Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence-based and mechanistic insights into exclusion diets for IBS


Exclusion diets are becoming increasingly popular in the management of irritable bowel syndrome (IBS). Several mechanisms exist by which food items might cause gastrointestinal symptoms, such as direct osmotic effects of food in the gut lumen, changes to the gut microbiota and immune activation. These effects have been demonstrated in animal models and in human studies, particularly in the case of gluten-free diets and diets low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs). Indeed, randomized controlled trials (RCTs) suggest that gluten-free diets and low-FODMAP diets improve IBS symptoms, and guidelines recommend the latter approach for treating symptoms in some patients with IBS. Designing such RCTs is challenging as participants need to eat so an ‘inert’ placebo is not an option. Blinding is also an issue with these studies; in the future, new exclusion diets should not advertise what the diet consists of until it is proved to reduce symptoms. In this Review, we outline the advantages and disadvantages of each choice of control group and emphasize the importance of collecting mechanistic data (regarding direct effects of food on the gut lumen, changes in gut microbiota and intestinal inflammation) as well as symptom data in RCTs of exclusion diets in IBS.

Key points

  • Interest in exclusion diets to treat irritable bowel syndrome (IBS) is resurging.

  • Randomized controlled trials (RCTs) have shown that some diets — such as a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols or a gluten-free diet — might reduce IBS symptoms.

  • Diet might have an effect on IBS symptoms through various mechanisms, such as a direct effect of food, changing gut microbiota and immune activation.

  • RCTs evaluating exclusion diets have unique issues relating to the choice of controls, which makes interpretation of the results challenging.

  • Future RCTs should collect data that provide mechanistic insights into how the diet might be exerting effects on symptoms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mechanisms by which FODMAPs might cause IBS symptoms.
Fig. 2: Mechanisms by which wheat might cause IBS symptoms.


  1. 1.

    Skiadas, P. K. & Lascaratos, J. G. Dietetics in ancient Greek philosophy: Plato’s concepts of healthy diet. Eur. J. Clin. Nutr. 55, 532–537 (2001).

    CAS  PubMed  Google Scholar 

  2. 2.

    Keys, A. & Grande, F. Role of dietary fat in human nutrition. III. Diet and the epidemiology of coronary heart disease. Am. J. Public. Health Nations Health 47, 1520–1530 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Keys, A. Coronary heart disease in seven countries. Circulation 41, 186–195 (1970).

    Google Scholar 

  4. 4.

    Simrén, M. et al. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 63, 108–115 (2001).

    PubMed  Google Scholar 

  5. 5.

    Atkinson, W., Sheldon, T. A., Shaath, N. & Whorwell, P. J. Food elimination based on IgG antibodies in irritable bowel syndrome: a randomised controlled trial. Gut 53, 1459–1464 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Saito, Y. A., Locke, G. R., Weaver, A. L., Zinsmeister, A. R. & Talley, N. J. Diet and functional gastrointestinal disorders: a population-based case–control study. Am. J. Gastroenterol. 100, 2743–2748 (2005).

    PubMed  Google Scholar 

  7. 7.

    Verdu, E. F., Armstrong, D. & Murray, J. A. Between celiac disease and irritable bowel syndrome: the ‘no man’s land’ of gluten sensitivity. Am. J. Gastroenterol. 104, 1587–1594 (2009).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Gibson, P. R. & Shepherd, S. J. Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J. Gastroenterol. Hepatol. 25, 252–258 (2010).

    PubMed  Google Scholar 

  9. 9.

    Kris-Etherton, P. M. & Innis, S. Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids. J. Am. Dietetic Assoc. 107, 1599–1611 (2007).

    CAS  Google Scholar 

  10. 10.

    Dehghan, M. et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390, 2050–2062 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Bach Knudsen, K. E. & Hessov, I. Recovery of inulin from Jerusalem artichoke (Helianthus tuberosus) in the small intestine of man. Br. J. Nutr. 74, 101–113 (1995).

    CAS  PubMed  Google Scholar 

  12. 12.

    Macfarlane, G. T., Steed, H. & Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104, 305–344 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Clausen, M. R., Jørgensen, J. & Mortensen, P. B. Comparison of diarrhea induced by ingestion of fructooligosaccharide Idolax and disaccharide lactulose: role of osmolarity versus fermentation of malabsorbed carbohydrate. Dig. Dis. Sci. 43, 2696–2707 (1998).

    CAS  PubMed  Google Scholar 

  14. 14.

    Kalantar-Zadeh, K., Berean, K. J., Burgell, R. E., Muir, J. G. & Gibson, P. R. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 16, 733–747 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Troelsen, J. T. Adult-type hypolactasia and regulation of lactase expression. Biochim. Biophys. Acta 1723, 19–32 (2005).

    CAS  PubMed  Google Scholar 

  16. 16.

    Itan, Y., Jones, B. L., Ingram, C. J., Swallow, D. M. & Thomas, M. G. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 10, 36 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Lomer, M. C., Parkes, G. C. & Sanderson, J. D. Review article: lactose intolerance in clinical practice — myths and realities. Aliment. Pharmacol. Ther. 27, 93–103 (2008).

    CAS  PubMed  Google Scholar 

  18. 18.

    Marriott, B. P., Cole, N. & Lee, E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 139, 1228S–1235S (2009).

    CAS  PubMed  Google Scholar 

  19. 19.

    Jones, H. F., Butler, R. N. & Brooks, D. A. Intestinal fructose transport and malabsorption in humans. Am. J. Physiol. Gastrointest. Liver Physiol 300, G202–G206 (2011).

    CAS  PubMed  Google Scholar 

  20. 20.

    Yao, C. K. et al. Dietary sorbitol and mannitol: food content and distinct absorption patterns between healthy individuals and patients with irritable bowel syndrome. J. Hum. Nutr. Diet. 27, 263–275 (2014).

    PubMed  Google Scholar 

  21. 21.

    Hyams, J. S. Sorbitol intolerance: an unappreciated cause of functional gastrointestinal complaints. Gastroenterology 84, 30–33 (1983).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ong, D. K. et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J. Gastroenterol. Hepatol. 25, (1366–1373) (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Barrett, J. S. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates. Aliment. Pharmacol. Ther. 31, 874–882 (2010).

    CAS  PubMed  Google Scholar 

  24. 24.

    Murray, K. et al. Differential effects of FODMAPs (fermentable oligo, di-, mono-saccharides and polyols) on small and large intestinal contents in healthy subjects shown by MRI. Am. J. Gastroenterol. 109, 110–119 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology 152, 124–133.e2 (2017).

    PubMed  Google Scholar 

  26. 26.

    Simrén, M. et al. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut. 67, 255–262 (2018).

    PubMed  Google Scholar 

  27. 27.

    Huaman, J. W. et al. Effects of prebiotics vs a diet low in FODMAPs in patients with functional gut disorders. Gastroenterology 155, 1004–1007 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wilkinson-Smith, V. C. et al. Insights into the different effects of food on intestinal secretion using magnetic resonance imaging. J. Parenter. Enter. Nutr. 42, 1342–1348 (2018).

    CAS  Google Scholar 

  29. 29.

    Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome — a systematic review. Gastroenterology 157, 97–108 (2019).

    PubMed  Google Scholar 

  30. 30.

    Halmos, E. P. et al. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64, 93–100 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hustoft, T. N. et al. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 29, e12969 (2017).

    Google Scholar 

  32. 32.

    Staudacher, H. M. et al. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: a randomized controlled trial. Gastroenterology 153, 936–947 (2017).

    CAS  PubMed  Google Scholar 

  33. 33.

    McIntosh, K. et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut. 66, 1241–1251 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Sloan, T. J. et al. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS One 26, e0201410 (2018).

    Google Scholar 

  35. 35.

    Chumpitazi, B. P. et al. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther. 42, 418–427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bennet, S. M. P. et al. Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut 67, 872–881 (2018).

    CAS  PubMed  Google Scholar 

  37. 37.

    Shi-Yi Zhou et al. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J. Clin. Invest. 128, 267–280 (2018).

    PubMed  Google Scholar 

  38. 38.

    Waserman, S., Begin, P. & Watson, W. IgE-mediated food allergy. Allergy Asthma Clin. Immunology 14, 55 (2018).

    Google Scholar 

  39. 39.

    Soares-Weiser, K. et al. The diagnosis of food allergy: a systematic review and meta-analysis. Allergy 69, 76–86 (2014).

    CAS  PubMed  Google Scholar 

  40. 40.

    Fritscher-Ravens, A. et al. Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E. Gastroenterology 157, 109–118 (2019).

    PubMed  Google Scholar 

  41. 41.

    Volta, U. et al. Dietary triggers in irritable bowel syndrome: is there a role for gluten? J. Neurogastroenterol. Motil. 22, 547–557 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Vazquez-Roque, M. I. et al. Association of HLA-DQ gene with bowel transit, barrier function, and inflammation in irritable bowel syndrome with diarrhea. Am. J. Physiol. Gastrointest. Liver Physiol 303, G1262–G1269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Vazquez-Roque, M. I. et al. A controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhoea: effects on bowel frequency and intestinal function. Gastroenterology 144, 903–911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wahnschaffe, U. et al. Predictors of clinical response to gluten-free diet in patients diagnosed with diarrhoea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 5, 844–850 (2007).

    PubMed  Google Scholar 

  45. 45.

    Verdu, E. F. et al. Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol 294, G217–G225 (2008).

    CAS  PubMed  Google Scholar 

  46. 46.

    Chirdo F. G., Arranz E. in Advances in the Understanding of Gluten Related Pathology and the Evolution of Gluten-free Foods (eds Arranz E., Fernández-Bañares F., Rosell C. M., Rodrigo L., Peña A. S.) 141–162 (OmniaScience, 2015).

  47. 47.

    Zevallos, V. F. et al. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 52, 1100–1113 (2017).

    Google Scholar 

  48. 48.

    Caminero, A. et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nat. Commun. 10, 1198 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Caminero, A. et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology 156, 2266–2280 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Spieth, P. M. et al. Randomized controlled trials — a matter of design. Neuropsychiatr. Dis. Treat. 12, 1341–1349 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721 (2012).

    PubMed  Google Scholar 

  52. 52.

    Sturdevant, S. G. & Lumley, T. Testing carryover effects after cessation of treatments: a design approach. BMC Med. Res. Methodol. 16, 92 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Hopewell, S., Dutton, S., Yu, L. M., Chan, A. W. & Altman, D. G. The quality of reports of randomised trials in 2000 and 2006: comparative study of articles indexed in PubMed. BMJ 340, c723 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Schulz, K. F. & Altman, D. G., Moher D for the CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340, c332 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Staudacher, H. M. et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J. Nutr. 142, 1510–1518 (2012).

    CAS  PubMed  Google Scholar 

  56. 56.

    Ford, A. C. & Moayyedi, P. Meta-analysis: factors affecting placebo response rate in irritable bowel syndrome. Aliment. Pharmacol. Ther. 32, 144–158 (2010).

    CAS  PubMed  Google Scholar 

  57. 57.

    Dionne, J. et al. A systematic review and meta-analysis evaluating the efficacy of a gluten-free diet and a low FODMAPs diet in treating symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 113, 1290–1300 (2018).

    CAS  PubMed  Google Scholar 

  58. 58.

    Bohn, L. et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology 149, 1399–1407 (2015).

    PubMed  Google Scholar 

  59. 59.

    National Institute for Health and Care Excellence. NICE Guidelines: Irritable Bowel Syndrome in Adults: Diagnosis and Management of Irritable Bowel Syndrome in Primary Care (NICE, 2017).

  60. 60.

    Ford, A. C., Harris, L. A., Lacy, B. E., Quigley, E. M. M. & Moayyedi, P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 48, 1044–1060 (2018).

    PubMed  Google Scholar 

  61. 61.

    Kaptchuk, T. J. et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336, 999–1003 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    CAS  PubMed  Google Scholar 

  63. 63.

    Biesiekierski, J. R. et al. Gluten causes of gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo controlled trial. Am. J. Gastroenterol. 106, 508–514 (2011).

    CAS  PubMed  Google Scholar 

  64. 64.

    Shahhbazkhani, B. et al. Non-celiac gluten sensitivity has narrowed the spectrum of irritable bowel syndrome: a double-blind randomized placebo controlled trial. Nutrients 7, 4542–4554 (2015).

    Google Scholar 

  65. 65.

    Hustoft, T. N. et al. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 29, e12969 (2017).

    Google Scholar 

  66. 66.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  Google Scholar 

  67. 67.

    Corring, T. The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev. 20, 1217–1235 (1980).

    CAS  PubMed  Google Scholar 

  68. 68.

    Ford, A. C. et al. American College of Gastroenterology Monograph on Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 113, 1–18 (2018).

    PubMed  Google Scholar 

  69. 69.

    Moayyedi, P. et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Management of Irritable Bowel Syndrome (IBS). J. Can. Assoc. Gastroenterol. 2, 6029 (2019).

    Google Scholar 

  70. 70.

    Moayyedi, P. et al. Irritable bowel syndrome diagnosis and management: a simplified algorithm for clinical practice. United European Gastroenterol. J. 5, 773–788 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. 71.

    Biesiekierski, J. R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145, 320–328 (2013).

    CAS  PubMed  Google Scholar 

  72. 72.

    Hungin, A. P., Becher, A. & Cayley, B. Irritable bowel syndrome: an integrated explanatory model for clinical practice. Neurogastroenterol. Motil. 27, 750–763 (2015).

    CAS  PubMed  Google Scholar 

  73. 73.

    O’Connor, D. B., Jones, F., Connor, M., McMillan, B. & Ferguson, E. Effects of daily hassles and eating style on eating behavior. J. Health Psychol. 27, 20–31 (2008).

    Google Scholar 

  74. 74.

    Werlang, M. E., Palmer, W. C. & Lacy, B. E. Irritable bowel syndrome and dietary interventions. Gastroenterol. Hepatol. 15, 16–26 (2019).

    Google Scholar 

  75. 75.

    Caminero, A., Meisel, M., Jabri, B. & Verdu, E. F. Mechanisms by which gut microorganisms influence food sensitivities. Nat. Rev. Gastroenterol. Hepatol. 16, 7–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The work of P.M. and P.B. is funded by Canadian Institutes of Health Research (CIHR) (RN279389-358033). The Inflammation, Microbiome, and Alimentation: Gastro-Intestinal and Neuropsychiatric Effects: the IMAGINE network — a Strategy for Patient-Oriented Research CIHR Chronic Disease Network.

Author information




All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Paul Moayyedi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Nick Talley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moayyedi, P., Simrén, M. & Bercik, P. Evidence-based and mechanistic insights into exclusion diets for IBS. Nat Rev Gastroenterol Hepatol 17, 406–413 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing