Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders

Abstract

Gut microbiota dysbiosis has been repeatedly observed in obesity and type 2 diabetes mellitus, two metabolic diseases strongly intertwined with non-alcoholic fatty liver disease (NAFLD). Animal studies have demonstrated a potential causal role of gut microbiota in NAFLD. Human studies have started to describe microbiota alterations in NAFLD and have found a few consistent microbiome signatures discriminating healthy individuals from those with NAFLD, non-alcoholic steatohepatitis or cirrhosis. However, patients with NAFLD often present with obesity and/or insulin resistance and type 2 diabetes mellitus, and these metabolic confounding factors for dysbiosis have not always been considered. Patients with different NAFLD severity stages often present with heterogeneous lesions and variable demographic characteristics (including age, sex and ethnicity), which are known to affect the gut microbiome and have been overlooked in most studies. Finally, multiple gut microbiome sequencing tools and NAFLD diagnostic methods have been used across studies that could account for discrepant microbiome signatures. This Review provides a broad insight into microbiome signatures for human NAFLD and explores issues with disentangling these signatures from underlying metabolic disorders. More advanced metagenomics and multi-omics studies using system biology approaches are needed to improve microbiome biomarkers.

Key points

  • Whereas animal studies have demonstrated a potential causal role of gut microbiota in non-alcoholic fatty liver disease (NAFLD), human studies have only just started to describe microbiome signatures in NAFLD.

  • Proteobacteria are consistently enriched in steatosis and non-alcoholic steatohepatitis.

  • The invasion of oral bacteria (such as Prevotella or Veillonella) into the distal intestine is observed in cirrhosis.

  • Faecalibacterium prausnitzii abundance is reduced in cirrhosis and other diseases, including diabetes, obesity and irritable bowel syndrome.

  • Bacterial signatures (Clostridium and Lactobacillus) overlap between NAFLD and metabolic diseases (type 2 diabetes mellitus).

  • Discrepant microbiome signatures across studies could be linked to the heterogeneity of geographical regions, ethnicity, population characteristics, microbiome sequencing tools, NAFLD diagnostic tools, disease spectrum, drug consumption and circadian rhythm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overlapping microbiota species and genera signatures in NAFLD, diabetes and obesity.
Fig. 2: Microbiota species and genera signatures in non-alcoholic steatohepatitis-related fibrosis, cirrhosis, diabetes and obesity.
Fig. 3: Gut-derived metabolites and factors that could drive progression of NAFLD.

Similar content being viewed by others

References

  1. Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C. & Cotter, P. D. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3, 203–220 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Prakash, S., Tomaro-Duchesneau, C., Saha, S. & Cantor, A. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 2011, 981214 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fraher, M. H., O’Toole, P. W. & Quigley, E. M. M. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat. Rev. Gastroenterol. Hepatol. 9, 312–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Karlsson, F., Tremaroli, V., Nielsen, J. & Bäckhed, F. Assessing the human gut microbiota in metabolic diseases. Diabetes 62, 3341–3349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541 (2013).

    Article  PubMed  CAS  Google Scholar 

  12. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Moreno-Indias, I., Cardona, F., Tinahones, F. J. & Queipo-Ortuño, M. I. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 5, 190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Tilg, H., Zmora, N., Adolph, T. E. & Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20, 40–54 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Aron-Wisnewsky, J. & Clément, K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 12, 169–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Davis, C. D. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 59, 1121–1140 (2016).

    Article  Google Scholar 

  24. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Noureddin, M. et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am. J. Gastroenterol. 113, 1649–1659 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Castera, L. Diagnosis of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: non-invasive tests are enough. Liver Int. 38 (Suppl. 1), 67–70 (2018).

    Article  PubMed  Google Scholar 

  27. Van Herck, M. A., Vonghia, L. & Francque, S. M. Animal models of nonalcoholic fatty liver disease-a starter’s guide. Nutrients 9, 1072 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  28. Aron-Wisnewsky, J., Gaborit, B., Dutour, A. & Clement, K. Gut microbiota and non-alcoholic fatty liver disease: new insights. Clin. Microbiol. Infect. 19, 338–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Wieland, A., Frank, D. N., Harnke, B. & Bambha, K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 42, 1051–1063 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Roychowdhury, S., Selvakumar, P. C. & Cresci, G. A. The role of the gut microbiome in nonalcoholic fatty liver disease. Med. Sci. 6, 47 (2018).

    Google Scholar 

  31. Bedossa, P. et al. Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56, 1751–1759 (2012). This work proposes a novel algorithm to classify patients as without NAFLD, with NAFLD or with overt NASH that is more robust than previous algorithms; since its development, it has been used in many studies.

    Article  PubMed  Google Scholar 

  32. Brunt, E. M. et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Hagström, H. et al. SAF score and mortality in NAFLD after up to 41 years of follow-up. Scand. J. Gastroenterol. 52, 87–91 (2017).

    Article  PubMed  Google Scholar 

  34. Pais, R. et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J. Hepatol. 59, 550–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Schuppan, D. & Afdhal, N. H. Liver cirrhosis. Lancet 371, 838–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fingas, C. D., Best, J., Sowa, J.-P. & Canbay, A. Epidemiology of nonalcoholic steatohepatitis and hepatocellular carcinoma. Clin. Liver Dis. 8, 119–122 (2016).

    Article  Google Scholar 

  37. Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 53, 372–384 (2010).

    Article  PubMed  Google Scholar 

  38. Karlas, T., Wiegand, J. & Berg, T. Gastrointestinal complications of obesity: non-alcoholic fatty liver disease (NAFLD) and its sequelae. Best. Pract. Res. Clin. Endocrinol. Metab. 27, 195–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Nusrat, S., Khan, M. S., Fazili, J. & Madhoun, M. F. Cirrhosis and its complications: evidence based treatment. World J. Gastroenterol. 20, 5442–5460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, Z.-Y., Shao, Z., Li, Y.-L., Wulasihan, M. & Chen, X.-H. Prevalence of and risk factors for non-alcoholic fatty liver disease in a Chinese population: an 8-year follow-up study. World J. Gastroenterol. 22, 3663–3669 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fazel, Y., Koenig, A. B., Sayiner, M., Goodman, Z. D. & Younossi, Z. M. Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism 65, 1017–1025 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Wong, V. W.-S. et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J. Hepatol. 69, 1349–1356 (2018).

    Article  PubMed  Google Scholar 

  43. Ching-Yeung, Yu, B., Kwok, D. & Wong, V. W. Magnitude of nonalcoholic fatty liver disease: eastern perspective. J. Clin. Exp. Hepatol. 9, 491–496 (2019).

    Article  Google Scholar 

  44. Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

    Article  PubMed  CAS  Google Scholar 

  45. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  46. Vanni, E. et al. From the metabolic syndrome to NAFLD or vice versa? Digestive Liver Dis. 42, 320–330 (2010).

    Article  CAS  Google Scholar 

  47. Yki-Järvinen, H. & Luukkonen, P. K. Diabetes, liver cancer and cirrhosis: what next? Hepatology 68, 1220–1222 (2018).

    Article  PubMed  Google Scholar 

  48. Younossi, Z. M. et al. Pathologic criteria for nonalcoholic steatohepatitis: Interprotocol agreement and ability to predict liver-related mortality. Hepatology 53, 1874–1882 (2011).

    Article  PubMed  Google Scholar 

  49. Sumida, Y., Nakajima, A. & Itoh, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 475–485 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shen, J. et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 56, 1363–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Dasarathy, S. et al. Validity of real time ultrasound in the diagnosis of hepatic steatosis: a prospective study. J. Hepatol. 51, 1061–1067 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wildman-Tobriner, B. et al. Association between magnetic resonance imaging-proton density fat fraction and liver histology features in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis. Gastroenterology 155, 1428–1435.e2 (2018).

    Article  PubMed  Google Scholar 

  53. Friedrich-Rust, M., Poynard, T. & Castera, L. Critical comparison of elastography methods to assess chronic liver disease. Nat. Rev. Gastroenterol. Hepatol. 13, 402–411 (2016).

    Article  PubMed  Google Scholar 

  54. Xiao, G. et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology 66, 1486–1501 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Wong, V. W.-S. et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 51, 454–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Papagianni, M., Sofogianni, A. & Tziomalos, K. Non-invasive methods for the diagnosis of nonalcoholic fatty liver disease. World J. Hepatol. 7, 638–648 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dyson, J. K., Anstee, Q. M. & McPherson, S. Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 5, 211 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Morra, R. et al. FibroMAXTM: towards a new universal biomarker of liver disease? Expert. Rev. Mol. Diagnostics 7, 481–490 (2007).

    Article  Google Scholar 

  59. Alkhouri, N. et al. Evaluation of circulating markers of hepatic apoptosis and inflammation in obese children with and without obstructive sleep apnea. Sleep. Med. 16, 1031–1035 (2015).

    Article  PubMed  Google Scholar 

  60. Gunn, N. T. & Shiffman, M. L. The use of liver biopsy in nonalcoholic fatty liver disease: when to biopsy and in whom. Clin. Liver Dis. 22, 109–119 (2018).

    Article  PubMed  Google Scholar 

  61. Vilar-Gomez, E. & Chalasani, N. Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J. Hepatol. 68, 305–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Eddowes, P. J. et al. Accuracy of fibroscan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1717–1730 (2019).

    Article  PubMed  Google Scholar 

  63. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Farrell, G. et al. Mouse models of nonalcoholic steatohepatitis Towards optimization of their relevance to human NASH. Hepatology 69, 2241–2257 (2019).

    Article  PubMed  Google Scholar 

  66. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chiu, C.-C. et al. Nonalcoholic fatty liver disease is exacerbated in high-fat diet-fed gnotobiotic mice by colonization with the gut microbiota from patients with nonalcoholic steatohepatitis. Nutrients 9, 1220 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  68. Le Roy, T. et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: age, kinetic and microbial status matter. Front. Microbiol. 9, 3289 (2018).

    Article  PubMed  Google Scholar 

  69. Hoyles, L. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080 (2018). This work reveals molecular networks linking the gut microbiome (using metagenomic analysis) and the host phenome (hepatic transcriptome as well as urine and plasma metabolome) to hepatic steatosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brandl, K. & Schnabl, B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr. Opin. Gastroenterol. 33, 128–133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leung, C., Rivera, L., Furness, J. B. & Angus, P. W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 13, 412–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Loomba, R. Role of imaging-based biomarkers in NAFLD: recent advances in clinical application and future research directions. J. Hepatol. 68, 296–304 (2018).

    Article  PubMed  Google Scholar 

  73. Wang, B. et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci. Rep. 6, 32002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen, F. et al. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 16, 375–381 (2017). This work was one of the first to use the HiSeq 2000 platform to sequence the microbiome and discover a microbial related signature of NAFLD (biopsy proven) as compared with healthy individuals as controls in a Chinese cohort.

    Article  PubMed  Google Scholar 

  75. Raman, M. et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 11, 868–875.e1-3 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Loomba, R. et al. Gut microbiome based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017). This work offers a first microbiota signature of NAFLD-related fibrosis severity using whole-genome shotgun sequencing to sequence the microbiome in patients with biopsy-proven NASH and fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Del Chierico, F. et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology 65, 451–464 (2017). This work provides a microbial signature of NAFLD–NASH in children and uses several control groups (one of individuals with obesity without NAFLD and one of healthy individuals).

    Article  PubMed  CAS  Google Scholar 

  79. Boursier, J. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Mouzaki, M. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Michail, S. et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol. Ecol. 91, 1–9 (2015).

    Article  PubMed  CAS  Google Scholar 

  82. Da Silva, H. E. et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci. Rep. 8, 1466 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wong, V. W. et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis–a longitudinal study. PLOS ONE 8, e62885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut https://doi.org/10.1136/gutjnl-2018-316103 (2018).

    Article  PubMed  Google Scholar 

  85. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, Y. et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54, 562–572 (2011).

    Article  PubMed  Google Scholar 

  88. Chen, Y. et al. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci. Rep. 6, 34055 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014). This paper discusses the gut microbial signature of patients with cirrhosis compared with that of healthy individuals, then addresses whether this signature is stable over time in compensated cirrhosis as well as further assessing the changes in patients undergoing decompensated cirrhosis.

    Article  CAS  PubMed  Google Scholar 

  90. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014). The first study to offer a microbial signature of liver cirrhosis in adults, comparing 98 patients with 83 healthy individuals using quantitative metagenomics.

    Article  CAS  PubMed  Google Scholar 

  91. Caussy, C. et al. A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nat. Commun. 10, 1406 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Iebba, V. et al. Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Sci. Rep. 8, 8210 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Mao, J.-W. et al. Intestinal mucosal barrier dysfunction participates in the progress of nonalcoholic fatty liver disease. Int. J. Clin. Exp. Pathol. 8, 3648–3658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65, 415–425 (2016).

    Article  PubMed  CAS  Google Scholar 

  96. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Rajilic´-Stojanovic´, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792–1801 (2011).

    Article  PubMed  CAS  Google Scholar 

  98. Furet, J.-P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharpton, S. R., Ajmera, V. & Loomba, R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin. Gastroenterol. Hepatol. 17, 296–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Harte, A. L. et al. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. 7, 15 (2010).

    Article  CAS  Google Scholar 

  101. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article  PubMed  Google Scholar 

  102. Cruz-Ramón, V., Chinchilla-López, P., Ramírez-Pérez, O. & Méndez-Sánchez, N. Bile acids in nonalcoholic fatty liver disease: new concepts and therapeutic advances. Ann. Hepatol. 16, S58–S67 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Chiang, J. Y. L. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 1, 3–9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Article  PubMed  Google Scholar 

  106. Raubenheimer, P. J., Nyirenda, M. J. & Walker, B. R. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55, 2015 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Yu, D. et al. Higher dietary choline intake is associated with lower risk of nonalcoholic fatty liver in normal-weight Chinese women. J. Nutr. 144, 2034–2040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Dumas, M.-E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA 103, 12511–12516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, Y. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dumas, M.-E., Kinross, J. & Nicholson, J. K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146, 46–62 (2014).

    Article  PubMed  Google Scholar 

  115. Di Ciaula, A. et al. Bile acid physiology. Ann. Hepatol. 16 (Suppl. 1), S4–S14 (2017).

    Article  PubMed  CAS  Google Scholar 

  116. Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Staley, C., Weingarden, A. R., Khoruts, A. & Sadowsky, M. J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 101, 47–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liu, H., Hu, C., Zhang, X. & Jia, W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J. Diabetes Investig. 9, 13–20 (2018).

    Article  PubMed  Google Scholar 

  121. Kakiyama, G. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694.e3 (2017).

    Article  PubMed  CAS  Google Scholar 

  123. Caussy, C. et al. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology https://doi.org/10.1002/hep.29892 (2018).

    Article  PubMed  Google Scholar 

  124. Volynets, V. et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Digestive Dis. Sci. 57, 1932–1941 (2012).

    Article  CAS  Google Scholar 

  125. Bashiardes, S., Shapiro, H., Rozin, S., Shibolet, O. & Elinav, E. Non-alcoholic fatty liver and the gut microbiota. Mol. Metab. 5, 782–794 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yuan, J. et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 30, 675–688.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Kolodziejczyk, A. A., Zheng, D., Shibolet, O. & Elinav, E. The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11, e9302 (2019).

    Article  PubMed  CAS  Google Scholar 

  128. Chu, H., Duan, Y., Yang, L. & Schnabl, B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 68, 359–370 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. den Besten, G. et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G900–G910 (2013).

    Article  CAS  Google Scholar 

  132. Rau, M. et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol. J. 6, 1496–1507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rau, M. et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the Liver. J. Immunol. 196, 97–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Sun, M., Wu, W., Liu, Z. & Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wen, W. & Schwabe, R. F. Soluble fibers improve metabolic syndrome but may cause liver disease and hepatocellular carcinoma. Hepatology 70, 739–741 (2019).

    PubMed  Google Scholar 

  137. Singh, V. et al. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175, 679–694 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aron-Wisnewsky, J., Warmbrunn, M., Nieuwdorp, M. & Clément, K. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? Gastroenterology https://doi.org/10.1053/j.gastro.2020.01.049 (2020).

    Article  PubMed  Google Scholar 

  139. Kim, M. et al. Histone deacetylase inhibition attenuates hepatic steatosis in rats with experimental Cushing’s syndrome. Korean J. Physiol. Pharmacol. 22, 23–33 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Loomba, R., Sirlin, C. B., Schwimmer, J. B. & Lavine, J. E. Advances in pediatric nonalcoholic fatty liver disease. Hepatology 50, 1282–1293 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Nobili, V. et al. NAFLD in children: new genes, new diagnostic modalities and new drugs. Nat. Rev. Gastroenterol. Hepatol. 16, 517–530 (2019).

    Article  PubMed  Google Scholar 

  142. Vos, M. B. et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: recommendations from the expert committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 64, 319–334 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Deschasaux, M. et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 24, 1526–1531 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Bambha, K. et al. Ethnicity and nonalcoholic fatty liver disease. Hepatology 55, 769–780 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Gangarapu, V., Yildiz, K., Ince, A. T. & Baysal, B. Role of gut microbiota: obesity and NAFLD. Turk. J. Gastroenterol. 25, 133–140 (2014).

    Article  PubMed  Google Scholar 

  146. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261 (2012).

    Article  PubMed  Google Scholar 

  149. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Loomba, R. et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943–951 (2012).

    Article  PubMed  Google Scholar 

  151. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5, e9085 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rhee, E. J. Nonalcoholic fatty liver disease and diabetes: an epidemiological perspective. Endocrinol. Metab. 34, 226–233 (2019).

    Article  Google Scholar 

  155. Lonardo, A., Ballestri, S., Marchesini, G., Angulo, P. & Loria, P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 47, 181–190 (2015).

    Article  PubMed  Google Scholar 

  156. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017). The first study to decipher the effect of metformin on the gut microbiota signature in a randomized control trial, including individuals with drug-naive T2DM, using metagenomic analysis and gut stimulator experiments with faecal transfer in germ-free mice.

    Article  CAS  PubMed  Google Scholar 

  157. Shin, N.-R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Pastori, D. et al. The efficacy and safety of statins for the treatment of non-alcoholic fatty liver disease. Dig. Liver Dis. 47, 4–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Caparrós-Martín, J. A. et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome 5, 95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Imhann, F. et al. Proton pump inhibitors affect the gut microbiome. Gut 65, 740–748 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Yeh, M. M. & Brunt, E. M. Pathology of nonalcoholic fatty liver disease. Am. J. Clin. Pathol. 128, 837–847 (2007).

    Article  PubMed  Google Scholar 

  164. Koch, L. K. & Yeh, M. M. Nonalcoholic fatty liver disease (NAFLD): diagnosis, pitfalls, and staging. Ann. Diagn. Pathol. 37, 83–90 (2018).

    Article  PubMed  Google Scholar 

  165. Reinke, H. & Asher, G. Circadian clock control of liver metabolic functions. Gastroenterology 150, 574–580 (2016).

    Article  PubMed  Google Scholar 

  166. Parsons, M. J. et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int. J. Obes. 39, 842–848 (2015).

    Article  CAS  Google Scholar 

  167. Asher, G. & Sassone-Corsi, P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161, 84–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Archer, S. N. et al. Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc. Natl Acad. Sci. USA 111, E682–E691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Thomas, V., Clark, J. & Doré, J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. https://doi.org/10.2217/fmb.15.87 (2015).

    Article  PubMed  Google Scholar 

  173. Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D. & Konstantinidis, K. T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLOS ONE 9, e93827 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Ranjan, R., Rani, A., Metwally, A., McGee, H. S. & Perkins, D. L. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 469, 967–977 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Youssef, N. et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol. 75, 5227–5236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ten Hoopen, P. et al. The metagenomic data life-cycle: standards and best practices. Gigascience 6, 1–11 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Olson, E. M., Lin, N. U., Krop, I. E. & Winer, E. P. The ethical use of mandatory research biopsies. Nat. Rev. Clin. Oncol. 8, 620–625 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Peppercorn, J. et al. Ethics of mandatory research biopsy for correlative end points within clinical trials in oncology. J. Clin. Oncol. 28, 2635–2640 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  182. López-Contreras, B. E. et al. Composition of gut microbiota in obese and normal-weight Mexican school-age children and its association with metabolic traits. Pediatr. Obes. 13, 381–388 (2018).

    Article  PubMed  Google Scholar 

  183. Dao, M. C. et al. A data integration multi-omics approach to study calorie restriction-induced changes in insulin sensitivity. Front. Physiol. 9, 1958 (2018).

    Article  PubMed  Google Scholar 

  184. Kayser, B. D. et al. Serum lipidomics reveals early differential effects of gastric bypass compared to banding on phospholipids and sphingolipids independent of differences in weight loss. Int. J. Obes. 41, 917–925 (2017).

    Article  CAS  Google Scholar 

  185. Kayser, B. D. et al. Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB J. 33, 4741–4754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dao, M. C. et al. A data integration multi-omics approach to study calorie restriction-induced changes in insulin sensitivity. Front. Physiol. 9, 1958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wright, E. K. et al. Microbial factors associated with postoperative Crohn’s disease recurrence. J. Crohns Colitis 11, 191–203 (2017).

    Article  PubMed  Google Scholar 

  188. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Grattagliano, I. et al. Utility of noninvasive methods for the characterization of nonalcoholic liver steatosis in the family practice. The “VARES” Italian multicenter study. Ann. Hepatol. 12, 70–77 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank funding support for research activities in metagenomics in metabolic disorders (including liver diseases); the European Union support via H2020 EPoS (H2020-PHC-2014-634413 to K.C. and C.V.), the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No. 777377 to M.N. and K.C.). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA. J.A.-W. and K.C. thank FP7 Metacardis (grant agreement HEALTH-F4-2012-305312) as well as National support from French Investment for the Future (National Agency of Research; F-CRIN FORCE, Metagenopolis and ICAN). J.A.-W. received a grant from Bettencourt Schueller Fondation. M.N. is supported by a personal ZONMW-VIDI grant 2013 [016.146.327]. A.G.H. is supported by the Amsterdam UMC Fellowship grant, a Health Holland TKI-PPP grant and by the Gilead Research scholarship grant. The authors thank T. Swartz for language editing and E. Prifti for critical reading.

Author information

Authors and Affiliations

Authors

Contributions

J.A.-W. contributed to the research, discussion of content, writing and editing of this manuscript. C.V., J.W., P. L., A.G.H. and J.V. contributed to the research, discussion of content, writing of this manuscript. M.N. and K.C. initiated the project and contributed to the discussion of content as well as writing and reviewing/editing the manuscript.

Corresponding author

Correspondence to Karine Clément.

Ethics declarations

Competing interests

M.N. is in the Scientific Advisory Board of Caelus Pharmaceuticals, the Netherlands. K.C. is on the Scientific Advisory Board of LNC therapeutics and CONFO therapeutics and has contract consultancy and contract collaboration with Danone Research. None of these are directly relevant to the current paper. There are no patents, products in development or marketed products to declare. The other authors declare no competing financial interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks A. Alisi, A. Mardinoglu, R. Reimer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Shotgun sequencing

Involves randomly breaking up DNA sequences into lots of small segments, which are further sequenced to obtain reads; computational programmes then reassemble the sequence by looking for regions of overlap.

Faecal microbiota transplantation

(FMT). Transfer of faeces from a donor to a receiver to obtain a beneficial clinical outcome by modifying the recipient’s gut microbiota.

Non-alcoholic fatty liver disease

(NAFLD). A liver disease characterized by pathological hepatic fat accumulation from simple steatosis to non-alcoholic steatohepatitis.

Non-alcoholic steatohepatitis

(NASH). A severe stage of NAFLD characterized by steatosis, hepatocyte ballooning (that is, cell injury) and inflammation, which can be associated with and/or evolve to fibrosis, cirrhosis and hepatocellular carcinoma.

Steatosis

Corresponds to intrahepatic fat of at least 5% of liver weight, which can be reversible upon lifestyle modifications.

Liver fibrosis

The excessive accumulation of extracellular matrix proteins, including collagen, that occurs in most chronic liver aetiologies.

Cirrhosis

Corresponds to the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury.

Compensated cirrhosis

Occurs when the liver is at the stage of severe fibrosis yet can still perform its basic functions; thus, compensated cirrhosis is not associated with specific clinical symptoms.

Decompensated cirrhosis

Occurs when the liver is at the stage of severe fibrosis and liver dysfunction, leading to clinical symptoms such as internal bleeding, ascites and hepatic encephalopathy.

Gynoid distribution

Refers to the body fat that is preferentially placed around the hip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aron-Wisnewsky, J., Vigliotti, C., Witjes, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 17, 279–297 (2020). https://doi.org/10.1038/s41575-020-0269-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0269-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing