther. 10, 368–375 (2010).

    Article  CAS  PubMed  Google Scholar 

  186. Choi, Y. J. et al. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS ONE 13, e0190638 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology 7, e1440169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Holczbauer, A. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 145, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Yuki, K., Cheng, N., Nakano, M. & Kuo, C. J. Organoid models of tumor immunology. Trends Immunol. 41, 652–664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yang, Z. F. et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47, 919–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Liu, S. et al. Expression of intercellular adhesion molecule 1 by hepatocellular carcinoma stem cells and circulating tumor cells. Gastroenterology 144, 1031–1041.e10 (2013).

    Article  PubMed  Google Scholar 

  192. Wang, L. et al. Quantified postsurgical small cell size CTCs and EpCAM+ circulating tumor stem cells with cytogenetic abnormalities in hepatocellular carcinoma patients determine cancer relapse. Cancer Lett. 412, 99–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Sun, Y. F. et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology 57, 1458–1468 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Guo, W. et al. Circulating tumor cells with stem-like phenotypes for diagnosis, prognosis, and therapeutic response evaluation in hepatocellular carcinoma. Clin. Cancer Res. 24, 2203–2213 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, R. et al. iNOS promotes CD24+CD133+ liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc. Natl Acad. Sci. USA 115, E10127–E10136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhu, Z. et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int. J. Cancer 126, 2067–2078 (2010).

    CAS  PubMed  Google Scholar 

  197. Lee, D. et al. Interaction of tetraspan(in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology 61, 1978–1997 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Yamashita, T. et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology 57, 1484–1497 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Yin, S. et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer 120, 1444–1450 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Suetsugu, A. et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 351, 820–824 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Ma, S. et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132, 2542–2556 (2007). This is one of the first studies to demonstrate that CD133 is a functional marker of liver CSCs in HCC.

    Article  CAS  PubMed  Google Scholar 

  203. Piao, L. S. et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett. 315, 129–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  204. Yamashita, T., Budhu, A., Forgues, M. & Wang, X. W. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer Res. 67, 10831–10839 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Yang, W. et al. Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 68, 4287–4295 (2008).

    Article  CAS  PubMed  Google Scholar 

  206. Yang, W. et al. OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J. Hepatol. 57, 613–620 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Zhao, W. et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit. Cancer Cell 23, 541–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Ma, S. et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res. 6, 1146–1153 (2008).

    Article  CAS  PubMed  Google Scholar 

  209. Chiba, T. et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44, 240–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  210. Haraguchi, N. et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cell 24, 506–513 (2006).

    Article  CAS  Google Scholar 

  211. Kawai, T. et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin. Cancer Res. 21, 3081–3091 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Kim, H. et al. Human hepatocellular carcinomas with “stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology 54, 1707–1717 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors regret omitting many reports from this Review owing to space constraints. The authors’ research was funded by the Research Grants Council of Hong Kong — Collaborative Research Fund (C7026-18G) as well as the ‘Laboratory for Synthetic Chemistry and Chemical Biology’ under the Health@InnoHK Program launched by Innovation and Technology Commission, The Government of Hong Kong Special Administration Region of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Contributions

T.K.-W.L., X.-Y.G. and S.M. discussed the article content, researched data for the article, wrote, reviewed and edited the manuscript.

Corresponding author

Correspondence to Stephanie Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks X. Wang, S. Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.KW., Guan, XY. & Ma, S. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications. Nat Rev Gastroenterol Hepatol 19, 26–44 (2022). https://doi.org/10.1038/s41575-021-00508-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00508-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing