Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism

Abstract

Certain members of the gut microbiota exhibit diurnal variations in relative abundance and function to serve as non-canonical drivers of host circadian rhythms and metabolism. Also known as microbial oscillators, these microorganisms entrain upon non-photic cues, primarily dietary, to modulate host metabolism by providing input to both circadian clock-dependent and clock-independent host networks. Microbial oscillators are generally promoted by plant-based, low-fat (lean) diets, and most are abolished by low-fibre, high-sugar, high-fat (Western) diets. The changes in microbial oscillators under different diets then affect host metabolism by altering central and peripheral host circadian clock functions and/or by directly affecting other metabolic targets. Here, we review the unique role of the gut microbiota as a non-photic regulator of host circadian rhythms and metabolism. We describe genetic, environmental, dietary and other host factors such as sex and gut immunity that determine the composition and behaviour of microbial oscillators. The mechanisms by which these oscillators regulate host circadian gene expression and metabolic state are further discussed. Because of the gut microbiota’s unique role as a non-photic driver of host metabolism and circadian rhythms, the development and clinical application of novel gut microbiota-related diagnostics and therapeutics hold great promise for achieving and maintaining metabolic health.

Key points

  • The gut microbiome has an essential role in transducing dietary cues used by central and peripheral host circadian clocks to regulate and adapt to shifts in energy balance.

  • Low-fat (lean) diets promote diurnal ‘oscillations’ of certain microbial populations that are metabolically relevant circadian drivers.

  • Western diets high in fat and refined sugars, and low in fibre influence key microbial oscillators to disrupt host circadian rhythms and metabolism to promote obesity.

  • The effects of microbial oscillators on host circadian networks and metabolism might involve the production of bioactive small molecules and metabolites.

  • Activation of nuclear receptors by microbiome-derived mediators is one of many mechanisms to regulate host transcriptional and epigenetic pathways that influence host circadian control of energy balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between host circadian clock and the gut microbiota.
Fig. 2: Lipid metabolism regulated through the control of host circadian network by the gut microbial components.

Similar content being viewed by others

References

  1. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Fenske, M. P., Nguyen, L. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep. 8, 2842 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R Soc. Lond. B Biol. Sci. 372, 20160246 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sartor, F. et al. Are there circadian clocks in non-photosynthetic bacteria? Biology 8, 41 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  5. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Gorkiewicz, G. & Moschen, A. Gut microbiome: a new player in gastrointestinal disease. Virchows Arch. 472, 159–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Guinane, C. M. & Cotter, P. D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 6, 295–308 (2013).

    Article  Google Scholar 

  9. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rijo-Ferreira, F. & Takahashi, J. S. Genomics of circadian rhythms in health and disease. Genome Med. 11, 82 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Castanon-Cervantes, O. et al. Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185, 5796–5805 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, S. T. et al. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26, 1241–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Maury, E., Ramsey, K. M. & Bass, J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ. Res. 106, 447–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Turek, F. W. et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wulff, K., Gatti, S., Wettstein, J. G. & Foster, R. G. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci. 11, 589–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Vinogradova, I. A., Anisimov, V. N., Bukalev, A. V., Semenchenko, A. V. & Zabezhinski, M. A. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. Aging 1, 855–865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, W., Ramsey, K. M., Marcheva, B. & Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Invest. 121, 2133–2141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peek, C. B. et al. Circadian regulation of cellular physiology. Methods Enzymol. 552, 165–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stephan, F. K. The "other" circadian system: food as a Zeitgeber. J. Biol. Rhythm. 17, 284–292 (2002).

    Article  Google Scholar 

  21. Chaix, A., Manoogian, E. N. C., Melkani, G. C. & Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 39, 291–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilkinson, M. J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31, 92–104.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen, S. E. & Golden, S. S. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 79, 373–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tseng, R. et al. Structural basis of the day-night transition in a bacterial circadian clock. Science 355, 1174–1180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pattanayak, G. K., Lambert, G., Bernat, K. & Rust, M. J. Controlling the cyanobacterial clock by synthetically rewiring metabolism. Cell Rep. 13, 2362–2367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulose, J. K., Cassone, C. V., Graniczkowska, K. B. & Cassone, V. M. Entrainment of the circadian clock of the enteric bacterium Klebsiella aerogenes by temperature cycles. iScience 19, 1202–1213 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paulose, J. K., Wright, J. M., Patel, A. G. & Cassone, V. M. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE 11, e0146643 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015). This study highlights the gut microbiota as transducers of dietary cues to affect host metabolism and suggests that microbial metabolites are one of the mediators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016). This study extensively investigated the relationship between microbial oscillations and host molecular network and metabolome.

    Article  CAS  PubMed  Google Scholar 

  32. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frazier, K. et al. High fat diet disrupts diurnal interactions between REG3γ and small intestinal gut microbes resulting in metabolic dysfunction. Preprint at bioRxiv https://doi.org/10.1101/2020.06.17.130393 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Martinez, K. B., Leone, V. & Chang, E. B. Western diets, gut dysbiosis, and metabolic diseases: are they linked? Gut Microbes 8, 130–142 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reitmeier, S. et al. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28, 258–272.e6 (2020). This study demonstrates translational potential of microbial oscillations as predictive markers of metabolic disease by investigating human samples.

    Article  CAS  PubMed  Google Scholar 

  38. Khalif, I. L., Quigley, E. M. M., Konovitch, E. A. & Maximova, I. D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 37, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Voigt, R. M. et al. Circadian disorganization alters intestinal microbiota. PLoS ONE 9, e97500 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382.e8 (2019). This study demonstrates that sex-specific characteristics of host circadian gene expression in different organs can be affected by the gut microbiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Froy, O. & Miskin, R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging 2, 7–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greenwell, B. J. et al. Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep. 27, 649–657.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Zeb, F. et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br. J. Nutr. 123, 1216–1226 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Gabel, K. et al. Effect of time restricted feeding on the gut microbiome in adults with obesity: a pilot study. Nutr. Health 26, 79–85 (2020).

    Article  PubMed  Google Scholar 

  46. Loonen, L. M. et al. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol. 7, 939–947 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scheiermann, C., Gibbs, J., Ince, L. & Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 18, 423–437 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Hand, L. E. et al. The circadian clock regulates inflammatory arthritis. FASEB J. 30, 3759–3770 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pagel, R. et al. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB J. 31, 4707–4719 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, X. et al. TH17 cell differentiation is regulated by the circadian clock. Science 342, 727–730 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tognini, P., Thaiss, C. A., Elinav, E. & Sassone-Corsi, P. Circadian coordination of antimicrobial responses. Cell Host Microbe 22, 185–192 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Gibbs, J. E. et al. The nuclear receptor REV-ERBα mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc. Natl Acad. Sci. USA 109, 582–587 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153, 812–827 (2013). This study suggests that TLRs are an important interface where the interplay between the host circadian clock and the gut microbiota is regulated, resulting in metabolic changes in the host.

    Article  CAS  PubMed  Google Scholar 

  55. Murakami, M. et al. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep. 17, 1292–1303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, Y. et al. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357, 912–916 (2017). This study identifies a specific molecular pathway through which the gut microbiota regulates host metabolism, which also involves ILCs, suggesting that the intestinal immune system can be involved in the interactions between the gut microbiota and host circadian control of metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Montagner, A. et al. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 6, 20127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oh, H. Y. P. et al. Depletion of gram-positive bacteria impacts hepatic biological functions during the light phase. Int. J. Mol. Sci. 20, 812 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  59. Kennedy, E. A., King, K. Y. & Baldridge, M. T. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 9, 1534 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Govindarajan, K. et al. Unconjugated bile acids influence expression of circadian genes: a potential mechanism for microbe-host crosstalk. PLoS ONE 11, e0167319 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Martinez, K. B., Pierre, J. F. & Chang, E. B. The gut microbiota: the gateway to improved metabolism. Gastroenterol. Clin. North. Am. 45, 601–614 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zwighaft, Z. et al. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab. 22, 874–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Zarrinpar, A. et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 9, 2872 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Luo, Y. et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry 8, 187 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–264, e119 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Yan, X. et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ. Res. 126, 839–853 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Zhong, X. et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation. Cell Rep. 25, 1816–1828.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuang, Z. et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365, 1428–1434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Solt, L. A., Kojetin, D. J. & Burris, T. P. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med. Chem. 3, 623–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, L. & Yang, G. PPARs integrate the mammalian clock and energy metabolism. PPAR Res. 2014, 653017 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Guerre-Millo, M. et al. PPAR-α-null mice are protected from high-fat diet-induced insulin resistance. Diabetes 50, 2809–2814 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Rosen, E. D. et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl Acad. Sci. USA 99, 303–308 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Luquet, S. et al. Roles of PPAR delta in lipid absorption and metabolism: a new target for the treatment of type 2 diabetes. Biochim. Biophys. Acta 1740, 313–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Monsalve, F. A., Pyarasani, R. D., Delgado-Lopez, F. & Moore-Carrasco, R. Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Med. Inflamm. 2013, 549627 (2013).

    Article  CAS  Google Scholar 

  79. Bellet, M. M. et al. Circadian clock regulates the host response to Salmonella. Proc. Natl Acad. Sci. USA 110, 9897–9902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carroll, R. G., Timmons, G. A., Cervantes-Silva, M. P., Kennedy, O. D. & Curtis, A. M. Immunometabolism around the clock. Trends Mol. Med. 25, 612–625 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by grants from NIDDK (R01DK115221) and the Center for Interdisciplinary Study of Inflammatory Intestinal Diseases (P30 DK42086).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed/edited the manuscript before submission. H.C. researched data for the article.

Corresponding author

Correspondence to Eugene B. Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks D. Haller, A. Zarrinpar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Rao, M.C. & Chang, E.B. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol 18, 679–689 (2021). https://doi.org/10.1038/s41575-021-00452-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00452-2

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology