Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD

Abstract

Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan–lectin interactions, host–microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.

Key points

  • A large set of transcriptional and enzymatic pathways spatially and developmentally regulate glycosylation in the gut.

  • Host genetics, environment and the gut microbiota influence intestinal epithelial glycosylation.

  • Epithelial glycans have many functions; they act as ligands and nutrient sources and establish immunological tone, for the gut microbiota.

  • Genome-wide association studies and biochemical studies implicate altered intestinal epithelial glycosylation in Crohn’s disease and ulcerative colitis.

  • Disrupted glycosylation contributes to inflammation by perturbing intestinal barrier function, glycan–lectin interactions, the gut microbiota and mucosal immunity.

  • Targeting epithelial glycans in the intestine provides an opportunity to combat inflammatory bowel disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mammalian glycan classes and monosaccharides.
Fig. 2: O-glycan core structures.
Fig. 3: Altered glycan structures and genes in IBD.
Fig. 4: Immune regulation of epithelial fucosylation.
Fig. 5: Mucus structure and synthesis.
Fig. 6: COSMC and O-glycans spatially regulate the gut microbiota.

References

  1. 1.

    Loftus, E. V. Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126, 1504–1517 (2004).

    PubMed  Google Scholar 

  2. 2.

    Kumar, V., Abbas, A. K. & Aster, J. C. Robbins and Cotran Pathologic Basis of Disease (Elsevier, 2015).

  3. 3.

    Strober, W. & Fuss, I. J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1756–1767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Dahlhamer, J. M., Zammitti, E. P., Ward, B. W., Wheaton, A. G. & Croft, J. B. Prevalence of inflammatory bowel disease among adults aged >/=18 years — United States, 2015. MMWR 65, 1166–1169 (2016).

    PubMed  Google Scholar 

  5. 5.

    GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 17–30 (2020).

    Google Scholar 

  6. 6.

    Bojanova, D. P. & Bordenstein, S. R. Fecal transplants: what is being transferred? PLoS Biol. 14, e1002503 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    CAS  PubMed  Google Scholar 

  9. 9.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  Google Scholar 

  10. 10.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  11. 11.

    Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Arike, L., Holmen-Larsson, J. & Hansson, G. C. Intestinal Muc2 mucin O-glycosylation is affected by microbiota and regulated by differential expression of glycosyltranferases. Glycobiology 27, 318–328 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Campbell, B. J., Yu, L. G. & Rhodes, J. M. Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj. J. 18, 851–858 (2001).

    CAS  PubMed  Google Scholar 

  15. 15.

    Kudelka, M. R. et al. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc. Natl Acad. Sci. USA 113, 14787–14792 (2016). This study in mice describes how intestinal glycans regulate the spatial distribution of bacteria in the gut and how this regulation is disrupted in IBD.

    CAS  PubMed  Google Scholar 

  16. 16.

    McGovern, D. P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn’s disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Allavena, P. et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin. Dev. Immunol. 2010, 547179 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cao, S. et al. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 81, 5949–5957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016). This study in mice shows that bacterial lectins that bind IBD-associated glycans can drive bacterial localization to regions expressing those glycans in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Campbell, B. J., Finnie, I. A., Hounsell, E. F. & Rhodes, J. M. Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J. Clin. Invest. 95, 571–576 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342, 447–453 (2013). This study in mice shows that glycans on intestinal MUC2 contribute to oral tolerance through interactions with dendritic cells and induction of immunoregulatory signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bergstrom, K. et al. Defective intestinal mucin-type O-glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology 151, 152–164.e11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl Acad. Sci. USA 108, 19030–19035 (2011). This study in humans shows that a genetically determined IBD-associated glycome shapes the gut microbiota in Crohn’s disease.

    CAS  PubMed  Google Scholar 

  24. 24.

    Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T. & Gordon, J. I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl Acad. Sci. USA 96, 9833–9838 (1999).

    CAS  PubMed  Google Scholar 

  25. 25.

    Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005). This study in mice shows that gut bacteria are programmed to consume epithelial carbohydrates.

    CAS  PubMed  Google Scholar 

  26. 26.

    Larsson, J. M. et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307 (2011). This study in humans shows that gut inflammation in ulcerative colitis leads to reversible expression of truncated glycans.

    PubMed  Google Scholar 

  27. 27.

    Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014). This study in mice provides mechanistic insight into how gut bacteria induce epithelial glycosylation; gut bacteria communicate with innate lymphoid cells, releasing IL-22, which induces epithelial glycosyltransferase transcription and subsequent fucosylation.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fu, J. et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest. 121, 1657–1666 (2011). This study in mice demonstrates a functional role for altered glycosylation, in particular loss of complex O-glycans, in IBD.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tobisawa, Y., Imai, Y., Fukuda, M. & Kawashima, H. Sulfation of colonic mucins by N-acetylglucosamine 6-O-sulfotransferase-2 and its protective function in experimental colitis in mice. J. Biol. Chem. 285, 6750–6760 (2010).

    CAS  PubMed  Google Scholar 

  30. 30.

    Stone, E. L. et al. Glycosyltransferase function in core 2-type protein O glycosylation. Mol. Cell Biol. 29, 3770–3782 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Dawson, P. A. et al. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 58, 910–919 (2009).

    CAS  PubMed  Google Scholar 

  32. 32.

    An, G. et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med. 204, 1417–1429 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kudelka, M. R. et al. Cellular O-glycome reporter/amplification to explore O-glycans of living cells. Nat. Methods 13, 81–86 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Kudelka, M. R., Ju, T., Heimburg-Molinaro, J. & Cummings, R. D. Simple sugars to complex disease — mucin-type O-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Nairn, A. V. et al. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298–17313 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Neelamegham, S. & Mahal, L. K. Multi-level regulation of cellular glycosylation: from genes to transcript to enzyme to structure. Curr. Opin. Struct. Biol. 40, 145–152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Cummings, R. D. Stuck on sugars — how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 36, 241–257 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Freeze, H. H., Baum, L. & Varki, A. in Essentials of Glycobiology (eds Varki, A. et al.) 521–526 (Cold Spring Harbor, 2015).

  40. 40.

    Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32, 1478–1488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Apweiler, R., Hermjakob, H. & Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

    CAS  PubMed  Google Scholar 

  43. 43.

    Liu, J., Jin, C., Cherian, R. M., Karlsson, N. G. & Holgersson, J. O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J. Biotechnol. 199, 77–89 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Xia, B., Royall, J. A., Damera, G., Sachdev, G. P. & Cummings, R. D. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology 15, 747–775 (2005).

    CAS  PubMed  Google Scholar 

  45. 45.

    Kudelka, M. R. et al. Isotopic labeling with cellular O-glycome reporter/amplification (ICORA) for comparative O-glycomics of cultured cells. Glycobiology 28, 214–222 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Ju, T., Aryal, R. P., Kudelka, M. R., Wang, Y. & Cummings, R. D. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 14, 63–81 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ju, T. et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteom. Clin. Appl. 7, 618–631 (2013).

    CAS  Google Scholar 

  49. 49.

    Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl Acad. Sci. USA 99, 16613–16618 (2002).

    CAS  PubMed  Google Scholar 

  50. 50.

    Iwai, T. et al. Molecular cloning and characterization of a novel UDP-GlcNAc:GalNAc-peptide beta1,3-N-acetylglucosaminyltransferase (beta 3Gn-T6), an enzyme synthesizing the core 3 structure of O-glycans. J. Biol. Chem. 277, 12802–12809 (2002).

    CAS  PubMed  Google Scholar 

  51. 51.

    Stanley, P. & Cummings, R. D. in Essentials of Glycobiology (eds Varki, A. et al.) 161–178 (Cold Spring Harbor, 2015).

  52. 52.

    Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  53. 53.

    De Graaf, T. W., Van der Stelt, M. E., Anbergen, M. G. & van Dijk, W. Inflammation-induced expression of sialyl Lewis X-containing glycan structures on alpha 1-acid glycoprotein (orosomucoid) in human sera. J. Exp. Med. 177, 657–666 (1993).

    PubMed  Google Scholar 

  54. 54.

    Steinberg, W. The clinical utility of the CA 19-9 tumor-associated antigen. Am. J. Gastroenterol. 85, 350–355 (1990).

    CAS  PubMed  Google Scholar 

  55. 55.

    Barbe, L. et al. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci. Rep. 8, 12961 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Trinchera, M., Aronica, A. & Dall’Olio, F. Selectin ligands sialyl-Lewis a and sialyl-Lewis x in gastrointestinal cancers. Biology 6, 16 (2017).

    PubMed Central  Google Scholar 

  57. 57.

    Robbe, C. et al. Evidence of region-specific glycosylation in human intestinal mucins: presence of an acidic gradient along the intestinal tract. J. Biol. Chem. 278, 46337–46348 (2003).

    CAS  PubMed  Google Scholar 

  58. 58.

    Robbe-Masselot, C., Maes, E., Rousset, M., Michalski, J. C. & Capon, C. Glycosylation of human fetal mucins: a similar repertoire of O-glycans along the intestinal tract. Glycoconj. J. 26, 397–413 (2009).

    CAS  PubMed  Google Scholar 

  59. 59.

    Axelsson, M. A., Asker, N. & Hansson, G. C. O-glycosylated MUC2 monomer and dimer from LS 174T cells are water-soluble, whereas larger MUC2 species formed early during biosynthesis are insoluble and contain nonreducible intermolecular bonds. J. Biol. Chem. 273, 18864–18870 (1998).

    CAS  PubMed  Google Scholar 

  60. 60.

    Carlstedt, I. et al. Characterization of two different glycosylated domains from the insoluble mucin complex of rat small intestine. J. Biol. Chem. 268, 18771–18781 (1993).

    CAS  PubMed  Google Scholar 

  61. 61.

    Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004).

    CAS  PubMed  Google Scholar 

  62. 62.

    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Larsson, J. M., Karlsson, H., Sjovall, H. & Hansson, G. C. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19, 756–766 (2009).

    PubMed  Google Scholar 

  64. 64.

    Holmen Larsson, J. M., Thomsson, K. A., Rodriguez-Pineiro, A. M., Karlsson, H. & Hansson, G. C. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O-glycan patterns reveal a regiospecific distribution. Am. J. Physiol. Gastrointest. Liver Physiol 305, G357–G363 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).

    CAS  PubMed  Google Scholar 

  66. 66.

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Shepherd, N. A. et al. Restorative proctocolectomy with ileal reservoir: pathological and histochemical study of mucosal biopsy specimens. J. Clin. Pathol. 40, 601–607 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Young, V. B. et al. Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis. Microbiome 1, 9 (2013).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    de Silva, H. J. et al. Mucosal characteristics of pelvic ileal pouches. Gut 32, 61–65 (1991).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Corfield, A. P. et al. Colonic mucins in ulcerative colitis: evidence for loss of sulfation. Glycoconj. J. 13, 809–822 (1996).

    CAS  PubMed  Google Scholar 

  71. 71.

    Tsai, H. H., Dwarakanath, A. D., Hart, C. A., Milton, J. D. & Rhodes, J. M. Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Gut 36, 570–576 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Ulmer, J. E. et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont Bacteroides thetaiotaomicron reveals the first GAG-specific bacterial endosulfatase. J. Biol. Chem. 289, 24289–24303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Pickard, J. M. & Chervonsky, A. V. Intestinal fucose as a mediator of host–microbe symbiosis. J. Immunol. 194, 5588–5593 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Terahara, K. et al. Distinct fucosylation of M cells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem. Biophys. Res. Commun. 404, 822–828 (2011).

    CAS  PubMed  Google Scholar 

  75. 75.

    Kamioka, M. et al. Critical role of commensal flora-dependent type 3 innate lymphoid cells (ILC3) for the induction and regulation of Paneth cells. Presented at the 7th International Conference of Mucosal Immunology (2015).

  76. 76.

    Bry, L., Falk, P. G., Midtvedt, T. & Gordon, J. I. A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996). This study in mice shows that gut bacteria induce fucosylation in the small intestine.

    CAS  PubMed  Google Scholar 

  77. 77.

    Coyne, M. J., Reinap, B., Lee, M. M. & Comstock, L. E. Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778–1781 (2005).

    CAS  PubMed  Google Scholar 

  78. 78.

    Pham, T. A. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Goto, Y. et al. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Sci. Rep. 5, 15918 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Chang, D. et al. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS ONE 9, e113684 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Graham, D. B. et al. TMEM258 is a component of the oligosaccharyltransferase complex controlling ER stress and intestinal inflammation. Cell Rep. 17, 2955–2965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Afzali, B. et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat. Immunol. 18, 813–823 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Christodoulou, K. et al. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 62, 977–984 (2013).

    CAS  PubMed  Google Scholar 

  84. 84.

    Goto, Y., Uematsu, S. & Kiyono, H. Epithelial glycosylation in gut homeostasis and inflammation. Nat. Immunol. 17, 1244–1251 (2016).

    CAS  PubMed  Google Scholar 

  85. 85.

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Theodoratou, E. et al. The role of glycosylation in IBD. Nat. Rev. Gastroenterol. Hepatol. 11, 588–600 (2014).

    CAS  PubMed  Google Scholar 

  88. 88.

    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Momozawa, Y. et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 9, 2427 (2018).

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    de Kivit, S. et al. Galectin-9 produced by intestinal epithelial cells enhances aldehyde dehydrogenase activity in dendritic cells in a PI3K- and p38-dependent manner. J. Innate Immun. 9, 609–620 (2017).

    PubMed  Google Scholar 

  91. 91.

    Zhu, L. et al. IL-10 and IL-10 receptor mutations in very early onset inflammatory bowel disease. Gastroenterology Res. 10, 65–69 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163–1176.e2 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Engevik, M. A. et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am. J. Physiol. Gastrointest. Liver Physiol 305, G697–G711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Fonseca-Camarillo, G. & Yamamoto-Furusho, J. K. Gene expression of solute carrier family 9 (sodium/hydrogen exchanger) 3 (SLC9A3) is downregulated in patients with ulcerative colitis. Inflamm. Bowel Dis. 18, 1197–1198 (2012).

    PubMed  Google Scholar 

  96. 96.

    Mkhikian, H. et al. Genetics and the environment converge to dysregulate N-glycosylation in multiple sclerosis. Nat. Commun. 2, 334 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Lauc, G. et al. Genomics meets glycomics — the first GWAS study of human N-glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet. 6, e1001256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Bogaert, S. et al. Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease. BMC Immunol. 11, 61 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    UK IBD Genetics Consortium et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 41, 1330–1334 (2009).

    Google Scholar 

  100. 100.

    Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Sugimoto, K. Role of STAT3 in inflammatory bowel disease. World J. Gastroenterol. 14, 5110–5114 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Ahn, S. H. et al. Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm. Bowel Dis. 14, 908–920 (2008).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Suzuki, K. et al. Intestinal epithelial cell-specific deletion of alpha-mannosidase II ameliorates experimental colitis. Cell Struct. Funct. 43, 25–39 (2018).

    PubMed  Google Scholar 

  105. 105.

    Clamp, J. R., Fraser, G. & Read, A. E. Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin. Sci. 61, 229–234 (1981).

    CAS  PubMed  Google Scholar 

  106. 106.

    Rhodes, J. M., Black, R. R. & Savage, A. Altered lectin binding by colonic epithelial glycoconjugates in ulcerative colitis and Crohn’s disease. Dig. Dis. Sci. 33, 1359–1363 (1988).

    CAS  PubMed  Google Scholar 

  107. 107.

    Ta, A. et al. Sialyl-Tn antigen expression in Crohn’s colitis. Inflamm. Bowel Dis. 3, 254–259 (1997).

    CAS  PubMed  Google Scholar 

  108. 108.

    Itzkowitz, S. H. et al. Sialosyl-Tn antigen: initial report of a new marker of malignant progression in long-standing ulcerative colitis. Gastroenterology 109, 490–497 (1995). This study in humans demonstrates that colonic expression of the truncated O-glycan sialyl-Tn predicts progression from ulcerative colitis to colitis-associated carcinoma.

    CAS  PubMed  Google Scholar 

  109. 109.

    Itzkowitz, S. H. et al. Sialosyl-Tn antigen is prevalent and precedes dysplasia in ulcerative colitis: a retrospective case–control study. Gastroenterology 110, 694–704 (1996).

    CAS  PubMed  Google Scholar 

  110. 110.

    Parker, N., Tsai, H. H., Ryder, S. D., Raouf, A. H. & Rhodes, J. M. Increased rate of sialylation of colonic mucin by cultured ulcerative colitis mucosal explants. Digestion 56, 52–56 (1995).

    CAS  PubMed  Google Scholar 

  111. 111.

    Raouf, A. H. et al. Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clin. Sci. 83, 623–626 (1992).

    CAS  PubMed  Google Scholar 

  112. 112.

    Bodger, K. et al. Altered colonic glycoprotein expression in unaffected monozygotic twins of inflammatory bowel disease patients. Gut 55, 973–977 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    McMahon, R. F. T., Jones, C. J. P., Dutt, S. & Stoddart, R. W. Altered oligosaccharide expression in ulcerative colitis with increasing grades of inflammation. Glycosylation Dis. 1, 235–245 (1994).

    Google Scholar 

  114. 114.

    Cooper, H. S. & Steplewski, Z. Immunohistologic study of ulcerative colitis with monoclonal antibodies against tumor-associated and/or differentiation antigens. Gastroenterology 95, 686–693 (1988).

    CAS  PubMed  Google Scholar 

  115. 115.

    Frykholm, G., Enblad, P., Pahlman, L. & Busch, C. Expression of the carcinoma-associated antigens CA 19-9 and CA-50 in inflammatory bowel disease. Dis. Colon. Rectum 30, 545–548 (1987).

    CAS  PubMed  Google Scholar 

  116. 116.

    Clerc, F. et al. Plasma N-glycan signatures are associated with features of inflammatory bowel diseases. Gastroenterology 155, 829–843 (2018).

    CAS  PubMed  Google Scholar 

  117. 117.

    Zhao, M. et al. Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation. EMBO Mol. Med. 10, e8736 (2018). This study in mice and humans identifies loss of intracellular glycosylation, in particular O-GlcNAcylation, as a driver of gut inflammation in IBD.

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Karlen, P. et al. Sialyl-Tn antigen as a marker of colon cancer risk in ulcerative colitis: relation to dysplasia and DNA aneuploidy. Gastroenterology 115, 1395–1404 (1998).

    CAS  PubMed  Google Scholar 

  119. 119.

    Yuan, H. Y. et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 34, W635–W641 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Dewald, J. H., Colomb, F., Bobowski-Gerard, M., Groux-Degroote, S. & Delannoy, P. Role of cytokine-induced glycosylation changes in regulating cell interactions and cell signaling in inflammatory diseases and cancer. Cells 5, 43 (2016).

    PubMed Central  Google Scholar 

  121. 121.

    Stowell, S. R., Ju, T. & Cummings, R. D. Protein glycosylation in cancer. Annu. Rev. Pathol. 10, 473–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS  PubMed  Google Scholar 

  123. 123.

    Gill, D. J., Chia, J., Senewiratne, J. & Bard, F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J. Cell Biol. 189, 843–858 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Gill, D. J. et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl Acad. Sci. USA 110, E3152–E3161 (2013).

    CAS  PubMed  Google Scholar 

  125. 125.

    Noda, M. et al. Glycosyltransferase gene expression identifies a poor prognostic colorectal cancer subtype associated with mismatch repair deficiency and incomplete glycan synthesis. Clin. Cancer Res. 24, 4468–4481 (2018).

    CAS  PubMed  Google Scholar 

  126. 126.

    Dall’Olio, F. & Trinchera, M. Epigenetic bases of aberrant glycosylation in cancer. Int. J. Mol. Sci. 18, 998 (2017).

    PubMed Central  Google Scholar 

  127. 127.

    Sun, X., Ju, T. & Cummings, R. D. Differential expression of cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer 18, 827 (2018).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Maeda, Y. & Kinoshita, T. The acidic environment of the Golgi is critical for glycosylation and transport. Methods Enzymol. 480, 495–510 (2010).

    CAS  PubMed  Google Scholar 

  129. 129.

    Maeda, Y., Ide, T., Koike, M., Uchiyama, Y. & Kinoshita, T. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat. Cell Biol. 10, 1135–1145 (2008).

    CAS  PubMed  Google Scholar 

  130. 130.

    Rivinoja, A., Pujol, F. M., Hassinen, A. & Kellokumpu, S. Golgi pH, its regulation and roles in human disease. Ann. Med. 44, 542–554 (2012).

    CAS  PubMed  Google Scholar 

  131. 131.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Song, X. et al. Oxidative release of natural glycans for functional glycomics. Nat. Methods 13, 528–534 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Duan, J., Avci, F. Y. & Kasper, D. L. Microbial carbohydrate depolymerization by antigen-presenting cells: deamination prior to presentation by the MHCII pathway. Proc. Natl Acad. Sci. USA 105, 5183–5188 (2008).

    CAS  PubMed  Google Scholar 

  134. 134.

    Boltin, D., Perets, T. T., Vilkin, A. & Niv, Y. Mucin function in inflammatory bowel disease: an update. J. Clin. Gastroenterol. 47, 106–111 (2013).

    CAS  PubMed  Google Scholar 

  135. 135.

    Graziani, F. et al. Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J. Appl. Microbiol. 120, 1403–1417 (2016).

    CAS  PubMed  Google Scholar 

  136. 136.

    Khalili, H. et al. ABO blood group and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 20, 1017–1020 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Dias, A. M. et al. Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proc. Natl Acad. Sci. USA 115, E4651–E4660 (2018).

    CAS  PubMed  Google Scholar 

  138. 138.

    Fernandes, B., Sagman, U., Auger, M., Demetrio, M. & Dennis, J. W. Beta 1-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res. 51, 718–723 (1991).

    CAS  PubMed  Google Scholar 

  139. 139.

    Slawson, C. & Hart, G. W. O-GlcNAc signalling: implications for cancer cell biology. Nat. Rev. Cancer 11, 678–684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Mi, W. et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim. Biophys. Acta 1812, 514–519 (2011).

    CAS  PubMed  Google Scholar 

  141. 141.

    Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).

    CAS  PubMed  Google Scholar 

  142. 142.

    Radhakrishnan, P. et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl Acad. Sci. USA 111, E4066–E4075 (2014).

    CAS  PubMed  Google Scholar 

  143. 143.

    Ju, T., Otto, V. I. & Cummings, R. D. The Tn antigen-structural simplicity and biological complexity. Angew. Chem. Int. Ed. Engl. 50, 1770–1791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Mi, R. et al. Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing Tn antigen. J. Biol. Chem. 287, 41523–41533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Ju, T. & Cummings, R. D. Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005).

    CAS  PubMed  Google Scholar 

  146. 146.

    Wang, Y. et al. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl Acad. Sci. USA 107, 9228–9233 (2010).

    CAS  PubMed  Google Scholar 

  147. 147.

    Marcos, N. T. et al. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front. Biosci. 3, 1443–1455 (2011).

    Google Scholar 

  148. 148.

    Sewell, R. et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586–3594 (2006).

    CAS  PubMed  Google Scholar 

  149. 149.

    Ikehara, Y. et al. Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology 9, 1213–1224 (1999).

    CAS  PubMed  Google Scholar 

  150. 150.

    Vazquez-Martin, C., Cuevas, E., Gil-Martin, E. & Fernandez-Briera, A. Correlation analysis between tumor-associated antigen sialyl-Tn expression and ST6GalNAc I activity in human colon adenocarcinoma. Oncology 67, 159–165 (2004).

    CAS  PubMed  Google Scholar 

  151. 151.

    Feagins, L. A., Souza, R. F. & Spechler, S. J. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 6, 297–305 (2009).

    CAS  PubMed  Google Scholar 

  152. 152.

    Keller, D. S., Windsor, A., Cohen, R. & Chand, M. Colorectal cancer in inflammatory bowel disease: review of the evidence. Tech. Coloproctol. 23, 3–13 (2019).

    CAS  PubMed  Google Scholar 

  153. 153.

    Canavan, C., Abrams, K. R. & Mayberry, J. Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 23, 1097–1104 (2006).

    CAS  PubMed  Google Scholar 

  154. 154.

    Yu, L. G. The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression. Glycoconj. J. 24, 411–420 (2007).

    CAS  PubMed  Google Scholar 

  155. 155.

    Singh, R., Subramanian, S., Rhodes, J. M. & Campbell, B. J. Peanut lectin stimulates proliferation of colon cancer cells by interaction with glycosylated CD44v6 isoforms and consequential activation of c-Met and MAPK: functional implications for disease-associated glycosylation changes. Glycobiology 16, 594–601 (2006).

    CAS  PubMed  Google Scholar 

  156. 156.

    Ryder, S. D., Smith, J. A. & Rhodes, J. M. Peanut lectin: a mitogen for normal human colonic epithelium and human HT29 colorectal cancer cells. J. Natl Cancer Inst. 84, 1410–1416 (1992).

    CAS  PubMed  Google Scholar 

  157. 157.

    Yang, Y. & Jobin, C. Novel insights into microbiome in colitis and colorectal cancer. Curr. Opin. Gastroenterol. 33, 422–427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Kang, M. & Martin, A. Microbiome and colorectal cancer: unraveling host–microbiota interactions in colitis-associated colorectal cancer development. Semin. Immunol. 32, 3–13 (2017).

    PubMed  Google Scholar 

  159. 159.

    Brennan, C. A. & Garrett, W. S. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70, 395–411 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Gagniere, J. et al. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22, 501–518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Bergstrom, K. S. & Xia, L. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23, 1026–1037 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  PubMed  Google Scholar 

  164. 164.

    Johansson, M. E., Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc. Natl Acad. Sci. USA 108, 4659–4665 (2011).

    CAS  PubMed  Google Scholar 

  165. 165.

    van der Post, S., Thomsson, K. A. & Hansson, G. C. Multiple enzyme approach for the characterization of glycan modifications on the C-terminus of the intestinal MUC2 mucin. J. Proteome Res. 13, 6013–6023 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Asker, N., Axelsson, M. A., Olofsson, S. O. & Hansson, G. C. Dimerization of the human MUC2 mucin in the endoplasmic reticulum is followed by a N-glycosylation-dependent transfer of the mono- and dimers to the Golgi apparatus. J. Biol. Chem. 273, 18857–18863 (1998).

    CAS  PubMed  Google Scholar 

  167. 167.

    Godl, K. et al. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277, 47248–47256 (2002).

    CAS  PubMed  Google Scholar 

  168. 168.

    Specian, R. D. & Neutra, M. R. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J. Cell Biol. 85, 626–640 (1980).

    CAS  PubMed  Google Scholar 

  169. 169.

    Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Gustafsson, J. K. et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209, 1263–1272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Ambort, D. et al. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc. Natl Acad. Sci. USA 109, 5645–5650 (2012).

    CAS  PubMed  Google Scholar 

  172. 172.

    Schutte, A. et al. Microbial-induced meprin beta cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proc. Natl Acad. Sci. USA 111, 12396–12401 (2014).

    CAS  PubMed  Google Scholar 

  173. 173.

    Nystrom, E. E. L. et al. Calcium-activated chloride channel regulator 1 (CLCA1) controls mucus expansion in colon by proteolytic activity. EBioMedicine 33, 134–143 (2018).

    PubMed  PubMed Central  Google Scholar 

  174. 174.

    Das, I. et al. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. J. Exp. Med. 210, 1201–1216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175.

    van der Post, S. et al. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J. Biol. Chem. 288, 14636–14646 (2013). This in vitro study finds that glycans maintain the epithelial barrier by preventing mucin degradation via bacterial proteases.

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Bergstrom, K. et al. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10, 91–103 (2017).

    CAS  PubMed  Google Scholar 

  177. 177.

    Capaldo, C. T. et al. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol. Biol. Cell 25, 2710–2719 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. 178.

    Schroeder, B. O. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe 23, 27–40.e7 (2018).

    CAS  PubMed  Google Scholar 

  179. 179.

    Jakobsson, H. E. et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16, 164–177 (2015).

    CAS  PubMed  Google Scholar 

  180. 180.

    Kumar, S., Lutteke, T. & Schwartz-Albiez, R. GlycoCD: a repository for carbohydrate-related CD antigens. Bioinformatics 28, 2553–2555 (2012).

    CAS  PubMed  Google Scholar 

  181. 181.

    Taylor, M. E., Drickamer, K., Schnaar, R. L., Etzler, M. E. & Varki, A. in Essentials of Glycobiology (eds Varki, A. et al.) 361–372 (Cold Spring Harbor, 2015).

  182. 182.

    Cummings, R. D., Etzler, M. E. & Surolia, A. in Essentials of Glycobiology (eds Varki, A. et al.) 413–422 (Cold Spring Harbor, 2015).

  183. 183.

    Varki, A. & Kornfeld, S. in Essentials of Glycobiology (eds Varki, A. et al.) 423–433 (Cold Spring Harbor, 2015).

  184. 184.

    Kornfeld, S. Trafficking of lysosomal enzymes in normal and disease states. J. Clin. Invest. 77, 1–6 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Leclaire, C. et al. Molecular basis for intestinal mucin recognition by galectin-3 and C-type lectins. FASEB J. 32, 3301–3320 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. 186.

    van Vliet, S. J. et al. Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. Int. Immunol. 17, 661–669 (2005).

    PubMed  Google Scholar 

  187. 187.

    Taylor, P. R. et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169, 3876–3882 (2002).

    CAS  PubMed  Google Scholar 

  188. 188.

    Singh, S. K. et al. Characterization of murine MGL1 and MGL2 C-type lectins: distinct glycan specificities and tumor binding properties. Mol. Immunol. 46, 1240–1249 (2009).

    CAS  PubMed  Google Scholar 

  189. 189.

    Tsuiji, M. et al. Molecular cloning and characterization of a novel mouse macrophage C-type lectin, mMGL2, which has a distinct carbohydrate specificity from mMGL1. J. Biol. Chem. 277, 28892–28901 (2002).

    CAS  PubMed  Google Scholar 

  190. 190.

    Suzuki, N., Yamamoto, K., Toyoshima, S., Osawa, T. & Irimura, T. Molecular cloning and expression of cDNA encoding human macrophage C-type lectin. Its unique carbohydrate binding specificity for Tn antigen. J. Immunol. 156, 128–135 (1996).

    CAS  PubMed  Google Scholar 

  191. 191.

    McEver, R. P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 107, 331–339 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Angata, T., Tabuchi, Y., Nakamura, K. & Nakamura, M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17, 838–846 (2007).

    CAS  PubMed  Google Scholar 

  194. 194.

    Angata, T., Hayakawa, T., Yamanaka, M., Varki, A. & Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 20, 1964–1973 (2006).

    CAS  PubMed  Google Scholar 

  195. 195.

    Varki, A., Schnaar, R. L. & Crocker, P. R. in Essentials of Glycobiology (eds Varki, A. et al.) 453–467 (Cold Spring Harbor, 2015).

  196. 196.

    Adams, O. J., Stanczak, M. A., von Gunten, S. & Laubli, H. Targeting sialic acid–Siglec interactions to reverse immune suppression in cancer. Glycobiology 28, 640–647 (2018).

    CAS  PubMed  Google Scholar 

  197. 197.

    Xiao, H., Woods, E. C., Vukojicic, P. & Bertozzi, C. R. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl Acad. Sci. USA 113, 10304–10309 (2016).

    CAS  PubMed  Google Scholar 

  198. 198.

    Hudak, J. E., Canham, S. M. & Bertozzi, C. R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 10, 69–75 (2014).

    CAS  PubMed  Google Scholar 

  199. 199.

    Stowell, S. R. et al. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283, 10109–10123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200.

    Sundblad, V. et al. Galectins in intestinal inflammation: galectin-1 expression delineates response to treatment in celiac disease patients. Front. Immunol. 9, 379 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Cummings, R. D., Liu, F. T. & Vasta, G. R. in Essentials of Glycobiology (eds Varki, A. et al.) 469–480 (Cold Spring Harbor, 2015).

  202. 202.

    Papa Gobbi, R. et al. A galectin-specific signature in the gut delineates Crohn’s disease and ulcerative colitis from other human inflammatory intestinal disorders. Biofactors 42, 93–105 (2016).

    CAS  PubMed  Google Scholar 

  203. 203.

    Jiang, K. et al. Galectin-3 regulates desmoglein-2 and intestinal epithelial intercellular adhesion. J. Biol. Chem. 289, 10510–10517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204.

    Muglia, C. et al. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt–villus axis of small intestine. Cell Death Dis. 2, e163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Stowell, S. R. et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, 295–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. 206.

    Santucci, L. et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124, 1381–1394 (2003).

    CAS  PubMed  Google Scholar 

  207. 207.

    Kavanaugh, D., Kane, M., Joshi, L. & Hickey, R. M. Detection of galectin-3 interaction with commensal bacteria. Appl. Env. Microbiol. 79, 3507–3510 (2013).

    CAS  Google Scholar 

  208. 208.

    Nio, J., Kon, Y. & Iwanaga, T. Differential cellular expression of galectin family mRNAs in the epithelial cells of the mouse digestive tract. J. Histochem. Cytochem. 53, 1323–1334 (2005).

    CAS  PubMed  Google Scholar 

  209. 209.

    Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. 210.

    Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. 211.

    Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. 212.

    Imberty, A., Wimmerova, M., Mitchell, E. P. & Gilboa-Garber, N. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. Microbes Infect. 6, 221–228 (2004).

    CAS  PubMed  Google Scholar 

  213. 213.

    Nizet, V., Varki, A. & Aebi, M. in Essentials of Glycobiology (eds Varki, A. et al.) 481–491 (Cold Spring Harbor, 2015).

  214. 214.

    Okuda, J. et al. Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3. Infect. Immun. 78, 4511–4522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Wu, L. et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777 (2005).

    CAS  PubMed  Google Scholar 

  216. 216.

    Chichlowski, M. & Hale, L. P. Bacterial–mucosal interactions in inflammatory bowel disease: an alliance gone bad. Am. J. Physiol. Gastrointest. Liver Physiol 295, G1139–G1149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217.

    Mohammadi, R., Hosseini-Safa, A., Ehsani Ardakani, M. J. & Rostami-Nejad, M. The relationship between intestinal parasites and some immune-mediated intestinal conditions. Gastroenterol. Hepatol. Bed Bench 8, 123–131 (2015).

    PubMed  PubMed Central  Google Scholar 

  218. 218.

    Cavalcanti, M. G. et al. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS ONE 6, e25259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. 219.

    Nishihira, J. & Mitsuyama, K. Overview of the role of macrophage migration inhibitory factor (MIF) in inflammatory bowel disease. Curr. Pharm. Des. 15, 2104–2109 (2009).

    CAS  PubMed  Google Scholar 

  220. 220.

    Jaff, M. S. Higher frequency of secretor phenotype in O blood group — its benefits in prevention and/or treatment of some diseases. Int. J. Nanomed. 5, 901–905 (2010).

    Google Scholar 

  221. 221.

    Aspholm-Hurtig, M. et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519–522 (2004).

    CAS  PubMed  Google Scholar 

  222. 222.

    Yolken, R. H. et al. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984–1991 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223.

    Hu, L. et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485, 256–259 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224.

    Kawakubo, M. et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305, 1003–1006 (2004). This in vitro study of human mucins shows that epithelial glycans can directly inhibit the growth of harmful bacteria.

    CAS  PubMed  Google Scholar 

  225. 225.

    Lee, H. et al. Alpha1,4GlcNAc-capped mucin-type O-glycan inhibits cholesterol alpha-glucosyltransferase from Helicobacter pylori and suppresses H. pylori growth. Glycobiology 18, 549–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. 226.

    Nakayama, J. et al. Expression cloning of a human alpha1, 4-N-acetylglucosaminyltransferase that forms GlcNAcalpha1–>4Galbeta–>R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc. Natl Acad. Sci. USA 96, 8991–8996 (1999).

    CAS  PubMed  Google Scholar 

  227. 227.

    Karasawa, F. et al. Essential role of gastric gland mucin in preventing gastric cancer in mice. J. Clin. Invest. 122, 923–934 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. 228.

    Kinoshita, H. et al. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res. Microbiol. 159, 685–691 (2008).

    CAS  PubMed  Google Scholar 

  229. 229.

    Nishiyama, K., Ueno, S., Sugiyama, M., Yamamoto, Y. & Mukai, T. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates. Anim. Sci. J. 87, 809–815 (2016).

    CAS  PubMed  Google Scholar 

  230. 230.

    Watanabe, M. et al. Identification of a new adhesin-like protein from Lactobacillus mucosae ME-340 with specific affinity to the human blood group A and B antigens. J. Appl. Microbiol. 109, 927–935 (2010).

    CAS  PubMed  Google Scholar 

  231. 231.

    Bene, K. P. et al. Lactobacillus reuteri surface mucus adhesins upregulate inflammatory responses through interactions with innate C-type lectin receptors. Front. Microbiol. 8, 321 (2017).

    PubMed  PubMed Central  Google Scholar 

  232. 232.

    Gunning, A. P. et al. Use of atomic force microscopy to study the multi-modular interaction of bacterial adhesins to mucins. Int. J. Mol. Sci. 17, 1854 (2016).

    PubMed Central  Google Scholar 

  233. 233.

    Etzold, S. et al. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Env. Microbiol. 16, 888–903 (2014).

    CAS  Google Scholar 

  234. 234.

    Garrido, D., Kim, J. H., German, J. B., Raybould, H. E. & Mills, D. A. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS ONE 6, e17315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. 235.

    Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5, 569–573 (2004).

    CAS  PubMed  Google Scholar 

  236. 236.

    Martens, E. C., Koropatkin, N. M., Smith, T. J. & Gordon, J. I. Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J. Biol. Chem. 284, 24673–24677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. 237.

    Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008). This study in mice shows that, for some bacteria, the ability to consume epithelial carbohydrates provides a Darwinian advantage.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. 238.

    Lynch, J. B. & Sonnenburg, J. L. Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system. Mol. Microbiol. 85, 478–491 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. 239.

    Pudlo, N. A. et al. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. mBio 6, e01282-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  240. 240.

    Marcobal, A., Southwick, A. M., Earle, K. A. & Sonnenburg, J. L. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 23, 1038–1046 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. 241.

    Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. 244.

    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    PubMed  PubMed Central  Google Scholar 

  245. 245.

    Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. 246.

    Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. 247.

    Arabyan, N. et al. Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling. Sci. Rep. 6, 29525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. 248.

    Park, D. et al. Salmonella typhimurium enzymatically landscapes the host intestinal epithelial cell (IEC) surface glycome to increase invasion. Mol. Cell Proteom. 15, 3653–3664 (2016).

    CAS  Google Scholar 

  249. 249.

    Yang, W. H. et al. Recurrent infection progressively disables host protection against intestinal inflammation. Science 358, eaao5610 (2017).

    PubMed  PubMed Central  Google Scholar 

  250. 250.

    Lo Presti, A. et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front. Microbiol. 10, 1655 (2019).

    PubMed  PubMed Central  Google Scholar 

  251. 251.

    Owen, R. L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 72, 440–451 (1977).

    CAS  PubMed  Google Scholar 

  252. 252.

    Frey, A. et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184, 1045–1059 (1996).

    CAS  PubMed  Google Scholar 

  253. 253.

    Schulz, O. & Pabst, O. Antigen sampling in the small intestine. Trends Immunol. 34, 155–161 (2013).

    CAS  PubMed  Google Scholar 

  254. 254.

    Mantis, N. J. et al. Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J. Immunol. 169, 1844–1851 (2002).

    CAS  PubMed  Google Scholar 

  255. 255.

    Rios, D. et al. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 9, 907–916 (2016).

    CAS  PubMed  Google Scholar 

  256. 256.

    Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–367 (2001).

    CAS  PubMed  Google Scholar 

  257. 257.

    McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. 258.

    Miller, M. J., Knoop, K. A. & Newberry, R. D. Mind the GAPs: insights into intestinal epithelial barrier maintenance and luminal antigen delivery. Mucosal Immunol. 7, 452–454 (2014).

    CAS  PubMed  Google Scholar 

  259. 259.

    Knoop, K. A., Miller, M. J. & Newberry, R. D. Transepithelial antigen delivery in the small intestine: different paths, different outcomes. Curr. Opin. Gastroenterol. 29, 112–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. 260.

    Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    CAS  PubMed  Google Scholar 

  261. 261.

    Yoshida, M. et al. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest. 116, 2142–2151 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. 262.

    Chionh, Y. T., Wee, J. L., Every, A. L., Ng, G. Z. & Sutton, P. M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens. Infect. Immun. 77, 2962–2970 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. 263.

    Nochi, T. et al. A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204, 2789–2796 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. 264.

    Helander, A. et al. The viral sigma1 protein and glycoconjugates containing alpha2-3-linked sialic acid are involved in type 1 reovirus adherence to M cell apical surfaces. J. Virol. 77, 7964–7977 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. 265.

    Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009). This study in mice shows that epithelial glycans can interact with foreign lectins to help uptake antigens and generate a productive immune response.

    CAS  PubMed  Google Scholar 

  266. 266.

    Ohno, H. & Hase, K. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 1, 407–410 (2010).

    PubMed  PubMed Central  Google Scholar 

  267. 267.

    Bogdanos, D. P. et al. Pancreatic-specific autoantibodies to glycoprotein 2 mirror disease location and behaviour in younger patients with Crohn’s disease. BMC Gastroenterol. 12, 102 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. 268.

    Zholudev, A., Zurakowski, D., Young, W., Leichtner, A. & Bousvaros, A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn’s disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am. J. Gastroenterol. 99, 2235–2241 (2004).

    PubMed  Google Scholar 

  269. 269.

    Mockl, L. et al. Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev. Cell 50, 57–72.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. 270.

    Scott, D. W. et al. N-glycosylation controls the function of junctional adhesion molecule-A. Mol. Biol. Cell 26, 3205–3214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. 271.

    Manicassamy, S. et al. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Matricon, J., Barnich, N. & Ardid, D. Immunopathogenesis of inflammatory bowel disease. Self/Nonself 1, 299–309 (2010).

    PubMed  PubMed Central  Google Scholar 

  273. 273.

    Cummings, R. D. & McEver, R. P. in Essentials of Glycobiology (eds Varki, A. et al.) 435–452 (Cold Spring Harbor, 2015).

  274. 274.

    Brazil, J. C. & Parkos, C. A. Pathobiology of neutrophil–epithelial interactions. Immunol. Rev. 273, 94–111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. 275.

    Brazil, J. C. et al. Alpha3/4 fucosyltransferase 3-dependent synthesis of sialyl Lewis A on CD44 variant containing exon 6 mediates polymorphonuclear leukocyte detachment from intestinal epithelium during transepithelial migration. J. Immunol. 191, 4804–4817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. 276.

    Brazil, J. C. et al. Neutrophil migration across intestinal epithelium: evidence for a role of CD44 in regulating detachment of migrating cells from the luminal surface. J. Immunol. 185, 7026–7036 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. 277.

    Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).

    CAS  PubMed  Google Scholar 

  278. 278.

    Sackstein, R. Translational glycobiology: patient-oriented glycoscience research. Glycobiology 26, 544–545 (2016).

    PubMed  PubMed Central  Google Scholar 

  279. 279.

    Telen, M. J. et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood 125, 2656–2664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. 280.

    Steentoft, C. et al. Glycan-directed CAR-T cells. Glycobiology 28, 656–669 (2018).

    CAS  PubMed  Google Scholar 

  281. 281.

    Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270 (2007).

    CAS  PubMed  Google Scholar 

  282. 282.

    Muz, B. et al. Inhibition of E-selectin (GMI-1271) or E-selectin together with CXCR4 (GMI-1359) re-sensitizes multiple myeloma to therapy. Blood Cancer J. 9, 68 (2019).

    PubMed  PubMed Central  Google Scholar 

  283. 283.

    Woods, E. C., Yee, N. A., Shen, J. & Bertozzi, C. R. Glycocalyx engineering with a recycling glycopolymer that increases cell survival in vivo. Angew. Chem. Int. Ed. Engl. 54, 15782–15788 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. 284.

    Schelwies, M. et al. Glucosamine-6-sulfamate analogues of heparan sulfate as inhibitors of endosulfatases. Chembiochem 11, 2393–2397 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  285. 285.

    Parker, R. B. & Kohler, J. J. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem. Biol. 5, 35–46 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. 286.

    Stanway, S. J. et al. Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin. Cancer Res. 12, 1585–1592 (2006).

    CAS  PubMed  Google Scholar 

  287. 287.

    Hanson, S. R., Whalen, L. J. & Wong, C. H. Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenyl sulfate and cyclic phenyl sulfamate motifs. Bioorg Med. Chem. 14, 8386–8395 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. 288.

    Rho, J. H. et al. A novel mechanism for desulfation of mucin: identification and cloning of a mucin-desulfating glycosidase (sulfoglycosidase) from Prevotella strain RS2. J. Bacteriol. 187, 1543–1551 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  289. 289.

    Nussbaumer, P. & Billich, A. Steroid sulfatase inhibitors. Med. Res. Rev. 24, 529–576 (2004).

    CAS  PubMed  Google Scholar 

  290. 290.

    Klaassen, C. D. & Boles, J. W. Sulfation and sulfotransferases 5: the importance of 3’-phosphoadenosine 5’-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J. 11, 404–418 (1997).

    CAS  PubMed  Google Scholar 

  291. 291.

    Evans, R. C. et al. Diet and colorectal cancer: an investigation of the lectin/galactose hypothesis. Gastroenterology 122, 1784–1792 (2002). This study in humans provides evidence that dietary lectins interact with intestinal glycans to influence gut biology and disease.

    CAS  PubMed  Google Scholar 

  292. 292.

    Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    PubMed  Google Scholar 

  293. 293.

    Grover, Z., Muir, R. & Lewindon, P. Exclusive enteral nutrition induces early clinical, mucosal and transmural remission in paediatric Crohn’s disease. J. Gastroenterol. 49, 638–645 (2014).

    CAS  PubMed  Google Scholar 

  294. 294.

    Hudak, J. E. & Bertozzi, C. R. Glycotherapy: new advances inspire a reemergence of glycans in medicine. Chem. Biol. 21, 16–37 (2014).

    CAS  PubMed  Google Scholar 

  295. 295.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03709628 (2020).

  296. 296.

    Malickova, K. et al. Anticarbohydrate antibodies as markers of inflammatory bowel disease in a central European cohort. Eur. J. Gastroenterol. Hepatol. 22, 144–150 (2010).

    CAS  PubMed  Google Scholar 

  297. 297.

    Trbojevic Akmacic, I. et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm. Bowel Dis. 21, 1237–1247 (2015). This study in humans identifies differences in serum IgG glycosylation in ulcerative colitis and Crohn’s disease versus healthy controls.

    PubMed  PubMed Central  Google Scholar 

  298. 298.

    Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    CAS  PubMed  Google Scholar 

  299. 299.

    Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by NIH grants U01CA168930 and P41GM103694 (R.D.C.), the Burroughs Wellcome Trust Career Award for Medical Scientists and the NIH Early Independence Grants DP5OD019892 (S.R.S.) and DK89763 and AI64462 (A.S.N.).

Author information

Affiliations

Authors

Contributions

A.S.N. and M.R.K. researched data for the article, made a substantial contribution to discussion of content, wrote the manuscript, and reviewed/edited the manuscript before submission. S.R.S. and R.D.C. made a substantial contribution to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Andrew S. Neish.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks J. Rhodes, E. Martens and B. Cobb for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Glycans

Carbohydrates consisting of at least two monosaccharides linked together.

Lectin

A non-antibody glycan-binding protein isolated from animals or plants.

Sequon

A defined series of amino acids that serve as an attachment site for a glycan.

Lewis antigens

Lewis (Le) antigens are fucosylated non-ABO blood group antigens. The basic Le structure consists of a terminal galactose attached via β-linkage to a subterminal N-acetylglucosamine (GlcNAc), which is modified by attachment of a fucose in α-linkage. The galactose can be attached to the 3 or 4 position of the GlcNAc and the fucose can be attached to the open 4 or 3 position, depending on which position is available. This basic Le structure (Lea or Lex, depending on the exact linkages) can be further modified by additionally adding a fucose to the galactose to form Ley or Leb depending on the exact linkages and/or by addition of sulfate or sialic acid to either galactose or GlcNAc. FUT3 attaches fucose to the GlcNAc, whereas FUT2 attaches fucose to the galactose.

Cad antigen

A non-ABO blood group antigen present on red blood cells and secretions. Structurally, a Cad antigen consists of a galactose modified by addition of sialic acid and N-acetylgalactosamine (GalNAc) at two different positions on the galactose ring: GalNAcβ1,4(Neu5Acα2,3)Galβ-R.

Molecular mimicry

In glycobiology, this term refers to the process of foreign microorganisms, typically bacteria, expressing glycan structures that resemble host glycan structures. This prevents immune recognition of the bacteria as a foreign invader and is used by pathogens and commensals alike.

O-GlcNAcylation

This is a class of nucleocytoplasmic glycosylation defined by β-linkage of unmodified N-acetylglucosamine on serine or threonine on glycoproteins. Unlike the majority of cell surface glycans, which last for the lifespan of the protein, O-GlcNAc is added and removed rapidly throughout the lifespan of a protein. O-GlcNAcylation often occurs at the same site as phosphorylation and similarly regulates cell signalling.

Glycosite

The amino acid position within a protein where a specific glycan is attached.

Polysaccharide utilization loci

Bacterial gene clusters that encode proteins that bind, degrade and transport extracellular polysaccharides across the bacterial cell membrane and into the bacterial cell.

Peyer’s patches

An organized collection of immune cells with a specific microarchitecture that is found in the gut, most commonly in the mucosal and submucosal layers of the ileum.

Diapedesis

The process of blood cells travelling between endothelial cells as the blood cells exit the blood vessel and enter the tissue.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kudelka, M.R., Stowell, S.R., Cummings, R.D. et al. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 17, 597–617 (2020). https://doi.org/10.1038/s41575-020-0331-7

Download citation

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing