Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global burden and epidemiology of Barrett oesophagus and oesophageal cancer

Abstract

Oesophageal cancer is a global health problem; in 2018 there were more than 572,000 people newly diagnosed with oesophageal cancer worldwide. There are two main histological subtypes of oesophageal cancer, oesophageal adenocarcinoma (EAC) and oesophageal squamous cell carcinoma (ESCC), and there has been a dramatic shift in its epidemiology. While the incidence of EAC and its precursor lesion, Barrett oesophagus, has increased in Western populations over the past four decades, the incidence of ESCC has declined in most parts of the world over the same period. ESCC still accounts for the vast majority of all oesophageal cancer cases diagnosed worldwide each year. Prognosis for patients with oesophageal cancer is strongly related to stage at diagnosis. As most patients are diagnosed with late-stage disease, overall 5-year survival for oesophageal cancer remains <20%. Knowledge of epidemiology and risk factors for oesophageal cancer is essential for public health and clinical decisions about risk stratification, screening and prevention. The goal of this Review is to establish the current epidemiology of oesophageal cancer, with a particular focus on the Western world and the increasing incidence of EAC and Barrett oesophagus.

Key points

  • Oesophageal squamous cell carcinoma (ESCC) remains the most common subtype of oesophageal cancer worldwide; however, in Western populations, the incidence of oesophageal adenocarcinoma (EAC) has increased markedly.

  • The causes of the striking male predominance and racial difference in the incidence of EAC, and its precursor, Barrett oesophagus, remain unknown.

  • The main risk factors for EAC and Barrett oesophagus are gastroesophageal reflux disease, abdominal obesity and cigarette smoking, whereas alcohol consumption and cigarette smoking cause most ESCC cases globally.

  • Patients with EAC who have a prior diagnosis of Barrett oesophagus have better outcomes than patients without a prior diagnosis of Barrett oesophagus; however, this situation represents <10% of patients with EAC.

  • Screening for EAC and Barrett oesophagus needs to go beyond patients with frequent gastroesophageal reflux disease symptoms to include other established risk factors, including obesity and smoking.

  • To date, no screening or surveillance algorithm has sufficient discriminatory accuracy or external validation to support clinical use.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Oesophageal cancer incidence.
Fig. 2: Oesophageal cancer incidence trends.
Fig. 3: Oesophageal cancer survival.

References

  1. 1.

    World Health Organization. Cancer Today: Data visualization tools for exploring the global cancer burden in 2020. https://gco.iarc.fr/today/home (2020).

  2. 2.

    Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  3. 3.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    PubMed  Google Scholar 

  4. 4.

    Thrift, A. P. Barrett’s esophagus and esophageal adenocarcinoma: how common are they really? Dig. Dis. Sci. 63, 1988–1996 (2018).

    PubMed  Google Scholar 

  5. 5.

    Anderson, L. A. et al. Survival for oesophageal, stomach and small intestine cancers in Europe 1999-2007: results from EUROCARE-5. Eur. J. Cancer 51, 2144–2157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Arnold, M., Soerjomataram, I., Ferlay, J. & Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64, 381–387 (2015).

    PubMed  Google Scholar 

  7. 7.

    Pohl, H. & Welch, H. G. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl Cancer Inst. 97, 142–146 (2005).

    PubMed  Google Scholar 

  8. 8.

    Thrift, A. P. & Whiteman, D. C. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann. Oncol. 23, 3155–3162 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Edgren, G., Adami, H. O., Weiderpass, E. & Nyren, O. A global assessment of the oesophageal adenocarcinoma epidemic. Gut 62, 1406–1414 (2013).

    PubMed  Google Scholar 

  10. 10.

    Kendall, B. J. & Whiteman, D. C. Temporal changes in the endoscopic frequency of new cases of Barrett’s esophagus in an Australian health region. Am. J. Gastroenterol. 101, 1178–1182 (2006).

    PubMed  Google Scholar 

  11. 11.

    Dong, J., Gu, X., El-Serag, H. B. & Thrift, A. P. Underuse of surgery accounts for racial disparities in esophageal cancer survival times: a matched cohort study. Clin. Gastroenterol. Hepatol. 17, 657–665 (2019).

    PubMed  Google Scholar 

  12. 12.

    Bray, F. et al. (eds) Cancer Incidence in Five Continents, Vol. XI (Electronic Version) (International Agency for Research on Cancer, 2017).

  13. 13.

    Arnold, M., Laversanne, M., Brown, L. M., Devesa, S. S. & Bray, F. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. Am. J. Gastroenterol. 112, 1247–1255 (2017).

    PubMed  Google Scholar 

  14. 14.

    Offman, J., Pesola, F. & Sasieni, P. Trends and projections in adenocarcinoma and squamous cell carcinoma of the oesophagus in England from 1971 to 2037. Br. J. Cancer 118, 1391–1398 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wang, Q. L., Xie, S. H., Wahlin, K. & Lagergren, J. Global time trends in the incidence of esophageal squamous cell carcinoma. Clin. Epidemiol. 10, 717–728 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Xie, S. H. & Lagergren, J. A global assessment of the male predominance in esophageal adenocarcinoma. Oncotarget 7, 38876–38883 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Xie, S. H. & Lagergren, J. The male predominance in esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 14, 338–347 (2016).

    PubMed  Google Scholar 

  18. 18.

    Thrift, A. P. & El-Serag, H. B. Sex and racial disparity in incidence of esophageal adenocarcinoma: observations and explanations. Clin. Gastroenterol. Hepatol. 14, 330–332 (2016).

    PubMed  Google Scholar 

  19. 19.

    Cook, M. B., Chow, W. H. & Devesa, S. S. Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br. J. Cancer 101, 855–859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Cook, M. B., Wild, C. P. & Forman, D. A systematic review and meta-analysis of the sex ratio for Barrett’s esophagus, erosive reflux disease, and nonerosive reflux disease. Am. J. Epidemiol. 162, 1050–1061 (2005).

    CAS  PubMed  Google Scholar 

  21. 21.

    Xie, S. H. & Lagergren, J. Social group disparities in the incidence and prognosis of oesophageal cancer. U Eur. Gastroenterol. J. 6, 343–348 (2018).

    Google Scholar 

  22. 22.

    Launoy, G., Bossard, N., Castro, C. & Manfredi, S. Trends in net survival from esophageal cancer in six European Latin countries: results from the SUDCAN population-based study. Eur. J. Cancer Prev. 26, S24–S31 (2017).

    PubMed  Google Scholar 

  23. 23.

    Surveillance, Epidemiology, and End Rresults Program. SEER*Stat Database: Incidence - SEER 9 Regs Research Data, Nov 2018 Sub (1975-2016) <Katrina/Rita Population Adjustment> - Linked To County Attributes - Total U.S., 1969-2017 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2019, based on the2018 submission (National Cancer Institute, 2020).

  24. 24.

    Thrift, A. P. The epidemic of oesophageal carcinoma: where are we now? Cancer Epidemiol. 41, 88–95 (2016).

    PubMed  Google Scholar 

  25. 25.

    Steyerberg, E. W., Earle, C. C., Neville, B. A. & Weeks, J. C. Racial differences in surgical evaluation, treatment, and outcome of locoregional esophageal cancer: a population-based analysis of elderly patients. J. Clin. Oncol. 23, 510–517 (2005).

    PubMed  Google Scholar 

  26. 26.

    Spechler, S. J. Clinical practice. Barrett’s esophagus. N. Engl. J. Med. 346, 836–842 (2002).

    PubMed  Google Scholar 

  27. 27.

    Ronkainen, J. et al. Prevalence of Barrett’s esophagus in the general population: an endoscopic study. Gastroenterology 129, 1825–1831 (2005).

    PubMed  Google Scholar 

  28. 28.

    Cook, M. B. et al. Cancer incidence and mortality risks in a large US Barrett’s oesophagus cohort. Gut 67, 418–529 (2018).

    PubMed  Google Scholar 

  29. 29.

    Desai, T. K. et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut 61, 970–976 (2012).

    PubMed  Google Scholar 

  30. 30.

    Rastogi, A. et al. Incidence of esophageal adenocarcinoma in patients with Barrett’s esophagus and high-grade dysplasia: a meta-analysis. Gastrointest. Endosc. 67, 394–398 (2008).

    PubMed  Google Scholar 

  31. 31.

    Engel, L. S. et al. Population attributable risks of esophageal and gastric cancers. J. Natl Cancer Inst. 95, 1404–1413 (2003).

    PubMed  Google Scholar 

  32. 32.

    Olsen, C. M., Pandeya, N., Green, A. C., Webb, P. M. & Whiteman, D. C. Population attributable fractions of adenocarcinoma of the esophagus and gastroesophageal junction. Am. J. Epidemiol. 174, 582–590 (2011).

    PubMed  Google Scholar 

  33. 33.

    Hazelton, W. D. et al. The role of gastroesophageal reflux and other factors during progression to esophageal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev. 24, 1012–1023 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pandeya, N., Olsen, C. M. & Whiteman, D. C. Sex differences in the proportion of esophageal squamous cell carcinoma cases attributable to tobacco smoking and alcohol consumption. Cancer Epidemiol. 37, 579–584 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Sheikh, M. et al. Individual and combined effects of environmental risk factors for esophageal cancer based on results from the Golestan Cohort Study. Gastroenterology 156, 1416–1427 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lagergren, J., Bergstrom, R., Lindgren, A. & Nyren, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med. 340, 825–831 (1999).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cook, M. B. et al. Gastroesophageal reflux in relation to adenocarcinomas of the esophagus: a pooled analysis from the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON). PLoS ONE 9, e103508 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Thrift, A. P., Kramer, J. R., Qureshi, Z., Richardson, P. A. & El-Serag, H. B. Age at onset of GERD symptoms predicts risk of Barrett’s esophagus. Am. J. Gastroenterol. 108, 915–922 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Yoshida, N. Inflammation and oxidative stress in gastroesophageal reflux disease. J. Clin. Biochem. Nutr. 40, 13–23 (2007).

    CAS  PubMed  Google Scholar 

  40. 40.

    Cook, M. B. et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J. Natl Cancer Inst. 102, 1344–1353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Steevens, J., Schouten, L. J., Goldbohm, R. A. & van den Brandt, P. A. Alcohol consumption, cigarette smoking and risk of subtypes of oesophageal and gastric cancer: a prospective cohort study. Gut 59, 39–48 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Wang, Q. L., Xie, S. H., Li, W. T. & Lagergren, J. Smoking cessation and risk of esophageal cancer by histological type: systematic review and meta-analysis. J. Natl Cancer Inst. 109, djx115 (2017).

    Google Scholar 

  43. 43.

    Pandeya, N. et al. Associations of duration, intensity, and quantity of smoking with adenocarcinoma and squamous cell carcinoma of the esophagus. Am. J. Epidemiol. 168, 105–114 (2008).

    PubMed  Google Scholar 

  44. 44.

    Prabhu, A., Obi, K. O. & Rubenstein, J. H. The synergistic effects of alcohol and tobacco consumption on the risk of esophageal squamous cell carcinoma: a meta-analysis. Am. J. Gastroenterol. 109, 822–827 (2014).

    PubMed  Google Scholar 

  45. 45.

    Wang, J. B. et al. Attributable causes of esophageal cancer incidence and mortality in China. PLoS ONE 7, e42281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Dar, N. A. et al. Hookah smoking, nass chewing, and oesophageal squamous cell carcinoma in Kashmir, India. Br. J. Cancer 107, 1618–1623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Cook, M. B. et al. Cigarette smoking increases risk of Barrett’s esophagus: an analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Gastroenterology 142, 744–753 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Smith, K. J., O’Brien, S. M., Green, A. C., Webb, P. M. & Whiteman, D. C. Current and past smoking significantly increase risk for Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 7, 840–848 (2009).

    PubMed  Google Scholar 

  49. 49.

    Edelstein, Z. R., Farrow, D. C., Bronner, M. P., Rosen, S. N. & Vaughan, T. L. Central adiposity and risk of Barrett’s esophagus. Gastroenterology 133, 403–411 (2007).

    PubMed  Google Scholar 

  50. 50.

    Anderson, L. A. et al. Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: results from the FINBAR study. World J. Gastroenterol. 13, 1585–1594 (2007).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kubo, A. et al. Cigarette smoking and the risk of Barrett’s esophagus. Cancer Causes Control. 20, 303–311 (2009).

    PubMed  Google Scholar 

  52. 52.

    Thrift, A. P., Kramer, J. R., Richardson, P. A. & El-Serag, H. B. No significant effects of smoking or alcohol consumption on risk of Barrett’s esophagus. Dig. Dis. Sci. 59, 108–116 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hardikar, S. et al. The role of tobacco, alcohol, and obesity in neoplastic progression to esophageal adenocarcinoma: a prospective study of Barrett’s esophagus. PLoS ONE 8, e52192 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Coleman, H. G. et al. Tobacco smoking increases the risk of high-grade dysplasia and cancer among patients with Barrett’s esophagus. Gastroenterology 142, 233–240 (2012).

    PubMed  Google Scholar 

  55. 55.

    Ramus, J. R., Gatenby, P. A., Caygill, C. P., Watson, A. & Winslet, M. C. The relationship between smoking and severe dysplastic disease in patients with Barrett’s columnar-lined oesophagus. Eur. J. Cancer Prev. 21, 507–510 (2012).

    PubMed  Google Scholar 

  56. 56.

    Kong, C. Y. et al. The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol. Biomarkers Prev. 20, 2450–2456 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kroep, S. et al. Comparing trends in esophageal adenocarcinoma incidence and lifestyle factors between the United States, Spain, and the Netherlands. Am. J. Gastroenterol. 109, 336–343 (2014).

    CAS  PubMed  Google Scholar 

  58. 58.

    Hoyo, C. et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the international BEACON consortium. Int. J. Epidemiol. 41, 1706–1718 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Steffen, A. et al. General and abdominal obesity and risk of esophageal and gastric adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 137, 646–657 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lindkvist, B. et al. Metabolic risk factors for esophageal squamous cell carcinoma and adenocarcinoma: a prospective study of 580,000 subjects within the Me-Can project. BMC Cancer 14, 103 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    El-Serag, H. The association between obesity and GERD: a review of the epidemiological evidence. Dig. Dis. Sci. 53, 2307–2312 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Thrift, A. P. et al. Obesity and risk of esophageal adenocarcinoma and Barrett’s esophagus: a Mendelian randomization study. J. Natl Cancer Inst. 106, dju252 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Coleman, H. G., Xie, S. H. & Lagergren, J. The epidemiology of esophageal adenocarcinoma. Gastroenterology 154, 390–405 (2018).

    PubMed  Google Scholar 

  64. 64.

    Cook, M. B., Freedman, N. D., Gamborg, M., Sorensen, T. I. & Baker, J. L. Childhood body mass index in relation to future risk of oesophageal adenocarcinoma. Br. J. Cancer 112, 601–607 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Levi, Z. et al. Body mass index and socioeconomic status measured in adolescence, country of origin, and the incidence of gastroesophageal adenocarcinoma in a cohort of 1 million men. Cancer 119, 4086–4093 (2013).

    PubMed  Google Scholar 

  66. 66.

    Singh, S. et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1399–1412 (2013).

    PubMed  Google Scholar 

  67. 67.

    Kubo, A. et al. Sex-specific associations between body mass index, waist circumference and the risk of Barrett’s oesophagus: a pooled analysis from the international BEACON consortium. Gut 62, 1684–1691 (2013).

    PubMed  Google Scholar 

  68. 68.

    El-Serag, H. B. et al. Visceral abdominal obesity measured by CT scan is associated with an increased risk of Barrett’s oesophagus: a case-control study. Gut 63, 220–229 (2014).

    PubMed  Google Scholar 

  69. 69.

    Kendall, B. J., Macdonald, G. A., Prins, J. B., O’Brien, S. & Whiteman, D. C. Total body fat and the risk of Barrett’s oesophagus – a bioelectrical impedance study. Cancer Epidemiol. 38, 266–272 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Thrift, A. P., Kramer, J. R., Alsarraj, A. & El-Serag, H. B. Fat mass by bioelectrical impedance analysis is not associated with increased risk of Barrett esophagus. J. Clin. Gastroenterol. 48, 218–223 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Kendall, B. J. et al. Inverse association between gluteofemoral obesity and risk of Barrett’s esophagus in a pooled analysis. Clin. Gastroenterol. Hepatol. 14, 1412–1419 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Lahmann, P. H., Pandeya, N., Webb, P. M., Green, A. C. & Whiteman, D. C. Body mass index, long-term weight change, and esophageal squamous cell carcinoma: is the inverse association modified by smoking status? Cancer 118, 1901–1909 (2012).

    PubMed  Google Scholar 

  73. 73.

    Freedman, N. D. et al. Alcohol intake and risk of oesophageal adenocarcinoma: a pooled analysis from the BEACON consortium. Gut 60, 1029–1037 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Thrift, A. P. et al. Alcohol and the risk of Barrett’s esophagus: a pooled analysis from the international BEACON consortium. Am. J. Gastroenterol. 109, 1586–1594 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Lou, Z., Xing, H. & Li, D. Alcohol consumption and the neoplastic progression in Barrett’s esophagus: a systematic review and meta-analysis. PLoS ONE 9, e105612 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Oesophageal Cancer Project Expert Report (American Institute for Cancer Research, 2018).

  77. 77.

    Pandeya, N., Williams, G., Green, A. C., Webb, P. M. & Whiteman, D. C. Alcohol consumption and the risks of adenocarcinoma and squamous cell carcinoma of the esophagus. Gastroenterology 136, 1215–1224 (2009).

    CAS  PubMed  Google Scholar 

  78. 78.

    Crous-Bou, M., Jovani, M., De Vivo, I. & Jacobson, B. C. Gene-environment interactions and the risk of Barrett’s esophagus in three US cohorts. Am. J. Gastroenterol. 114, 893–899 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yokoyama, T. et al. Alcohol flushing, alcohol and aldehyde dehydrogenase genotypes, and risk for esophageal squamous cell carcinoma in Japanese men. Cancer Epidemiol. Biomarkers Prev. 12, 1227–1233 (2003).

    CAS  PubMed  Google Scholar 

  80. 80.

    Wilson, L. F. et al. The impact of reducing alcohol consumption in Australia: an estimate of the proportion of potentially avoidable cancers 2013-2037. Int. J. Cancer 145, 2944–2953 (2019).

    CAS  PubMed  Google Scholar 

  81. 81.

    Steck, S. E. & Murphy, E. A. Dietary patterns and cancer risk. Nat. Rev. Cancer 20, 125–138 (2020).

    CAS  PubMed  Google Scholar 

  82. 82.

    Rezende, L. F. M. et al. Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770 000 cancer cases. Br. J. Sports Med. 52, 826–833 (2018).

    PubMed  Google Scholar 

  83. 83.

    Ibiebele, T. I., Hughes, M. C., Whiteman, D. C. & Webb, P. M. Dietary patterns and risk of oesophageal cancers: a population-based case-control study. Br. J. Nutr. 107, 1207–1216 (2012).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kubo, A. et al. Dietary patterns and the risk of Barrett’s esophagus. Am. J. Epidemiol. 167, 839–846 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Kubo, A. et al. Dietary antioxidants, fruits, and vegetables and the risk of Barrett’s esophagus. Am. J. Gastroenterol. 103, 1614–1623 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Li, W. Q. et al. Index-based dietary patterns and risk of esophageal and gastric cancer in a large cohort study. Clin. Gastroenterol. Hepatol. 11, 1130–1136 (2013).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Steevens, J., Schouten, L. J., Goldbohm, R. A. & van den Brandt, P. A. Vegetables and fruits consumption and risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Int. J. Cancer 129, 2681–2693 (2011).

    CAS  PubMed  Google Scholar 

  88. 88.

    Terry, P., Lagergren, J., Hansen, H., Wolk, A. & Nyren, O. Fruit and vegetable consumption in the prevention of oesophageal and cardia cancers. Eur. J. Cancer Prev. 10, 365–369 (2001).

    CAS  PubMed  Google Scholar 

  89. 89.

    Thompson, O. M., Beresford, S. A., Kirk, E. A. & Vaughan, T. L. Vegetable and fruit intakes and risk of Barrett’s esophagus in men and women. Am. J. Clin. Nutr. 89, 890–896 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Li, N. et al. Dietary sugar/starches intake and Barrett’s esophagus: a pooled analysis. Eur. J. Epidemiol. 32, 1007–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Sun, L., Zhang, Z., Xu, J., Xu, G. & Liu, X. Dietary fiber intake reduces risk for Barrett’s esophagus and esophageal cancer. Crit. Rev. Food Sci. Nutr. 57, 2749–2757 (2017).

    CAS  PubMed  Google Scholar 

  92. 92.

    Sharp, L., Carsin, A. E., Cantwell, M. M., Anderson, L. A. & Murray, L. J. Intakes of dietary folate and other B vitamins are associated with risks of esophageal adenocarcinoma, Barrett’s esophagus, and reflux esophagitis. J. Nutr. 143, 1966–1973 (2013).

    CAS  PubMed  Google Scholar 

  93. 93.

    Keszei, A. P., Goldbohm, R. A., Schouten, L. J., Jakszyn, P. & van den Brandt, P. A. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am. J. Clin. Nutr. 97, 135–146 (2013).

    CAS  PubMed  Google Scholar 

  94. 94.

    Behrens, G. et al. The association between physical activity and gastroesophageal cancer: systematic review and meta-analysis. Eur. J. Epidemiol. 29, 151–170 (2014).

    PubMed  Google Scholar 

  95. 95.

    Singh, S., Devanna, S., Edakkanambeth Varayil, J., Murad, M. H. & Iyer, P. G. Physical activity is associated with reduced risk of esophageal cancer, particularly esophageal adenocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 14, 101 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Petrick, J. L. et al. Association between circulating levels of sex steroid hormones and esophageal adenocarcinoma in the FINBAR study. PLoS ONE 13, e0190325 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Cook, M. B. et al. Association between circulating levels of sex steroid hormones and Barrett’s esophagus in men: a case-control analysis. Clin. Gastroenterol. Hepatol. 13, 673–682 (2015).

    CAS  PubMed  Google Scholar 

  98. 98.

    Cook, M. B. et al. Sex steroid hormones in relation to Barrett’s esophagus: an analysis of the FINBAR study. Andrology 5, 240–247 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Petrick, J. L. et al. Associations between prediagnostic concentrations of circulating sex steroid hormones and esophageal/gastric cardia adenocarcinoma among men. J. Natl Cancer Inst. 111, 34–41 (2019).

    PubMed  Google Scholar 

  100. 100.

    Petrick, J. L. & Cook, M. B. Do sex hormones underlie sex differences in cancer incidence? Testing the intuitive in esophageal adenocarcinoma. Am. J. Gastroenterol. 115, 211–213 (2020).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Xie, S. H. et al. Circulating sex hormone levels and risk of esophageal adenocarcinoma in a prospective study in men. Am. J. Gastroenterol. 115, 216–223 (2020).

    PubMed  Google Scholar 

  102. 102.

    Xie, S. H. et al. Association between levels of hormones and risk of esophageal adenocarcinoma and Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 18, 2701–2709.e3 (2020).

    CAS  PubMed  Google Scholar 

  103. 103.

    Lagergren, K., Lagergren, J. & Brusselaers, N. Hormone replacement therapy and oral contraceptives and risk of oesophageal adenocarcinoma: a systematic review and meta-analysis. Int. J. Cancer 135, 2183–2190 (2014).

    CAS  PubMed  Google Scholar 

  104. 104.

    Cronin-Fenton, D. P. et al. Reproductive and sex hormonal factors and oesophageal and gastric junction adenocarcinoma: a pooled analysis. Eur. J. Cancer 46, 2067–2076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Freedman, N. D. et al. The association of menstrual and reproductive factors with upper gastrointestinal tract cancers in the NIH-AARP cohort. Cancer 116, 1572–1581 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. 106.

    Bodelon, C. et al. Hormonal factors and risks of esophageal squamous cell carcinoma and adenocarcinoma in postmenopausal women. Cancer Prev. Res. 4, 840–850 (2011).

    Google Scholar 

  107. 107.

    Lu, Y. & Lagergren, J. Reproductive factors and risk of oesophageal cancer, a population-based nested case-control study in Sweden. Br. J. Cancer 107, 564–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    CAS  PubMed  Google Scholar 

  109. 109.

    Nie, S., Chen, T., Yang, X., Huai, P. & Lu, M. Association of Helicobacter pylori infection with esophageal adenocarcinoma and squamous cell carcinoma: a meta-analysis. Dis. Esophagus 27, 645–653 (2014).

    CAS  PubMed  Google Scholar 

  110. 110.

    Xie, F. J. et al. Helicobacter pylori infection and esophageal cancer risk: an updated meta-analysis. World J. Gastroenterol. 19, 6098–6107 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Wang, Z. et al. Helicobacter pylori infection is associated with reduced risk of Barrett’s esophagus: an analysis of the Barrett’s and Esophageal Adenocarcinoma Consortium. Am. J. Gastroenterol. 113, 1148–1155 (2018).

    PubMed  Google Scholar 

  112. 112.

    Eross, B. et al. Helicobacter pylori infection reduces the risk of Barrett’s esophagus: a meta-analysis and systematic review. Helicobacter 23, e12504 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Singh, S., Garg, S. K., Singh, P. P., Iyer, P. G. & El-Serag, H. B. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut 63, 1229–1237 (2014).

    PubMed  Google Scholar 

  114. 114.

    Jankowski, J. A. Z. et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet 392, 400–408 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Tan, M. C., El-Serag, H. B., Yu, X. & Thrift, A. P. Acid suppression medications reduce risk of oesophageal adenocarcinoma in Barrett’s oesophagus: a nested case-control study in US male veterans. Aliment. Pharmacol. Ther. 48, 469–477 (2018).

    CAS  PubMed  Google Scholar 

  116. 116.

    Liao, L. M. et al. Nonsteroidal anti-inflammatory drug use reduces risk of adenocarcinomas of the esophagus and esophagogastric junction in a pooled analysis. Gastroenterology 142, 442–452 (2012).

    CAS  PubMed  Google Scholar 

  117. 117.

    Thrift, A. P. et al. Nonsteroidal anti-inflammatory drug use is not associated with reduced risk of Barrett’s esophagus. Am. J. Gastroenterol. 111, 1528–1535 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Vaughan, T. L. et al. Non-steroidal anti-inflammatory drugs and risk of neoplastic progression in Barrett’s oesophagus: a prospective study. Lancet Oncol. 6, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  119. 119.

    Choi, S. E., Perzan, K. E., Tramontano, A. C., Kong, C. Y. & Hur, C. Statins and aspirin for chemoprevention in Barrett’s esophagus: results of a cost-effectiveness analysis. Cancer Prev. Res. 7, 341–350 (2014).

    CAS  Google Scholar 

  120. 120.

    Sadeghi, S. et al. Aspirin, nonsteroidal anti-inflammatory drugs, and the risks of cancers of the esophagus. Cancer Epidemiol. Biomarkers Prev. 17, 1169–1178 (2008).

    CAS  PubMed  Google Scholar 

  121. 121.

    Farrow, D. C. et al. Use of aspirin and other nonsteroidal anti-inflammatory drugs and risk of esophageal and gastric cancer. Cancer Epidemiol. Biomarkers Prev. 7, 97–102 (1998).

    CAS  PubMed  Google Scholar 

  122. 122.

    Alexandre, L. et al. Statin use is associated with reduced risk of histologic subtypes of esophageal cancer: a nested case-control analysis. Gastroenterology 146, 661–668 (2014).

    CAS  PubMed  Google Scholar 

  123. 123.

    Beales, I. L., Vardi, I., Dearman, L. & Broughton, T. Statin use is associated with a reduction in the incidence of esophageal adenocarcinoma: a case control study. Dis. Esophagus 26, 838–846 (2013).

    CAS  PubMed  Google Scholar 

  124. 124.

    Nguyen, T., Khalaf, N., Ramsey, D. & El-Serag, H. B. Statin use is associated with a decreased risk of Barrett’s esophagus. Gastroenterology 147, 314–323 (2014).

    CAS  PubMed  Google Scholar 

  125. 125.

    Nguyen, T., Duan, Z., Naik, A. D., Kramer, J. R. & El-Serag, H. B. Statin use reduces risk of esophageal adenocarcinoma in US veterans with Barrett’s esophagus: a nested case-control study. Gastroenterology 149, 1392–1398 (2015).

    CAS  PubMed  Google Scholar 

  126. 126.

    Beales, I. L., Dearman, L., Vardi, I. & Loke, Y. Reduced risk of Barrett’s esophagus in statin users: case-control study and meta-analysis. Dig. Dis. Sci. 61, 238–246 (2016).

    CAS  PubMed  Google Scholar 

  127. 127.

    Singh, S., Singh, A. G., Singh, P. P., Murad, M. H. & Iyer, P. G. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 620–629 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Verbeek, R. E. et al. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin. Gastroenterol. Hepatol. 12, 1656–1663.e1 (2014).

    PubMed  Google Scholar 

  129. 129.

    Fecteau, R. E. et al. Association between germline mutation in VSIG10L and familial barrett neoplasia. JAMA Oncol. 2, 1333–1339 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. 130.

    Blaydon, D. C. et al. RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet. 90, 340–346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Becker, J. et al. Supportive evidence for FOXP1, BARX1, and FOXF1 as genetic risk loci for the development of esophageal adenocarcinoma. Cancer Med. 4, 1700–1704 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Palles, C. et al. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett’s esophagus. Gastroenterology 148, 367–378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Levine, D. M. et al. A genome-wide association study identifies new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat. Genet. 45, 1487–1493 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Gharahkhani, P. et al. Genome-wide association studies in oesophageal adenocarcinoma and Barrett’s oesophagus: a large-scale meta-analysis. Lancet Oncol. 17, 1363–1373 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Su, Z. et al. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat. Genet. 44, 1131–1136 (2012).

    CAS  PubMed  Google Scholar 

  136. 136.

    Lee, E. et al. Pleiotropic analysis of cancer risk loci on esophageal adenocarcinoma risk. Cancer Epidemiol. Biomarkers Prev. 24, 1801–1803 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Abnet, C. C. et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet. 42, 764–767 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Abnet, C. C. et al. Genotypic variants at 2q33 and risk of esophageal squamous cell carcinoma in China: a meta-analysis of genome-wide association studies. Hum. Mol. Genet. 21, 2132–2141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Wang, L. D. et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat. Genet. 42, 759–763 (2010).

    CAS  PubMed  Google Scholar 

  140. 140.

    Wu, C. et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat. Genet. 43, 679–684 (2011).

    CAS  PubMed  Google Scholar 

  141. 141.

    Wu, C. et al. Joint analysis of three genome-wide association studies of esophageal squamous cell carcinoma in Chinese populations. Nat. Genet. 46, 1001–1006 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Wu, C. et al. Genome-wide association analyses of esophageal squamous cell carcinoma in Chinese identify multiple susceptibility loci and gene-environment interactions. Nat. Genet. 44, 1090–1097 (2012).

    CAS  PubMed  Google Scholar 

  143. 143.

    Corley, D. A. et al. Impact of endoscopic surveillance on mortality from Barrett’s esophagus-associated esophageal adenocarcinomas. Gastroenterology 145, 312–319 (2013).

    PubMed  PubMed Central  Google Scholar 

  144. 144.

    El-Serag, H. B. et al. Surveillance endoscopy is associated with improved outcomes of oesophageal adenocarcinoma detected in patients with Barrett’s oesophagus. Gut 65, 1252–1260 (2016).

    PubMed  Google Scholar 

  145. 145.

    Bhat, S. K. et al. Oesophageal adenocarcinoma and prior diagnosis of Barrett’s oesophagus: a population-based study. Gut 64, 20–25 (2015).

    PubMed  Google Scholar 

  146. 146.

    Wenker, T. N., Tan, M. C., Liu, Y., El-Serag, H. B. & Thrift, A. P. Prior diagnosis of Barrett’s esophagus is infrequent, but associated with improved esophageal adenocarcinoma survival. Dig. Dis. Sci. 63, 3112–3119 (2018).

    PubMed  Google Scholar 

  147. 147.

    Gupta, M. et al. Recurrence of esophageal intestinal metaplasia after endoscopic mucosal resection and radiofrequency ablation of Barrett’s esophagus: results from a US multicenter consortium. Gastroenterology 145, 79–86.e71 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Orman, E. S., Li, N. & Shaheen, N. J. Efficacy and durability of radiofrequency ablation for Barrett’s esophagus: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 11, 1245–1255 (2013).

    PubMed  Google Scholar 

  149. 149.

    El-Serag, H. B. & Graham, D. Y. Routine polypectomy for colorectal polyps and ablation for Barrett’s esophagus are intellectually the same. Gastroenterology 140, 386–388 (2011).

    PubMed  Google Scholar 

  150. 150.

    Hur, C. et al. The cost effectiveness of radiofrequency ablation for Barrett’s esophagus. Gastroenterology 143, 567–575 (2012).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Gordon, L. G. et al. Cost-effectiveness of endoscopic surveillance of non-dysplastic Barrett’s esophagus. Gastrointest. Endosc. 79, 242–256.e6 (2014).

    PubMed  Google Scholar 

  152. 152.

    Ross-Innes, C. S. et al. Risk stratification of Barrett’s oesophagus using a non-endoscopic sampling method coupled with a biomarker panel: a cohort study. Lancet Gastroenterol. Hepatol. 2, 23–31 (2017).

    PubMed  Google Scholar 

  153. 153.

    Offman, J. et al. Barrett’s Oesophagus Trial 3 (BEST3): study protocol for a randomised controlled trial comparing the Cytosponge-TFF3 test with usual care to facilitate the diagnosis of oesophageal pre-cancer in primary care patients with chronic acid reflux. BMC Cancer 18, 784 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Thota, P. N. & Chak, A. Is mass screening for Barrett’s esophagus a myth or reality? Clin. Gastroenterol. Hepatol. 17, 610–612 (2019).

    PubMed  Google Scholar 

  155. 155.

    Kumar, S. et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann. Surg. 262, 981–990 (2015).

    PubMed  Google Scholar 

  156. 156.

    Fitzgerald, R. C. et al. Cytosponge-trefoil factor 3 versus usual care to identify Barrett’s oesophagus in a primary care setting: a multicentre, pragmatic, randomised controlled trial. Lancet 396, 333–344 (2020).

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Sami, S. S. et al. Acceptability, accuracy, and safety of disposable transnasal capsule endoscopy for Barrett’s esophagus screening. Clin. Gastroenterol. Hepatol. 17, 638–646.e1 (2019).

    PubMed  Google Scholar 

  158. 158.

    Taylor, P. R., Abnet, C. C. & Dawsey, S. M. Squamous dysplasia–the precursor lesion for esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev. 22, 540–552 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. 159.

    Domper Arnal, M. J., Ferrández Arenas, Á. & Lanas Arbeloa, Á. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J. Gastroenterol. 21, 7933–7943 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. 160.

    Chen, Q. et al. Effectiveness evaluation of organized screening for esophageal cancer: a case-control study in Linzhou city, China. Sci. Rep. 6, 35707 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Rubenstein, J. H. et al. Prediction of Barrett’s esophagus among men. Am. J. Gastroenterol. 108, 353–362 (2013).

    PubMed  PubMed Central  Google Scholar 

  162. 162.

    Thrift, A. P., Garcia, J. M. & El-Serag, H. B. A multibiomarker risk score helps predict risk for Barrett’s esophagus. Clin. Gastroenterol. Hepatol. 12, 1267–1271 (2014).

    PubMed  Google Scholar 

  163. 163.

    Dong, J. et al. Determining risk of Barrett’s esophagus and esophageal adenocarcinoma based on epidemiologic factors and genetic variants. Gastroenterology 154, 1273–1281 (2018).

    CAS  PubMed  Google Scholar 

  164. 164.

    Rubenstein, J. H. et al. Validation and comparison of tools for selecting individuals to screen for Barrett’s esophagus and early neoplasia. Gastroenterology 158, 2082–2092 (2020).

    PubMed  Google Scholar 

  165. 165.

    Thrift, A. P., Kendall, B. J., Pandeya, N., Vaughan, T. L. & Whiteman, D. C. A clinical risk prediction model for Barrett esophagus. Cancer Prev. Res. 5, 1115–1123 (2012).

    Google Scholar 

  166. 166.

    Rubenstein, J. H. & Thrift, A. P. Risk factors and populations at risk: selection of patients for screening for Barrett’s oesophagus. Best Pract. Res. Clin. Gastroenterol. 29, 41–50 (2015).

    PubMed  Google Scholar 

  167. 167.

    Thrift, A. P., Kanwal, F. & El-Serag, H. B. Prediction models for gastrointestinal and liver diseases: too many developed, too few validated. Clin. Gastroenterol. Hepatol. 14, 1678–1680 (2016).

    PubMed  Google Scholar 

  168. 168.

    Thrift, A. P., Vaughan, T. L., Anderson, L. A., Whiteman, D. C. & El-Serag, H. B. External validation of the Michigan Barrett’s Esophagus Prediction Tool. Clin. Gastroenterol. Hepatol. 15, 1124–1126 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Ireland, C. J., Thrift, A. P. & Esterman, A. Risk prediction models for Barrett’s esophagus discriminate well and are generalizable in an external validation study. Dig. Dis. Sci. 65, 2992–2999 (2020).

    PubMed  Google Scholar 

  170. 170.

    Thrift, A. P., Kendall, B. J., Pandeya, N. & Whiteman, D. C. A model to determine absolute risk for esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 11, 138–144 (2013).

    PubMed  Google Scholar 

  171. 171.

    Kunzmann, A. T. et al. Information on genetic variants does not increase identification of individuals at risk of esophageal adenocarcinoma compared to clinical risk factors. Gastroenterology 156, 43–45 (2019).

    PubMed  Google Scholar 

  172. 172.

    Kunzmann, A. T. et al. Model for identifying individuals at risk for esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 16, 1229–1236 (2018).

    PubMed  Google Scholar 

  173. 173.

    Parasa, S. et al. Development and validation of a model to determine risk of progression of Barrett’s esophagus to neoplasia. Gastroenterology 154, 1282–1289 (2017).

    PubMed  Google Scholar 

  174. 174.

    Kunzmann, A. T. et al. External validation of a model to determine risk of progression of Barrett’s oesophagus to neoplasia. Aliment. Pharmacol. Ther. 49, 1274–1281 (2019).

    PubMed  Google Scholar 

  175. 175.

    Pohl, H., Sirovich, B. & Welch, H. G. Esophageal adenocarcinoma incidence: are we reaching the peak? Cancer Epidemiol. Biomarkers Prev. 19, 1468–1470 (2010).

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aaron P. Thrift.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks G. Falk, S. Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BEACON: http://beacon.tlvnet.net

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thrift, A.P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol Hepatol 18, 432–443 (2021). https://doi.org/10.1038/s41575-021-00419-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing