Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helicobacter pylori infection and antibiotic resistance — from biology to clinical implications

Abstract

Helicobacter pylori is a major human pathogen for which increasing antibiotic resistance constitutes a serious threat to human health. Molecular mechanisms underlying this resistance have been intensively studied and are discussed in this Review. Three profiles of resistance — single drug resistance, multidrug resistance and heteroresistance — seem to occur, probably with overlapping fundamental mechanisms and clinical implications. The mechanisms that have been most studied are related to mutational changes encoded chromosomally and disrupt the cellular activity of antibiotics through target-mediated mechanisms. Other biological attributes driving drug resistance in H. pylori have been less explored and this could imply more complex physiological changes (such as impaired regulation of drug uptake and/or efflux, or biofilm and coccoid formation) that remain largely elusive. Resistance-related attributes deployed by the pathogen cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes. Subsequent to the increasing antibiotic resistance, a substantial drop in H. pylori treatment efficacy has been noted globally. In the absence of an efficient vaccine, enhanced efforts are needed for setting new treatment strategies and for a better understanding of the emergence and spread of drug-resistant bacteria, as well as for improving diagnostic tools that can help optimize current antimicrobial regimens.

Key points

  • Antibiotic resistance in Helicobacter pylori is a global threat to human health.

  • Attributes driving this resistance include mainly mutations encoded chromosomally but also physiological changes such as impaired regulation of drug uptake and/or efflux, and biofilm and coccoid formation.

  • H. pylori frequently displays three different profiles of resistance including single drug resistance, multidrug resistance and heteroresistance, probably with nested fundamental mechanisms and clinical implications.

  • In individual patients, mechanisms of resistance deployed by H. pylori cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes.

  • At the population scale, increasing antibiotic resistance has globally led to a substantial decrease in H. pylori treatment efficacy and probably an increased risk of complications such as peptic ulcers and gastric cancer.

  • To fight this resistance, efforts needed include development of efficient vaccines, setting new treatment strategies, improving diagnostic tools for optimizing clinical decisions, and a better understanding of driving mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological attributes of resistance in Helicobacter pylori species.
Fig. 2: Scanning electron microscopy images of a biofilm-forming Helicobacter pylori strain.
Fig. 3: Development of heteroresistance in Helicobacter pylori species.

Similar content being viewed by others

References

  1. Hooi, J. K. et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153, 420–429 (2017).

    Article  PubMed  Google Scholar 

  2. Yamaoka, Y. How to eliminate gastric cancer-related death worldwide? Nat. Rev. Clin. Oncol. 15, 407–408 (2018).

    Article  PubMed  Google Scholar 

  3. Sugano, K. et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 64, 1353–1367 (2015).

    Article  PubMed  Google Scholar 

  4. Shiotani, A., Lu, H., Dore, M. P. & Graham, D. Y. Treating Helicobacter pylori effectively while minimizing misuse of antibiotics. Cleve. Clin. J. Med. 84, 310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Graham D. Y. in Helicobacter pylori (eds Hunt, R. H. & Tytgat, G. N. J.) 531-537 (Springer, 1994).

  6. Malfertheiner, P. et al. Management of Helicobacter pylori infection — the Maastricht V/Florence consensus report. Gut 66, 6–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Thung, I. et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 43, 514–533 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Kasahun, G. G., Demoz, G. T. & Desta, D. M. Primary resistance pattern of Helicobacter pylori to antibiotics in adult population: a systematic review. Infect. Drug. Resistance 13, 1567–1573 (2020).

    Article  Google Scholar 

  9. De Francesco, V. et al. Worldwide H. pylori antibiotic resistance: a systematic review. J. Gastrointest. Liver Dis. 19, 409–414 (2010).

    Google Scholar 

  10. Savoldi, A., Carrara, E., Graham, D. Y., Conti, M. & Tacconelli, E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology 155, 1372–1382.e17 (2018).

    Article  PubMed  Google Scholar 

  11. Li, B.-Z. et al. Comparative effectiveness and tolerance of treatments for Helicobacter pylori: systematic review and network meta-analysis. BMJ 351, h4052 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hu, Y., Zhu, Y. & Lu, N.-H. Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front. Cell. Infect. Microbiol. 7, 168 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fallone, C. A., Moss, S. F. & Malfertheiner, P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology 157, 44–53 (2019).

    Article  PubMed  Google Scholar 

  14. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    Article  PubMed  Google Scholar 

  15. Tuan, V. P. et al. A next-generation sequencing-based approach to identify genetic determinants of antibiotic resistance in Cambodian Helicobacter pylori clinical isolates. J. Clin. Med. 8, 858 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  16. Lauener, F. N. et al. Genetic determinants and prediction of antibiotic resistance phenotypes in Helicobacter pylori. J. Clin. Med. 8, 53 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  17. Yonezawa, H., Osaki, T. & Kamiya, S. Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. Biomed Res. Int. 2015, 914791 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang, Z., Liu, Z.-Q., Zheng, P.-Y., Tang, F.-A. & Yang, P.-C. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J. Gastroenterol. 16, 1279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong, Y. & Yuan, Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit. Rev. Microbiol. 44, 371–392 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Tshibangu-Kabamba, E. et al. Next-generation sequencing of the whole bacterial genome for tracking molecular insight into the broad-spectrum antimicrobial resistance of Helicobacter pylori clinical isolates from the Democratic Republic of Congo. Microorganisms 8, 887 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  21. Binh, T. T. et al. Discovery of novel mutations for clarithromycin resistance in Helicobacter pylori by using next-generation sequencing. J. Antimicrob. Chemother. 69, 1796–1803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gerrits, M. et al. Alterations in penicillin-binding protein 1A confer resistance to β-lactam antibiotics in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2229–2233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakamura, M. et al. Gastric juice, gastric tissue and blood antibiotic concentrations following omeprazole, amoxicillin and clarithromycin triple therapy. Helicobacter 8, 294–299 (2003).

    Article  PubMed  Google Scholar 

  24. Fallone, C. A. et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 151, 51–69.e14 (2016).

    Article  PubMed  Google Scholar 

  25. Grayson, M., Eliopoulos, G., Ferraro, M. & Moellering, R. Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 8, 888–889 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Zullo, A. The current role of dual therapy for treatment of Helicobacter pylori: back to the future? Eur. J. Gastroenterol. Hepatol. 32, 555–556 (2020).

    Article  PubMed  Google Scholar 

  27. Suarez, C. & Gudiol, F. Beta-lactam antibiotics [Spanish]. Enferm. Infecc. Microbiol. Clin. 27, 116–129 (2009).

    PubMed  Google Scholar 

  28. Livermore, D. M. beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8, 557–584 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerrits, M. M. et al. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 11, 181–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto, T. et al. A change in PBP1 is involved in amoxicillin resistance of clinical isolates of Helicobacter pylori. J. Antimicrob. Chemother. 50, 849–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Rimbara, E., Noguchi, N., Kawai, T. & Sasatsu, M. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J. Antimicrob. Chemother. 61, 995–998 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, Y., Zhang, M., Lu, B. & Dai, J. Helicobacter pylori and antibiotic resistance, a continuing and intractable problem. Helicobacter 21, 349–363 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Kwon, D. H. et al. High-level β-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47, 2169–2178 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeLoney, C. R. & Schiller, N. L. Characterization of an in vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob. Agents Chemother. 44, 3368–3373 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dore, M. P. et al. Amoxycillin tolerance in Helicobacter pylori. J. Antimicrob. Chemother. 43, 47–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Drusano, G. et al. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clin. Microbiol. Infect. 4, 2S27–2S41 (1998).

    Article  CAS  Google Scholar 

  37. Correia, S., Poeta, P., Hébraud, M., Capelo, J. L. & Igrejas, G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66, 551–559 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Aldred, K. J., Kerns, R. J. & Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Moore, R. A., Beckthold, B., Wong, S., Kureishi, A. & Bryan, L. E. Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob. Agents Chemother. 39, 107–111 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. Acquisition of double mutation in gyrA caused high resistance to sitafloxacin in Helicobacter pylori after unsuccessful eradication with sitafloxacin-containing regimens. United European Gastroenterol. J. 6, 391–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Miyachi, H. et al. Primary levofloxacin resistance and gyrA/B mutations among Helicobacter pylori Japan. Helicobacter 11, 243–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rodvold, K. A. Clinical pharmacokinetics of clarithromycin. Clin. pharmacokinet. 37, 385–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Erah, P., Goddard, A., Barrett, D., Shaw, P. & Spiller, R. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J. Antimicrob. Chemother. 39, 5–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Gaynor, M. & Mankin, A. S. Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top. Med. Chem. 3, 949–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Versalovic, J. et al. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 40, 477–480 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao, Q., Li, Y., Zhang, Z.-J., Liu, Y. & Gao, H. New mutation points in 23S rRNA gene associated with Helicobacter pylori resistance to clarithromycin in northeast China. World J. Gastroenterol. 10, 1075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Debets-Ossenkopp, Y., Namavar, F. & MacLaren, D. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 14, 353–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Dingsdag, S. A. & Hunter, N. Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 73, 265–279 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Hoffman, P. S., Goodwin, A., Johnsen, J., Magee, K. & van Zanten, S. V. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 178, 4822–4829 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwon, D.-H. et al. Analysis of RdxA and involvement of additional genes encoding NAD(P)H flavin oxidoreductase (FrxA) and ferredoxin-like protein (FdxB) in metronidazole resistance of Helicobacter pylori. Antimicrob. Agents Chemother. 44, 2133–2142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon, D. H., Kato, M., El-Zaatari, F. A., Osato, M. S. & Graham, D. Y. Frame-shift mutations in NAD(P)H flavin oxidoreductase encoding gene (FrxA) from metronidazole resistant Helicobacter pylori ATCC43504 and its involvement in metronidazole resistance. FEMS Microbiol. Lett. 188, 197–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Martínez-Júlvez, M. et al. Structure of RdxA–an oxygen-insensitive nitroreductase essential for metronidazole activation in Helicobacter pylori. FEBS J. 279, 4306–4317 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Goodwin, A. et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (RdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol. Microbiol. 28, 383–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Sisson, G. et al. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA+ (nitroreductase) gene. J. Bacteriol. 182, 5091–5096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeong, J.-Y. et al. Sequential inactivation of RdxA (HP0954) and FrxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J. Bacteriol. 182, 5082–5090 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Albert, T. J. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods 2, 951–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, M. A. & Edwards, D. I. Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 39, 347–353 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Choi, S. S., Chivers, P. T. & Berg, D. E. Point mutations in Helicobacter pylori’s fur regulatory gene that alter resistance to metronidazole, a prodrug activated by chemical reduction. PLoS ONE 6, e18236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang, K.-C., Ho, S.-W., Yang, J.-C. & Wang, J.-T. Isolation of a genetic locus associated with metronidazole resistance in Helicobacter pylori. Biochem. Biophys. Res. Commun. 236, 785–788 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Thompson, S. A. & Blaser, M. J. Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect. Immun. 63, 2185–2193 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tsugawa, H. et al. Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. Biochem. biophys. Res. Commun. 404, 656–660 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Tsugawa, H. et al. Two amino acids mutation of ferric uptake regulator determines Helicobacter pylori resistance to metronidazole. Antioxid. Redox Signal. 14, 15–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Tsugawa, H., Suzuki, H., Matsuzaki, J., Hirata, K. & Hibi, T. FecA1, a bacterial iron transporter, determines the survival of Helicobacter pylori in the stomach. Free Radic. Biol. Med. 52, 1003–1010 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Lacey, S., Moss, S. & Taylor, G. Metronidazole uptake by sensitive and resistant isolates of Helicobacter pylori. J. Antimicrob. Chemother. 32, 393–400 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Moore, R. A., Beckthold, B. & Bryan, L. Metronidazole uptake in Helicobacter pylori. Can. J. Microbiol. 41, 746–749 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Graham, D. Y. Antibiotic resistance in Helicobacter pylori: implications for therapy. Gastroenterology 115, 1272–1277 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ross, J. I., Eady, E. A., Cove, J. H. & Cunliffe, W. J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42, 1702–1705 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dailidiene, D. et al. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Antimicrob. Agents Chemother. 46, 3940–3946 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gerrits, M. M., de Zoete, M. R., Arents, N. L., Kuipers, E. J. & Kusters, J. G. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 46, 2996–3000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, J. Y. et al. Tetracycline-resistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes. Antimicrob. Agents Chemother. 49, 578–583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aristoff, P. A., Garcia, G. A., Kirchhoff, P. D. & Showalter, H. H. Rifamycins–obstacles and opportunities. Tuberculosis 90, 94–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Finch, C. K., Chrisman, C. R., Baciewicz, A. M. & Self, T. H. Rifampin and rifabutin drug interactions: an update. Arch. Intern. Med. 162, 985–992 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Mori, H. et al. Rifabutin-based 10-day and 14-day triple therapy as a third-line and fourth-line regimen for Helicobacter pylori eradication: a pilot study. United European Gastroenterol. J. 4, 380–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Gisbert, J. P. & Pajares, J. M. Helicobacter pylori “rescue” therapy after failure of two eradication treatments. Helicobacter 10, 363–372 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Nishizawa, T. et al. Helicobacter pylori resistance to rifabutin in the last 7 years. Antimicrob. Agents Chemother. 55, 5374–5375 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunin, C. M. Antimicrobial activity of rifabutin. Clin. Infect. Dis. 22, S3–S14 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Heep, M., Beck, D., Bayerdörffer, E. & Lehn, N. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob. Agents Chemother. 43, 1497–1499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heep, M., Rieger, U., Beck, D. & Lehn, N. Mutations in the beginning of the rpoBGene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44, 1075–1077 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. 10-Year trends in Helicobacter pylori eradication rates by sitafloxacin-based third-line rescue therapy. Digestion 101, 644–650 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Siavoshi, F., Saniee, P. & Malekzadeh, R. Effective antimicrobial activity of rifabutin against multidrug-resistant Helicobacter pylori. Helicobacter 23, e12531 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Chey, W. D., Leontiadis, G. I., Howden, C. W. & Moss, S. F. ACG Clinical Guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol. 112, 212–239 (2017).

    Article  PubMed  Google Scholar 

  83. Sisson, G. et al. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrobial agents chemotherapy 46, 2116–2123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Su, Z. et al. Mutations in Helicobacter pylori porD and oorD genes may contribute to furazolidone resistance. Croatian Med. J. 47, 410–415 (2006).

    CAS  Google Scholar 

  85. Buzás, G. M. & Józan, J. Nitrofuran-based regimens for the eradication of Helicobacter pylori infection. J. Gastroenterol. Hepatol. 22, 1571–1581 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Shao, Y. et al. Antibiotic resistance of Helicobacter pylori to 16 antibiotics in clinical patients. J. Clin. Lab. Anal. 32, e22339 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Moghaddam, A. B. et al. Sensitivity to nitazoxanide among metronidazole resistant Helicobacter pylori strains in patients with gastritis. Med. J. Islamic Repub. Iran. 30, 405 (2016).

    Google Scholar 

  88. Lee, S., Sneed, G. T. & Brown, J. N. Treatment of Helicobacter pylori with nitazoxanide-containing regimens: a systematic review. Infect. Dis. 52, 381–390 (2020).

    Article  CAS  Google Scholar 

  89. Ji, C.-R. et al. Safety of furazolidone-containing regimen in Helicobacter pylori infection: a systematic review and meta-analysis. BMJ open. 10, e037375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhuge, L. et al. Furazolidone treatment for Helicobacter pylori infection: a systematic review and meta-analysis. Helicobacter 23, e12468 (2018).

    Article  PubMed  CAS  Google Scholar 

  91. Graham, D. Y. & Lu, H. Furazolidone in Helicobacter pylori therapy: misunderstood and often unfairly maligned drug told in a story of French bread. Saudi J. Gastroenterol. 18, 1–2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on nitrofurans and their metabolites in food. EFSA J. 13, 4140 (2015).

    Google Scholar 

  93. International Agency for Research on Cancer (IARC). IARC monographs on the identification of carcinogenic hazards to humans. (World Health Organization, 2019).

  94. Zullo, A., Ierardi, E., Hassan, C. & De Francesco, V. Furazolidone-based therapies for Helicobacter pylori infection: a pooled-data analysis. Saudi J. Gastroenterol. 18, 11–17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Boyanova, L., Hadzhiyski, P., Kandilarov, N., Markovska, R. & Mitov, I. Multidrug resistance in Helicobacter pylori: current state and future directions. Expert Rev. Clin. Pharmacol. 12, 909–915 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Hirata, K. et al. Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S75–S79 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Ge, X. et al. Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). Antimicrob. Agents Chemother. 62, e00957-18 (2018).

  98. Bos, M. P., Tefsen, B., Geurtsen, J. & Tommassen, J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl Acad. Sci. 101, 9417–9422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stark, R. et al. Biofilm formation by Helicobacter pylori. Lett. Appl. Microbiol. 28, 121–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Cole, S. P., Harwood, J., Lee, R., She, R. & Guiney, D. G. Characterization of monospecies biofilm formation by Helicobacter pylori. J. Bacteriol. 186, 3124–3132 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carron, M. A., Tran, V. R., Sugawa, C. & Coticchia, J. M. Identification of Helicobacter pylori biofilms in human gastric mucosa. J. Gastrointest. Surg. 10, 712–717 (2006).

    Article  PubMed  Google Scholar 

  102. Yonezawa, H. et al. Assessment of in vitro biofilm formation by Helicobacter pylori. J. Gastroenterol. Hepatol. 25, S90–S94 (2010).

    Article  PubMed  Google Scholar 

  103. Cellini, L. et al. Dynamic colonization of Helicobacter pylori in human gastric mucosa. Scand. J. Gastroenterol. 43, 178–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Greene, C., Vadlamudi, G., Newton, D., Foxman, B. & Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control. 44, e65–e71 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Madsen, J. S., Burmølle, M., Hansen, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Burmølle, M. et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol. 72, 3916–3923 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Huang, J. Y., Goers Sweeney, E., Guillemin, K. & Amieva, M. R. Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLoS Pathog. 13, e1006118 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mackay, W., Gribbon, L., Barer, M. & Reid, D. Biofilms in drinking water systems: a possible reservoir for Helicobacter pylori. J. Appl. Microbiol. 85, 52S–59S (1998).

    Article  PubMed  Google Scholar 

  109. Berry, V., Jennings, K. & Woodnutt, G. Bactericidal and morphological effects of amoxicillin on Helicobacter pylori. Antimicrob. Agents Chemother. 39, 1859–1861 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bode, G., Mauch, F. & Malfertheiner, P. The coccoid forms of Helicobacter pylori. Criteria for their viability. Epidemiol. Infect. 111, 483–490 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarem, M. & Corti, R. Role of Helicobacter pylori coccoid forms in infection and recrudescence. Gastroenterol. Hepatol. 39, 28–35 (2016).

    Article  PubMed  Google Scholar 

  112. Kadkhodaei, S., Siavoshi, F. & Akbari Noghabi, K. Mucoid and coccoid Helicobacter pylori with fast growth and antibiotic resistance. Helicobacter 25, e12678 (2020).

    Article  PubMed  Google Scholar 

  113. Hathroubi, S., Servetas, S. L., Windham, I., Merrell, D. S. & Ottemann, K. M. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol. Mol. Biol. Rev. 82, e00001-18 (2018).

  114. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Falagas, M., Makris, G., Dimopoulos, G. & Matthaiou, D. Heteroresistance: a concern of increasing clinical significance? Clin. Microbiol. Infect. 14, 101–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Li, J. et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 50, 2946–2950 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ailloud, F. et al. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 1–13 (2019).

    Article  CAS  Google Scholar 

  118. Sun, L. et al. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance. J. Clin. Microbiol. 56, e00019-18 (2018).

  119. Kocsmár, É. et al. Helicobacter pylori heteroresistance to clarithromycin in adults – New data by in situ detection and improved concept. Helicobacter 25, e12670 (2020).

    Article  PubMed  CAS  Google Scholar 

  120. Kao, C.-Y. et al. Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. Infect. Genet. Evol. 23, 196–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Hamidi, S. et al. Antibiotic resistance and clonal relatedness of Helicobacter pylori strains isolated from stomach biopsy specimens in northeast of Iran. Helicobacter 25, e12684 (2020).

    Article  PubMed  Google Scholar 

  122. Rizvanov, A., Haertlé, T., Bogomolnaya, L. & Talebi Bezmin Abadi, A. Helicobacter pylori and its antibiotic heteroresistance: a neglected issue in published guidelines. Front. Microbiol. 10, 1796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Arévalo-Jaimes, B. V. et al. Genotypic determination of resistance and heteroresistance to clarithromycin in Helicobacter pylori isolates from antrum and corpus of Colombian symptomatic patients. BMC Infect. Dis. 19, 546 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Matteo, M. J., Granados, G., Olmos, M., Wonaga, A. & Catalano, M. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates. J. Antimicrob. Chemother. 61, 474–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Alebouyeh, M. et al. Impacts of H. pylori mixed-infection and heteroresistance on clinical outcomes. Gastroenterol. Hepatol. Bed Bench 8, S1–S5 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. Kim, J. J., Kim, J. G. & Kwon, D. H. Mixed-infection of antibiotic susceptible and resistant Helicobacter pylori isolates in a single patient and underestimation of antimicrobial susceptibility testing. Helicobacter 8, 202–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Farzi, N. et al. Characterization of clarithromycin heteroresistance among Helicobacter pylori strains isolated from the antrum and corpus of the stomach. Folia Microbiol. 64, 143–151 (2019).

    Article  CAS  Google Scholar 

  128. Dore, M. P., Leandro, G., Realdi, G., Sepulveda, A. R. & Graham, D. Y. Effect of pretreatment antibiotic resistance to metronidazole and clarithromycin on outcome of Helicobacter pylori therapy. Dig. Dis. Sci. 45, 68–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Fischbach, L. & Evans, E. L. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. Aliment. Pharmacol. Ther. 26, 343–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Gisbert, J. P. & Calvet, X. Update on non-bismuth quadruple (concomitant) therapy for eradication of Helicobacter pylori. Clin. Exp. Gastroenterol. 5, 23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Greenberg, E. R. et al. 14-day triple, 5-day concomitant, and 10-day sequential therapies for Helicobacter pylori infection in seven Latin American sites: a randomised trial. Lancet 378, 507–514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Luther, J. et al. Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: systematic review and meta-analysis of efficacy and tolerability. Am. J. Gastroenterol. 105, 65–73 (2010).

    Article  PubMed  Google Scholar 

  133. Zou, Y. et al. The effect of antibiotic resistance on Helicobacter pylori eradication efficacy: a systematic review and meta-analysis. Helicobacter 25, e12714 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Malfertheiner, P. et al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy: a randomised, open-label, non-inferiority, phase 3 trial. Lancet 377, 905–913 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Smith, S. M., O’Morain, C. & McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol. 20, 9912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mégraud, F. & Lehours, P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin. Microbiol. Rev. 20, 280–322 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Debets-Ossenkopp, Y., Brinkman, A., Kuipers, E., Vandenbroucke-Grauls, C. & Kusters, J. Explaining the bias in the 23S rRNA gene mutations associated with clarithromycin resistance in clinical isolates of Helicobacter pylori. Antimicrob. Agents Chemother. 42, 2749–2751 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dore, M. P. et al. Amoxycillin resistance is one reason for failure of amoxycillin-omeprazole treatment of Helicobacter pylori infection. Aliment. Pharmacol. ther. 12, 635–639 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Ecclissato, C. et al. Increased primary resistance to recommended antibiotics negatively affects Helicobacter pylori eradication. Helicobacter 7, 53–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Trieber, C. A. & Taylor, D. E. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol. 184, 2131–2140 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Realdi, G. et al. Pretreatment antibiotic resistance in Helicobacter pylori infection: results of three randomized controlled studies. Helicobacter 4, 106–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Nishizawa, T. et al. Enhancement of amoxicillin resistance after unsuccessful Helicobacter pylori eradication. Antimicrob. Agents Chemother. 55, 3012–3014 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Graham, D. Y., Lee, Y. C. & Wu, M. S. Rational Helicobacter pylori therapy: evidence-based medicine rather than medicine-based evidence. Clin. Gastroenterol. Hepatol. 12, 177–186.e3 (2014).

    Article  PubMed  Google Scholar 

  144. Noach, L., Rolf, T. & Tytgat, G. Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa. J. Clin. Pathol. 47, 699–704 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. De Francesco, V. et al. Role of MIC levels of resistance to clarithromycin and metronidazole in Helicobacter pylori eradication. J. Antimicrob. Chemother. 74, 772–774 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. Graham, D. Y. et al. Factors influencing the eradication of Helicobacter pylori with triple therapy. Gastroenterology 102, 493–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Buring, S. M., Winner, L. H., Hatton, R. C. & Doering, P. L. Discontinuation rates of Helicobacter pylori treatment regimens: a meta-analysis. Pharmacotherapy 19, 324–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Tang, H.-L., Li, Y., Hu, Y.-F., Xie, H.-G. & Zhai, S.-D. Effects of CYP2C19 loss-of-function variants on the eradication of H. pylori infection in patients treated with proton pump inhibitor-based triple therapy regimens: a meta-analysis of randomized clinical trials. PLoS ONE 8, e62162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Horikawa, C. et al. High risk of failing eradication of Helicobacter pylori in patients with diabetes: a meta-analysis. Diabetes Res. Clin. Pract. 106, 81–87 (2014).

    Article  PubMed  Google Scholar 

  150. Kaneko, F. et al. High prevalence rate of Helicobacter pylori resistance to clarithromycin during long-term multiple antibiotic therapy for chronic respiratory disease cause by nontuberculous mycobacteria. Aliment. Pharmacol. Ther. 20 (Suppl. 1), 62–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Adamsson, I., Edlund, C. & Nord, C. Impact of treatment of Helicobacter pylori on the normal gastrointestinal microflora. Clin. Microbiol. Infect. 6, 175–177 (2000).

    Article  CAS  PubMed  Google Scholar 

  152. Jakobsson, H. et al. Macrolide resistance in the normal microbiota after Helicobacter pylori treatment. Scand. J. Infect. Dis. 39, 757–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, L. et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: an open-label, randomized clinical trial. EBioMedicine 35, 87–96 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yang, L. et al. Helicobacter pylori infection aggravates dysbiosis of gut microbiome in children with gastritis. Front. Cell. Infect. Microbiol. 9, 375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wu, L. et al. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer. Sci. Rep. 9, 12874 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Iino, C. et al. Infection of Helicobacter pylori and atrophic gastritis influence Lactobacillus in gut microbiota in a Japanese population. Front. Immunol. 9, 712 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Guo, Y. et al. Effect of Helicobacter pylori on gastrointestinal microbiota: a population-based study in Linqu, a high-risk area of gastric cancer. Gut 69, 1598–1607 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Megraud, F. Resistance of Helicobacter pylori to antibiotics. Aliment. Pharmacol. Ther. 11, 43–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. Hombach, M., Zbinden, R. & Böttger, E. C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiol. 13, 225 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Smith, S., Fowora, M. & Pellicano, R. Infections with Helicobacter pylori and challenges encountered in Africa. World J. Gastroenterol. 25, 3183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Şen, N., Yilmaz, Ö., Şımşek, İ., Küpelıoğlu, A. A. & Ellıdokuz, H. Detection of Helicobacter pylori DNA by a simple stool PCR method in adult dyspeptic patients. Helicobacter 10, 353–359 (2005).

    Article  PubMed  Google Scholar 

  162. Clayton, C., Kleanthous, H., Coates, P., Morgan, D. & Tabaqchali, S. Sensitive detection of Helicobacter pylori by using polymerase chain reaction. J. Clin. Microbiol. 30, 192–200 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van Doorn, L.-J. et al. Accurate prediction of macrolide resistance in Helicobacter pylori by a PCR line probe assay for detection of mutations in the 23S rRNA gene: multicenter validation study. Antimicrob. Agents Chemother. 45, 1500–1504 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Schabereiter-Gurtner, C. et al. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 42, 4512–4518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mitui, M., Patel, A., Leos, N. K., Doern, C. D. & Park, J. Y. Novel Helicobacter pylori sequencing test identifies high rate of clarithromycin resistance. J. Pediatric Gastroenterol. Nutr. 59, 6–9 (2014).

    Article  CAS  Google Scholar 

  166. Rüssmann, H. et al. Rapid and accurate determination of genotypic clarithromycin resistance in cultured Helicobacter pylori by fluorescent in situ hybridization. J. Clin. Microbiol. 39, 4142–4144 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nishizawa, T. & Suzuki, H. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing. Front. Mol. Biosci. 1, 19 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Nishizawa, T. et al. Rapid detection of point mutations conferring resistance to fluoroquinolone in gyrA of Helicobacter pylori by allele-specific PCR. J. Clin. Microbiol. 45, 303–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Patel, S. K., Pratap, C. B., Jain, A. K., Gulati, A. K. & Nath, G. Diagnosis of Helicobacter pylori: what should be the gold standard? World J. Gastroenterol. 20, 12847–12859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ciesielska, U., Jagoda, E. & Marciniak, Z. Value of PCR technique in detection of Helicobacter pylori in paraffin-embedded material. Folia Histochem. Cytobiol. 40, 129–130 (2002).

    CAS  PubMed  Google Scholar 

  171. Maljkovic, I. B. et al. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: approaches, applications, and considerations for development of laboratory capacity. J. Infect. Dis. 221 (Suppl. 3), 292–307 (2020).

    Google Scholar 

  172. Hendriksen, R. S. et al. Using genomics to track global antimicrobial resistance. Front. Public Health 7, 242 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Su, M., Satola, S. W. & Read, T. D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol. 57, e01405-18 (2019).

  174. Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Goldberg, B., Sichtig, H., Geyer, C., Ledeboer, N. & Weinstock, G. M. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6, e01888-15e01888-15 (2015).

  176. MacCannell, D. Next generation sequencing in clinical and public health microbiology. Clin. Microbiol. Newsl. 38, 169–176 (2016).

    Article  Google Scholar 

  177. Moss, E. L., Maghini, D. G. & Bhatt, A. S. Complete, closed bacterial genomes from microbiomes using nanopore sequencing. Nat. Biotechnol. 38, 701–707 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. D’Elios, M. M. & Czinn, S. J. Immunity, inflammation, and vaccines for Helicobacter pylori. Helicobacter 19, 19–26 (2014).

    Article  PubMed  CAS  Google Scholar 

  179. Zeng, M. et al. Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1457–1464 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Graham, D. Y. & Dore, M. P. Helicobacter pylori therapy: a paradigm shift. Expert Rev. Anti Infect. Ther. 14, 577–585 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hori, Y. et al. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J. Pharmacol. Exp. Ther. 335, 231–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Murakami, K. et al. Vonoprazan, a novel potassium-competitive acid blocker, as a component of first-line and second-line triple therapy for Helicobacter pylori eradication: a phase III, randomised, double-blind study. Gut 65, 1439–1446 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Kiyotoki, S., Nishikawa, J. & Sakaida, I. Efficacy of vonoprazan for Helicobacter pylori eradication. Int. Med. 59, 153–161 (2020).

    Article  CAS  Google Scholar 

  184. McFarland, L. V., Huang, Y., Wang, L. & Malfertheiner, P. Systematic review and meta-analysis: multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United European Gastroenterol. J. 4, 546–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, M.-M., Qian, W., Qin, Y.-Y., He, J. & Zhou, Y.-H. Probiotics in Helicobacter pylori eradication therapy: a systematic review and meta-analysis. World J. Gastroenterol. 21, 4345–4357 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Shi, X. et al. Efficacy and safety of probiotics in eradicating Helicobacter pylori: a network meta-analysis. Medicine 98, e15180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mégraud, F., Occhialini, A. & Rossignol, J. F. Nitazoxanide, a potential drug for eradication of Helicobacter pylori with no cross-resistance to metronidazole. Antimicrob. Agents Chemother. 42, 2836–2840 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Yamamoto, Y. et al. Nitazoxanide, a nitrothiazolide antiparasitic drug, is an anti-Helicobacter pylori agent with anti-vacuolating toxin activity. Chemotherapy 45, 303–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Mohammadi, M., Attaran, B., Malekzadeh, R. & Graham, D. Y. Furazolidone, an underutilized drug for H. pylori eradication: lessons from Iran. Dig. Dis. Sci. 62, 1890–1896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Matsuzaki, J. et al. Efficacy of sitafloxacin-based rescue therapy for Helicobacter pylori after failures of first- and second-line therapies. Antimicrob. Agents Chemother. 56, 1643–1645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Sugimoto, M. et al. High Helicobacter pylori cure rate with sitafloxacin-based triple therapy. Aliment. Pharmacol. Therapeut. 42, 477–483 (2015).

    Article  CAS  Google Scholar 

  192. Nilius, A. M. et al. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother. 47, 3260–3269 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Van Bambeke, F. Delafloxacin, a non-zwitterionic fluoroquinolone in phase III of clinical development: evaluation of its pharmacology, pharmacokinetics, pharmacodynamics and clinical efficacy. Future microbiol. 10, 1111–1123 (2015).

    Article  PubMed  CAS  Google Scholar 

  194. Mori, H., Suzuki, H., Matsuzaki, J., Masaoka, T. & Kanai, T. Antibiotic resistance and gyrA mutation affect the efficacy of 10-day sitafloxacin-metronidazole-esomeprazole therapy for Helicobacter pylori in penicillin allergic patients. United European Gastroenterol. J. 5, 796–804 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Suzuki, H., Nishizawa, T., Muraoka, H. & Hibi, T. Sitafloxacin and garenoxacin may overcome the antibiotic resistance of Helicobacter pylori with gyrA mutation. Antimicrob. Agents Chemother. 53, 1720–1721 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Shah, S. C., Iyer, P. G. & Moss, S. F. AGA clinical practice update on the management of refractory Helicobacter pylori infection: expert review. Gastroenterology 160, 1831–1841 (2021).

    Article  PubMed  Google Scholar 

  197. Hong, J. et al. Antibiotic resistance and CYP2C19 polymorphisms affect the efficacy of concomitant therapies for Helicobacter pylori infection: an open-label, randomized, single-centre clinical trial. J. Antimicrob. Chemother. 71, 2280–2285 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Berthenet, E. et al. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol. 16, 84 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Windham, I. H. et al. Helicobacter pylori biofilm formation is differentially affected by common culture conditions, and proteins play a central role in the biofilm matrix. Appl. Environ. Microbiol. 84, e00391-18 (2018).

  200. Chen, X. et al. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: a comparison with conventional triple therapy. Microb. Pathog. 131, 112–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Tsugawa, H. et al. Alpha-ketoglutarate oxidoreductase, an essential salvage enzyme of energy metabolism, in coccoid form of Helicobacter pylori. Biochem. Biophys. Res. Commun. 376, 46–51 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Talarico, S. et al. High prevalence of Helicobacter pylori clarithromycin resistance mutations among Seattle patients measured by droplet digital PCR. Helicobacter 23, e12472 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Sedlak, R. H., Kuypers, J. & Jerome, K. R. A multiplexed droplet digital PCR assay performs better than qPCR on inhibition prone samples. Diagn. Microbiol. Infect. Dis. 80, 285–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Lee, K. H. et al. Can aminoglycosides be used as a new treatment for Helicobacter pylori? In vitro activity of recently isolated Helicobacter pylori. Infect. Chemother. 51, 10–20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jeong, S. J. et al. Gentamicin-intercalated smectite as a new therapeutic option for Helicobacter pylori eradication. J. Antimicrob. Chemother. 73, 1324–1329 (2018).

    CAS  PubMed  Google Scholar 

  207. Shi, J., Jiang, Y. & Zhao, Y. Promising in vitro and in vivo inhibition of multidrug-resistant Helicobacter pylori by linezolid and novel oxazolidinone analogues. J. Glob. Antimicrob. Resist. 7, 106–109 (2016).

    Article  PubMed  Google Scholar 

  208. Kiga, K. et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat. Commun. 11, 2934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Latham, S. R., Labigne, A. & Jenks, P. J. Production of the RdxA protein in metronidazole-susceptible and -resistant isolates of Helicobacter pylori cultured from treated mice. J. Antimicrob. Chemother. 49, 675–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Kim, S. Y. et al. Genetic analysis of Helicobacter pylori clinical isolates suggests resistance to metronidazole can occur without the loss of functional RdxA. J. Antibiot. 62, 43–50 (2009).

    Article  CAS  Google Scholar 

  211. Binh, T. T., Suzuki, R., Trang, T. T. H., Kwon, D. H. & Yamaoka, Y. Search for novel candidate mutations for metronidazole resistance in Helicobacter pylori using next-generation sequencing. Antimicrob. Agents Chemother. 59, 2343–2348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Suzuki, S. et al. Past rifampicin dosing determines rifabutin resistance of Helicobacter pylori. Digestion 79, 1–4 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Den Dunnen, J. & Antonarakis, S. Nomenclature for the description of human sequence variations. Hum. Genet. 109, 121–124 (2001).

    Article  CAS  Google Scholar 

  214. Ogino, S. et al. Standard mutation nomenclature in molecular diagnostics: practical and educational challenges. J. Mol. Diag. 9, 1–6 (2007).

    Article  CAS  Google Scholar 

  215. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. (Clinical and Laboratory Standards Institute, 2016).

  216. Kahlmeter, G. et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) technical notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 12, 501–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Gao, C. et al. Eradication treatment of Helicobacter pylori infection based on molecular pathologic antibiotic resistance. Infect. Drug. Resist. 13, 69–79 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Luo, X.-F. et al. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori. World J. Gastroenterol. 22, 5822–5830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ménard, A., Santos, A., Mégraud, F. & Oleastro, M. PCR-restriction fragment length polymorphism can also detect point mutation A2142C in the 23S rRNA gene, associated with Helicobacter pylori resistance to clarithromycin. Antimicrob. Agents Chemother. 46, 1156–1157 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Occhialini, A. et al. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob. Agents Chemother. 41, 2724–2728 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Szczebara, F., Dhaenens, L., Vincent, P. & Husson, M. Evaluation of rapid molecular methods for detection of clarithromycin resistance in Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis. 16, 162–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  222. Versalovic, J. et al. Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J. Antimicrob. Chemother. 40, 283–286 (1997).

    Article  CAS  PubMed  Google Scholar 

  223. Ribeiro, M. L. et al. Detection of high-level tetracycline resistance in clinical isolates of Helicobacter pylori using PCR-RFLP. FEMS Immunol. Med. Microbiol. 40, 57–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  224. Stone, G. G. et al. A PCR-oligonucleotide ligation assay to determine the prevalence of 23S rRNA gene mutations in clarithromycin-resistant Helicobacter pylori. Antimicrob. Agents Chemother. 41, 712–714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Nahm, J. H., Kim, W. K., Kwon, Y. & Kim, H. Detection of Helicobacter pylori with clarithromycin resistance-associated mutations using peptide nucleic acid probe-based melting point analysis. Helicobacter 24, e12634 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Lehours, P., Siffré, E. & Mégraud, F. DPO multiplex PCR as an alternative to culture and susceptibility testing to detect Helicobacter pylori and its resistance to clarithromycin. BMC Gastroenterol. 11, 112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Pina, M., Occhialini, A., Monteiro, L., Doermann, H.-P. & Mégraud, F. Detection of point mutations associated with resistance of Helicobacter pylori to clarithromycin by hybridization in liquid phase. J. Clin. Microbiol. 36, 3285–3290 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Van Doorn, L. J. et al. Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance. Antimicrob. Agents Chemother. 43, 1779–1782 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Maeda, S. et al. Detection of clarithromycin-resistant Helicobacter pylori strains by a preferential homoduplex formation assay. J. Clin. Microbiol. 38, 210–214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Alarcón, T., Domingo, D., Prieto, N. & Lopez-Brea, M. Clarithromycin resistance stability in Helicobacter pylori: influence of the MIC and type of mutation in the 23S rRNA. J. Antimicrob. Chemother. 46, 613–616 (2000).

    Article  PubMed  Google Scholar 

  231. Chisholm, S. A., Owen, R. J., Teare, E. L. & Saverymuttu, S. PCR-based diagnosis of Helicobacter pylori infection and real-time determination of clarithromycin resistance directly from human gastric biopsy samples. J. Clin. Microbiol. 39, 1217–1220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Gibson, J., Saunders, N., Burke, B. & Owen, R. Novel method for rapid determination of clarithromycin sensitivity in Helicobacter pylori. J. Clin. Microbiol. 37, 3746–3748 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Matsumura, M. et al. Rapid detection of mutations in the 23S rRNA gene of Helicobacter pylori that confers resistance to clarithromycin treatment to the bacterium. J. Clin. Microbiol. 39, 691–695 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Oleastro, M. et al. Real-time PCR assay for rapid and accurate detection of point mutations conferring resistance to clarithromycin in Helicobacter pylori. J. Clin. Microbiol. 41, 397–402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Glocker, E., Berning, M., Gerrits, M., Kusters, J. & Kist, M. Real-time PCR screening for 16S rRNA mutations associated with resistance to tetracycline in Helicobacter pylori. Antimicrob. Agents Chemother. 49, 3166–3170 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Glocker, E. & Kist, M. Rapid detection of point mutations in the gyrA gene of Helicobacter pylori conferring resistance to ciprofloxacin by a fluorescence resonance energy transfer-based real-time PCR approach. J. Clin. Microbiol. 42, 2241–2246 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Da Hyun Jung, J.-H. K. et al. Peptide nucleic acid probe-based analysis as a new detection method for clarithromycin resistance in Helicobacter pylori. Gut Liver 12, 641–647 (2018).

    Article  CAS  Google Scholar 

  238. Yilmaz, Ö. & Demiray, E. Clinical role and importance of fluorescence in situ hybridization method in diagnosis of H pylori infection and determination of clarithromycin resistance in H pylori eradication therapy. World J. Gastroenterol. 13, 671–675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Trebesius, K. et al. Rapid and specific detection of Helicobacter pylori macrolide resistance in gastric tissue by fluorescent in situ hybridisation. Gut 46, 608–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Cerqueira, L. et al. PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol. 11, 101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Latham, S. R., Owen, R. J., Elviss, N. C., Labigne, A. & Jenks, P. J. Differentiation of metronidazole-sensitive and -resistant clinical isolates of Helicobacter pylori by immunoblotting with antisera to the RdxA protein. J. Clin. Microbiol. 39, 3052–3055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Fauzia, K. A. et al. Biofilm formation and antibiotic resistance phenotype of Helicobacter pylori clinical isolates. Toxins 12, 473 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  243. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of Y.Y. was funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT; 26640114, 15H02657, 16H05191, 16H06279, 18KK0266, 19H03473) and the Japan Society for the Promotion of Science (JSPS) Institutional Program for Core-to-Core Program, and the B. Africa-Asia Science Platform.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussion of the content and reviewed/edited the manuscript before submission. E.T.-K wrote the article. Both authors read and agreed to the published version of the article.

Corresponding author

Correspondence to Yoshio Yamaoka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks A. Link, H. Suzuki, A. Zullo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshibangu-Kabamba, E., Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance — from biology to clinical implications. Nat Rev Gastroenterol Hepatol 18, 613–629 (2021). https://doi.org/10.1038/s41575-021-00449-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-021-00449-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing