Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Next-generation robotics in gastrointestinal surgery


The global numbers of robotic gastrointestinal surgeries are increasing. However, the evidence base for robotic gastrointestinal surgery does not yet support its widespread adoption or justify its cost. The reasons for its continued popularity are complex, but a notable driver is the push for innovation — robotic surgery is seen as a compelling solution for delivering on the promise of minimally invasive precision surgery — and a changing commercial landscape delivers the promise of increased affordability. Novel systems will leverage the robot as a data-driven platform, integrating advances in imaging, artificial intelligence and machine learning for decision support. However, if this vision is to be realized, lessons must be heeded from current clinical trials and translational strategies, which have failed to demonstrate patient benefit. In this Perspective, we critically appraise current research to define the principles on which the next generation of gastrointestinal robotics trials should be based. We also discuss the emerging commercial landscape and define existing and new technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The future digital robotic ecosystem.
Fig. 2: The DIGiTAL framework.


  1. 1.

    Intuitive Surgical, Inc. Annual report 2018. (2019).

  2. 2.

    Surgical Care and Outcomes Assessment Program Collaborative. Adoption of laparoscopy for elective colorectal resection: a report from the Surgical Care and Outcomes Assessment Program. J. Am. Coll. Surg. 214, 909–918.e1 (2012).

    Google Scholar 

  3. 3.

    National Bowel Cancer Audit. Annual report 2018. (2018).

  4. 4.

    Acuna, S. A. et al. Laparoscopic versus open resection for rectal cancer: a noninferiority meta-analysis of quality of surgical resection outcomes. Ann. Surg. 269, 849–855 (2019).

    PubMed  Google Scholar 

  5. 5.

    Lanfranco, A. R. et al. Robotic surgery: a current perspective. Ann. Surg. 239, 14–21 (2004).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Barbash, G. I. & Glied, S. A. New technology and health care costs — the case of robot-assisted surgery. N. Engl. J. Med. 363, 701–704 (2010).

    CAS  PubMed  Google Scholar 

  7. 7.

    Tan, A. et al. Robotic surgery: disruptive innovation or unfulfilled promise? A systematic review and meta-analysis of the first 30 years. Surg. Endosc. 30, 4330–4352 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Cheng, C. L. & Rezac, C. The role of robotics in colorectal surgery. BMJ 360, j5304 (2018).

    PubMed  Google Scholar 

  9. 9.

    Harr, J. N. et al. Robotic-assisted colorectal surgery in obese patients: a case-matched series. Surg. Endosc. 31, 2813–2819 (2017).

    PubMed  Google Scholar 

  10. 10.

    Kelley, S. R., Duchalais, E. & Larson, D. W. Short-term outcomes with robotic right colectomy. Am. Surg. 84, 1768–1773 (2018).

    PubMed  Google Scholar 

  11. 11.

    Walker, P. A. et al. Multicenter review of robotic versus laparoscopic ventral hernia repair: is there a role for robotics? Surg. Endosc. 32, 1901–1905 (2018).

    PubMed  Google Scholar 

  12. 12.

    Yang, S. Y. et al. Surgical outcomes after open, laparoscopic, and robotic gastrectomy for gastric cancer. Ann. Surg. Oncol. 24, 1770–1777 (2017).

    PubMed  Google Scholar 

  13. 13.

    Bhama, A. R., Obias, V., Welch, K. B., Vandewarker, J. F. & Cleary, R. K. A comparison of laparoscopic and robotic colorectal surgery outcomes using the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Surg. Endosc. 30, 1576–1584 (2016).

    PubMed  Google Scholar 

  14. 14.

    Tam, M. S. et al. A population-based study comparing laparoscopic and robotic outcomes in colorectal surgery. Surg. Endosc. 30, 455–463 (2016).

    PubMed  Google Scholar 

  15. 15.

    Speicher, P. J. et al. Robotic low anterior resection for rectal cancer: a national perspective on short-term oncologic outcomes. Ann. Surg. 262, 1040–1045 (2015).

    PubMed  Google Scholar 

  16. 16.

    Zhang, X., Wei, Z., Bie, M., Peng, X. & Chen, C. Robot-assisted versus laparoscopic-assisted surgery for colorectal cancer: a meta-analysis. Surg. Endosc. 30, 5601–5614 (2016).

    PubMed  Google Scholar 

  17. 17.

    D’Annibale, A. et al. Total mesorectal excision: a comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg. Endosc. 27, 1887–1895 (2013).

    PubMed  Google Scholar 

  18. 18.

    Kim, J. Y. et al. A comparative study of voiding and sexual function after total mesorectal excision with autonomic nerve preservation for rectal cancer: laparoscopic versus robotic surgery. Ann. Surg. Oncol. 19, 2485–2493 (2012).

    PubMed  Google Scholar 

  19. 19.

    Cadiere, G. B. et al. Evaluation of telesurgical (robotic) Nissen fundoplication. Surg. Endosc. 15, 918–923 (2001).

    CAS  PubMed  Google Scholar 

  20. 20.

    Zhou, H. X. et al. Zeus robot-assisted laparoscopic cholecystectomy in comparison with conventional laparoscopic cholecystectomy. Hepatobiliary Pancreat. Dis. Int. 5, 115–118 (2006).

    PubMed  Google Scholar 

  21. 21.

    Patel, S. V., Yu, D., Elsolh, B., Goldacre, B. M. & Nash, G. M. Assessment of conflicts of interest in robotic surgical studies: validating author’s declarations with the open payments database. Ann. Surg. 268, 86–92 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Criss, C. N. & Gadepalli, S. K. Sponsoring surgeons: an investigation on the influence of the da Vinci robot. Am. J. Surg. 216, 84–87 (2018).

    PubMed  Google Scholar 

  23. 23.

    Sanchez, B. R. et al. Comparison of totally robotic laparoscopic Roux-en-Y gastric bypass and traditional laparoscopic Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 1, 549–554 (2005).

    PubMed  Google Scholar 

  24. 24.

    Park, J. S., Choi, G. S., Park, S. Y., Kim, H. J. & Ryuk, J. P. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br. J. Surg. 99, 1219–1226 (2012).

    CAS  PubMed  Google Scholar 

  25. 25.

    Morino, M., Pellegrino, L., Giaccone, C., Garrone, C. & Rebecchi, F. Randomized clinical trial of robot-assisted versus laparoscopic Nissen fundoplication. Br. J. Surg. 93, 553–558 (2006).

    CAS  PubMed  Google Scholar 

  26. 26.

    Jayne, D. et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 318, 1569–1580 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    van der Pas, M. H. et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 14, 210–218 (2013).

    Google Scholar 

  28. 28.

    Deijen, C. L. et al. COLOR III: a multicentre randomised clinical trial comparing transanal TME versus laparoscopic TME for mid and low rectal cancer. Surg. Endosc. 30, 3210–3215 (2016).

    PubMed  Google Scholar 

  29. 29.

    Schiff, L. et al. Quality of communication in robotic surgery and surgical outcomes. JSLS 20, e2016.00026 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Vande Walle, K. & Greenberg, C. Intraoperative non-technical skills: a critical target for improving surgical outcomes. BMJ Qual. Saf. 27, 99–101 (2018).

    PubMed  Google Scholar 

  31. 31.

    Sexton, K. et al. Anticipation, teamwork and cognitive load: chasing efficiency during robot-assisted surgery. BMJ Qual. Saf. 27, 148–154 (2018).

    PubMed  Google Scholar 

  32. 32.

    Yule, S. et al. Non-technical skills for surgeons in the operating room: a review of the literature. Surgery 139, 140–149 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Coleman, M. & Rockall, T. Teaching of laparoscopic surgery colorectal. The Lapco model. Cir. Esp. 91, 279–280 (2013).

    PubMed  Google Scholar 

  34. 34.

    Wyles, S. M. et al. Development and implementation of the Structured Training Trainer Assessment Report (STTAR) in the English National Training Programme for laparoscopic colorectal surgery. Surg. Endosc. 30, 993–1003 (2016).

    PubMed  Google Scholar 

  35. 35.

    Chen, R. et al. A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg. Endosc. 34, 361–367 (2019).

    PubMed  Google Scholar 

  36. 36.

    Goh, A. C., Goldfarb, D. W., Sander, J. C., Miles, B. J. & Dunkin, B. J. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J. Urol. 187, 247–252 (2011).

    PubMed  Google Scholar 

  37. 37.

    Collins, J. W. et al. Utilising the Delphi process to develop a proficiency-based progression train-the-trainer course for robotic surgery training. Eur. Urol. 75, 775–785 (2019).

    PubMed  Google Scholar 

  38. 38.

    Gomez Ruiz, M. et al. Expert consensus on a train-the-trainer curriculum for robotic colorectal surgery. Colorectal Dis. 21, 903–908 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Tom, C. M. et al. A survey of robotic surgery training curricula in general surgery residency programs: how close are we to a standardized curriculum? Am. J. Surg. 217, 256–260 (2019).

    PubMed  Google Scholar 

  40. 40.

    Smith, R., Patel, V. & Satava, R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int. J. Med. Robot. 10, 379–384 (2014).

    PubMed  Google Scholar 

  41. 41.

    Satava, R. M. et al. Proving the effectiveness of the fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. Ann. Surg. (2019).

    Article  PubMed  Google Scholar 

  42. 42.

    Tou, S. et al. Structured training in robotic colorectal surgery. Colorectal Dis. 17, 185 (2015).

    CAS  PubMed  Google Scholar 

  43. 43.

    Pradarelli, J. C., Campbell, D. A. Jr. & Dimick, J. B. Hospital credentialing and privileging of surgeons: a potential safety blind spot. JAMA 313, 1313–1314 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Wang, Z. & Majewicz Fey, A. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int. J. Comput. Assist. Radiol. Surg. 13, 1959–1970 (2018).

    PubMed  Google Scholar 

  45. 45.

    Reiley, C. E. & Hager, G. D. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2009 (eds Yang, G. Z., Hawkes, D., Rueckert, D., Noble, A. & Taylor, C.) 435–442 (Springer, 2009).

  46. 46.

    Lee, J. G. et al. Deep learning in medical imaging: general overview. Korean J. Radiol. 18, 570–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Liu, X. et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Dig. Health 1, PE271–E297 (2019).

    Google Scholar 

  48. 48.

    Shademan, A. et al. Supervised autonomous robotic soft tissue surgery. Sci. Transl Med. 8, 337ra64 (2016).

    PubMed  Google Scholar 

  49. 49.

    Li, J. et al. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dolph, E., Krause, C. & Oleynikov, D. in Future Robotic Systems: Microrobotics and Autonomous Robots (eds. Tsuda, S. & Kudsi, O.) 329–335 (Springer, 2019).

  51. 51.

    Atallah, A. et al. Natural-orifice transluminal endoscopic surgery. Br. J. Surg. 102, e73–e92 (2015).

    CAS  PubMed  Google Scholar 

  52. 52.

    Kirschniak, A. et al. Augmented reality, cyber-physical systems and robotic surgery: nice to have or a program with future? Visc. Med. 34, 60–65 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    International Conference of Data Protection and Privacy Commissioners. Artificial intelligence, robotics, privacy and data protection. European Data Protection Supervisor. (2016).

  54. 54.

    Shah, H. The DeepMind debacle demands dialogue on data. Nature 547, 259 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    McCulloch, P. et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet 374, 1105–1112 (2009).

    PubMed  Google Scholar 

  56. 56.

    Fueglistaler, P., Adamina, M. & Guller, U. Non-inferiority trials in surgical oncology. Ann. Surg. Oncol. 14, 1532–1539 (2007).

    PubMed  Google Scholar 

  57. 57.

    Park, E. J. et al. Long-term oncologic outcomes of robotic low anterior resection for rectal cancer: a comparative study with laparoscopic surgery. Ann. Surg. 261, 129–137 (2015).

    PubMed  Google Scholar 

  58. 58.

    Kim, Y. W., Lee, H. M., Kim, N. K., Min, B. S. & Lee, K. Y. The learning curve for robot-assisted total mesorectal excision for rectal cancer. Surg. Laparosc. Endosc. Percutan. Tech. 22, 400–405 (2012).

    PubMed  Google Scholar 

  59. 59.

    Makela-Kaikkonen, J. et al. Robot-assisted vs laparoscopic ventral rectopexy for external or internal rectal prolapse and enterocele: a randomized controlled trial. Colorectal Dis. 18, 1010–1015 (2016).

    CAS  PubMed  Google Scholar 

  60. 60.

    Benizri, E. I. et al. Perioperative outcomes after totally robotic gastric bypass: a prospective nonrandomized controlled study. Am. J. Surg. 206, 145–151 (2013).

    PubMed  Google Scholar 

  61. 61.

    Draaisma, W. A. et al. Randomized clinical trial of standard laparoscopic versus robot-assisted laparoscopic Nissen fundoplication for gastro-oesophageal reflux disease. Br. J. Surg. 93, 1351–1359 (2006).

    CAS  PubMed  Google Scholar 

  62. 62.

    Muller-Stich, B. P. et al. Robot-assisted versus conventional laparoscopic fundoplication: short-term outcome of a pilot randomized controlled trial. Surg. Endosc. 21, 1800–1805 (2007).

    CAS  PubMed  Google Scholar 

  63. 63.

    Ruurda, J. P., Visser, P. L. & Broeders, I. A. Analysis of procedure time in robot-assisted surgery: comparative study in laparoscopic cholecystectomy. Comput. Aided Surg. 8, 24–29 (2003).

    PubMed  Google Scholar 

  64. 64.

    Pietrabissa, A. et al. Short-term outcomes of single-site robotic cholecystectomy versus four-port laparoscopic cholecystectomy: a prospective, randomized, double-blind trial. Surg. Endosc. 30, 3089–3097 (2016).

    PubMed  Google Scholar 

  65. 65.

    Heemskerk, J. et al. Relax, it’s just laparoscopy! A prospective randomized trial on heart rate variability of the surgeon in robot-assisted versus conventional laparoscopic cholecystectomy. Dig. Surg. 31, 225–232 (2014).

    PubMed  Google Scholar 

  66. 66.

    Aggarwal, R. et al. Initial experience with a new robotic surgical system for cholecystectomy. Surg. Innov. 27, 136–142 (2019).

    PubMed  Google Scholar 

  67. 67.

    Melling, N. et al. Robotic cholecystectomy: first experience with the new Senhance robotic system. J. Robot. Surg. 13, 495–500 (2019).

    PubMed  Google Scholar 

  68. 68.

    Spinelli, A. et al. First experience in colorectal surgery with a new robotic platform with haptic feedback. Colorectal Dis. 20, 228–235 (2017).

    Google Scholar 

  69. 69.

    Darwich, I. et al. A roadmap for robotic-assisted sigmoid resection in diverticular disease using a Senhance™ surgical robotic system: results and technical aspects. J. Robot. Surg. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Rumolo, V. et al. Senhance robotic platform for gynecologic surgery: a review of literature. Updates Surg. 71, 419–427 (2019).

    PubMed  Google Scholar 

  71. 71.

    Schmitz, R. et al. Robotic inguinal hernia repair (TAPP) first experience with the new Senhance robotic system. Surg. Technol. Int. 34, 243–249 (2019).

    PubMed  Google Scholar 

  72. 72.

    Schmitz, R. et al. Robotic-assisted Nissen fundoplication with the Senhance surgical system: technical aspects and early results. Surg. Technol. Int. 35, 133–139 (2019).

    Google Scholar 

  73. 73.

    Kastelan, Z. et al. Extraperitoneal radical prostatectomy with the Senhance surgical system robotic platform. Croat. Med. J. 60, 556–559 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Montlouis-Calixte, J. et al. Senhance 3-mm robot-assisted surgery: experience on first 14 patients in France. J. Robot. Surg. 13, 643–647 (2019).

    CAS  PubMed  Google Scholar 

  75. 75.

    Samalavicius, N. E. et al. Robotic surgery using Senhance robotic platform: single center experience with first 100 cases. J. Robot. Surg. (2019).

    Article  PubMed  Google Scholar 

  76. 76.

    deBeche-Adams, T., Eubanks, S. & de la Fuente, S. G. Early experience with the Senhance-laparoscopic/robotic platform in the US. J. Robot. Surg. 13, 357–359 (2019).

    PubMed  Google Scholar 

  77. 77.

    Stephan, D., Salzer, H. & Willeke, F. First experiences with the new Senhance telerobotic system in visceral surgery. Visc. Med. 34, 31–36 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    CMR Surgical. CMR Surgical successfully completes first set of robotically assisted surgical procedures in humans. (2019).

  79. 79.

    Clinical Trials Registry of India. (2019).

  80. 80.

    Paull, J. I. et al. The outcomes of two robotic platforms performing transanal minimally invasive surgery for rectal neoplasia: a case series of 21 patients. J. Robot. Surg. (2019).

    Article  PubMed  Google Scholar 

  81. 81.

    US National Library of Medicine. (2019).

  82. 82.

    Lang, S. et al. A European multicenter study evaluating the Flex robotic system in transoral robotic surgery. Laryngoscope 127, 391–395 (2017).

    PubMed  Google Scholar 

  83. 83.

    Persky, M. J. et al. Transoral surgery using the Flex robotic system: initial experience in the United States. Head Neck 40, 2482–2486 (2018).

    PubMed  Google Scholar 

  84. 84.

    Sethi, N. et al. Transoral robotic surgery using the Medrobotic Flex system: the Adelaide experience. J. Robot. Surg. 14, 109–113 (2019).

    PubMed  Google Scholar 

  85. 85.

    Hussain, T. et al. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes. Eur. Arch. Otorhinolaryngol. 277, 917–924 (2020).

    PubMed  Google Scholar 

  86. 86.

    Mattheis, S. et al. Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39, 471–475 (2017).

    PubMed  Google Scholar 

  87. 87.

    Agarwal, D. K. et al. Initial experience with da Vinci single-port robot-assisted radical prostatectomies. Eur. Urol. 77, 373–379 (2019).

    PubMed  Google Scholar 

  88. 88.

    Kaouk, J. et al. Step-by-step technique for single-port robot-assisted radical cystectomy and pelvic lymph nodes dissection using the da Vinci SP surgical system. BJU Int. 124, 282–285 (2019).

    Google Scholar 

  89. 89.

    Steinberg, R. L. et al. Initial experience with extraperitoneal robotic-assisted simple prostatectomy using the da Vinci SP surgical system. J. Robot. Surg. (2019).

    Article  PubMed  Google Scholar 

  90. 90.

    Kaouk, J. et al. Pure single-site robot-assisted partial nephrectomy using the SP surgical system: initial clinical experience. Urology 124, 282–285 (2019).

    PubMed  Google Scholar 

  91. 91.

    Chan, J. Y. K. et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery. Oral Oncol. 94, 101–105 (2019).

    PubMed  Google Scholar 

  92. 92.

    Park, Y. M. et al. The first human trial of transoral robotic surgery using a single-port robotic system in the treatment of laryngo-pharyngeal cancer. Ann. Surg. Oncol. 26, 4472–4480 (2019).

    PubMed  Google Scholar 

  93. 93.

    Holsinger, F. C. et al. A next-generation single-port robotic surgical system for transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngol. Head Neck Surg. 145, 1027–1034 (2019).

    Google Scholar 

Download references


Infrastructure support for this research was provided by the National Institute for Health Research Imperial Biomedical Research Centre.

Author information




J.M.K., S.E.M. and G.M. substantially contributed to discussion of content, wrote the article, and reviewed and edited the manuscript before submission. A.D. substantially contributed to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to James M. Kinross.

Ethics declarations

Competing interests

J.M.K. has been a consultant for Verb Surgical and Ethicon. He has also received research funding from Intuitive Surgical. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

European Academy of Robotic Colorectal Surgery:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kinross, J.M., Mason, S.E., Mylonas, G. et al. Next-generation robotics in gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 17, 430–440 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing