Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of liver sinusoidal endothelial cells in liver diseases

Subjects

Abstract

Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia–reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.

Key points

  • Liver sinusoidal endothelial cells (LSECs) form the vascular wall of the hepatic microcirculatory system, the hepatic sinusoid, and exhibit unique phenotypic characteristics, including open fenestrae and lack of a basement membrane.

  • In health, LSECs have key roles maintaining hepatic homeostasis and are critical for several processes, including immune regulation, control of inflammation, modulation of vascular tone and regulation of the coagulation cascade.

  • LSECs become rapidly dedifferentiated during acute and chronic liver injuries, acquiring vasoconstrictor, proinflammatory and prothrombotic properties; this process, termed ‘capillarization’, contributes to the activation and dedifferentiation of other hepatic cells.

  • LSEC capillarization plays a key part in the pathophysiology of major liver diseases, including ischaemia–reperfusion injury, drug-induced liver injury, chronic liver disease and hepatocellular carcinoma; several LSEC molecular targets have been proposed as treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LSECs under physiological conditions maintain liver homeostasis.
Fig. 2: Pathobiology of LSECs in acute liver injury.
Fig. 3: Pathobiology of LSECs in bacterial and viral infection.
Fig. 4: Pathobiology of LSECs in chronic liver disease.
Fig. 5: Pathobiology of LSECs in hepatocellular carcinoma.

Similar content being viewed by others

References

  1. Gracia-Sancho, J., Marrone, G. & Fernández-Iglesias, A. Hepatic microcirculation and mechanisms of portal hypertension. Nat. Rev. Gastroenterol. Hepatol. 16, 221–234 (2019).

    PubMed  Google Scholar 

  2. Smedsrød, B. et al. Cell biology of liver endothelial and Kupffer cells. Gut 35, 1509–1516 (1994).

    PubMed  PubMed Central  Google Scholar 

  3. Marrone, G., Shah, V. H. & Gracia-Sancho, J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol. 65, 608–617 (2016).

    PubMed  PubMed Central  Google Scholar 

  4. Gracia-Sancho, J. et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47, 1248–1256 (2008).

    CAS  PubMed  Google Scholar 

  5. Wohlleber, D. & Knolle, P. A. The role of liver sinusoidal cells in local hepatic immune surveillance. Clin. Transl. Immunol. 5, e117 (2016).

    Google Scholar 

  6. Shetty, S., Lalor, P. F. & Adams, D. H. Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity. Nat. Rev. Gastroenterol. Hepatol. 15, 555–567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smedsrod, B., Pertoft, H., Gustafson, S. & Laurent, T. C. Scavenger functions of the liver endothelial cell. Biochem. J. 266, 313–327 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Elvevold, K. H., Nedredal, G. I., Revhaug, A. & Smedsrød, B. Scavenger properties of cultivated pig liver endothelial cells. Comp. Hepatol. 3, 4 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Sørensen, K. K. et al. Liver sinusoidal endothelial cells. Compr. Physiol. 5, 1751–1774 (2015).

    PubMed  Google Scholar 

  10. Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766 (2010).

    CAS  PubMed  Google Scholar 

  11. Crispe, I. N. Liver antigen-presenting cells. J. Hepatol. 54, 357–365 (2011).

    CAS  PubMed  Google Scholar 

  12. Do, H., Healey, J. F., Waller, E. K. & Lollar, P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J. Biol. Chem. 274, 19587–19592 (1999).

    CAS  PubMed  Google Scholar 

  13. Kume, M. et al. Bacterial lipopolysaccharide decreases thrombomodulin expression in the sinusoidal endothelial cells of rats - a possible mechanism of intrasinusoidal microthrombus formation and liver dysfunction. J. Hepatol. 38, 9–17 (2003).

    CAS  PubMed  Google Scholar 

  14. Yang, H. et al. Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow. Exp. Cell Res. 351, 91–99 (2017).

    CAS  PubMed  Google Scholar 

  15. Hilscher, M. B. et al. Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 157, 193–209.e9 (2019).

    CAS  PubMed  Google Scholar 

  16. Meyer, J. et al. Platelet interactions with liver sinusoidal endothelial cells and hepatic stellate cells lead to hepatocyte proliferation. Cells 9, 1243 (2020).

    CAS  PubMed Central  Google Scholar 

  17. Wisse, E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J. Ultrastruct. Res. 31, 125–150 (1970).

    CAS  PubMed  Google Scholar 

  18. Widmann, J. J., Cotran, R. S. & Fahimi, H. D. Mononuclear phagocytes (Kupffer cells) and endothelial cells: Identification Of two functional cell types in rat liver sinusoids by endogenous peroxidase activity. J. Cell Biol. 52, 159–170 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogawa, K., Minase, T., Enomoto, K. & Onoé, T. Ultrastructure of fenestrated cells in the sinusoidal wall of rat liver after perfusion fixation. Tohoku J. Exp. Med. 110, 89–101 (1973).

    CAS  PubMed  Google Scholar 

  20. Wisse, E., Jacobs, F., Topal, B., Frederik, P. & De Geest, B. The size of endothelial fenestrae in human liver sinusoids: Implications for hepatocyte-directed gene transfer. Gene Ther. 15, 1193–1199 (2008).

    CAS  PubMed  Google Scholar 

  21. Wisse, E., De Zanger, R. B., Jacobs, R. & McCuskey, R. S. Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan. Electron. Microsc. 1441–1452 (1983).

  22. Steffan, A.-M., Gendrault, J.-L., McCuskey, R. S., McCuskey, P. A. & Kirn, A. Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology 6, 830–836 (1986).

    CAS  PubMed  Google Scholar 

  23. Eitzen, G. Actin remodeling to facilitate membrane fusion. Biochim. Biophys. Acta Mol. Cell Res. 1641, 175–181 (2003).

    CAS  Google Scholar 

  24. Yokomori, H. et al. Endothelin-1 suppresses plasma membrane Ca++-ATPase, concomitant with contraction of hepatic sinusoidal endothelial fenestrae. Am. J. Pathol. 162, 557–566 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yokomori, H. et al. Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab. Invest. 84, 857–864 (2004).

    CAS  PubMed  Google Scholar 

  26. Bingen, A., Gendrault, J. L. & Kim, A. in Cells of the Hepatic Sinusoid Vol. 2 (eds Wisse, E., Knook, D. L. & Decker, K.) 466–470 (Kupffer Cell Foundation, 1989).

  27. Taira, K. Trabecular meshworks in the sinusoidal endothelial cells of the golden hamster liver: a freeze-fracture study. J. Submicrosc. Cytol. Pathol. 26, 271–277 (1994).

    CAS  PubMed  Google Scholar 

  28. Guo, L., Zhang, H., Hou, Y., Wei, T. & Liu, J. Plasmalemma vesicle–associated protein: a crucial component of vascular homeostasis (review). Exp. Ther. Med. 12, 1639–1644 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ioannidou, S. et al. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis. Proc. Natl Acad. Sci. USA 103, 16770–16775 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stan, R. V. et al. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev. Cell 23, 1203–1218 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bankston, P. W. & Pino, R. M. The development of the sinusoids of fetal rat liver: morphology of endothelial cells, Kupffer cells, and the transmural migration of blood cells into the sinusoids. Am. J. Anat. 159, 1–15 (1980).

    CAS  PubMed  Google Scholar 

  33. Herrnberger, L. et al. Formation of fenestrae in murine liver sinusoids depends on plasmalemma vesicle-associated protein and is required for lipoprotein passage. PLoS ONE 9, 1–26 (2014).

    Google Scholar 

  34. Braet, F., Spector, I., De Zanger, R. & Wisse, E. A novel structure involved in the formation of liver endothelial cell fenestrae revealed by using the actin inhibitor misakinolide. Proc. Natl Acad. Sci. USA 95, 13635–13640 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tkachenko, E. et al. Caveolae, fenestrae and transendothelial channels retain PV1 on the surface of endothelial cells. PLoS ONE 7, e32655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Auvinen, K. et al. Fenestral diaphragms and PLVAP associations in liver sinusoidal endothelial cells are developmentally regulated. Sci. Rep. 9, 1–16 (2019).

    CAS  Google Scholar 

  37. Cogger, V. C., O’Reilly, J. N., Warren, A. & Le Couteur, D. G. A standardized method for the analysis of liver sinusoidal endothelial cells and their fenestrations by scanning electron microscopy. J. Vis. Exp. https://doi.org/10.3791/52698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fernández-Iglesias, A., Ortega-Ribera, M., Guixé-Muntet, S. & Gracia-Sancho, J. 4 in 1: Antibody-free protocol for isolating the main hepatic cells from healthy and cirrhotic single rat livers. J. Cell. Mol. Med. 23, 877–886 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Maeso-Díaz, R. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17, e12829 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Di Martino, J. et al. Actin depolymerization in dedifferentiated liver sinusoidal endothelial cells promotes fenestrae re-formation. Hepatol. Commun. 3, 213–219 (2019).

    PubMed  Google Scholar 

  41. Mönkemöller, V., Øie, C., Hübner, W., Huser, T. & McCourt, P. Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  42. Zapotoczny, B., Szafranska, K., Kus, E., Chlopicki, S. & Szymonski, M. Quantification of fenestrations in liver sinusoidal endothelial cells by atomic force microscopy. Micron 101, 48–53 (2017).

    CAS  PubMed  Google Scholar 

  43. Zapotoczny, B. et al. Tracking fenestrae dynamics in live murine liver sinusoidal endothelial cells. Hepatology 69, 876–888 (2019).

    PubMed  Google Scholar 

  44. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 1–5 (2017).

    Google Scholar 

  45. Halpern, K. B. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat. Biotechnol. 36, 962 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 1–21 (2018).

    CAS  Google Scholar 

  47. Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemoinne, S. et al. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology 61, 1041–1055 (2015).

    CAS  PubMed  Google Scholar 

  49. Carreira, C. M. et al. LYVE-1 is not restricted to the lymph vessels: Expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 61, 8079–8084 (2001).

    CAS  Google Scholar 

  50. DeLeve, L. D., Wang, X., McCuskey, M. K. & McCuskey, R. S. Rat liver endothelial cells isolated by anti-CD31 immunomagnetic separation lack fenestrae and sieve plates. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G1187–G1189 (2006).

    CAS  PubMed  Google Scholar 

  51. Xie, G., Wang, L., Wang, X., Wang, L. & DeLeve, L. D. Isolation of periportal, midlobular, and centrilobular rat liver sinusoidal endothelial cells enables study of zonated drug toxicity. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1204–G1210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wree, A., Holtmann, T. M., Inzaugarat, M. E. & Feldstein, A. E. Novel drivers of the inflammatory response in liver injury and fibrosis. Semin. Liver Dis. 39, 275–282 (2019).

    CAS  PubMed  Google Scholar 

  53. Ibrahim, S. H., Hirsova, P. & Gores, G. J. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 67, 963–972 (2018).

    CAS  PubMed  Google Scholar 

  54. DeLeve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48, 920–930 (2008).

    CAS  PubMed  Google Scholar 

  55. Nieto, N. Oxidative-stress and IL-6 mediate the fibrogenic effects of rodent Kupffer cells on stellate cells. Hepatology 44, 1487–1501 (2006).

    CAS  PubMed  Google Scholar 

  56. Wen, Y. Hepatic macrophages in liver homeostasis and diseases- diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 18, 45–56 (2021).

    CAS  PubMed  Google Scholar 

  57. Warren, A. et al. Hepatic pseudocapillarization in aged mice. Exp. Gerontol. 40, 807–812 (2005).

    PubMed  Google Scholar 

  58. Cogger, V. C. et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp. Gerontol. 38, 1101–1107 (2003).

    PubMed  Google Scholar 

  59. Ito, Y. et al. Age-related changes in the hepatic microcirculation in mice. Exp. Gerontol. 42, 789–797 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hide, D. et al. Ischemia/reperfusion injury in the aged liver: the importance of the sinusoidal endothelium in developing therapeutic strategies for the elderly. J. Gerontol. A Biol. Sci. Med. Sci. 75, 268–277 (2020).

    CAS  PubMed  Google Scholar 

  61. Maeso-Díaz, R. et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis. 10, 684–698 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142, 918–927 (2012).

    PubMed  Google Scholar 

  63. Xie, G. et al. Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 62, 299–309 (2012).

    PubMed  Google Scholar 

  64. Desroches-Castan, A. et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology 70, 1392–1408 (2019).

    CAS  PubMed  Google Scholar 

  65. Géraud, C. et al. Liver sinusoidal endothelium: a microenvironment-dependent differentiation program in rat including the novel junctional protein liver endothelial differentiation-associated protein-1. Hepatology 52, 313–326 (2010).

    PubMed  Google Scholar 

  66. Géraud, C. et al. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J. Clin. Invest. 127, 1099–1114 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Winkler, M. et al. Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J. Hepatol. 74, 380–393 (2021).

    CAS  PubMed  Google Scholar 

  68. Montalvo-Jave, E. E., Escalante-Tattersfield, T., Ortega-Salgado, J. A., Pina, E. & Geller, D. A. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J. Surg. Res. 147, 153–159 (2008).

    CAS  PubMed  Google Scholar 

  69. Peralta, C., Jiménez-Castro, M. B. & Gracia-Sancho, J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J. Hepatol. 59, 1094–1106 (2013).

    PubMed  Google Scholar 

  70. Dar, W. A., Sullivan, E., Bynon, J. S., Eltzschig, H. & Ju, C. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int. 39, 788–801 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Caldwell-Kenkel, J. C., Thurman, R. G. & Lemasters, J. J. Selective loss of nonparenchymal cell viability after cold ischemic storage of rat livers. Transplantation 45, 834–837 (1988).

    CAS  PubMed  Google Scholar 

  72. Jaeschke, H. Role of reactive oxygen species in hepatic ischemia-reperfusion injury and preconditioning. J. Invest. Surg. 16, 127–140 (2003).

    PubMed  Google Scholar 

  73. Stewart, R. K. et al. A novel mouse model of depletion of stellate cells clarifies their role in ischemia/reperfusion- and endotoxin-induced acute liver injury. J. Hepatol. 60, 298–305 (2014).

    CAS  PubMed  Google Scholar 

  74. Caldwell-Kenkel, J. C., Currin, R. T., Tanaka, Y., Thurman, R. G. & Lemasters, J. J. Reperfusion injury to endothelial cells following cold ischemic storage of rat livers. Hepatology 10, 292–299 (1989).

    CAS  PubMed  Google Scholar 

  75. Selzner, N., Rudiger, H., Graf, R. & Clavien, P. A. Protective strategies against ischemic injury of the liver. Gastroenterology 125, 917–936 (2003).

    CAS  PubMed  Google Scholar 

  76. Clemens, M. G. Nitric oxide in liver injury. Hepatology 30, 1–5 (1999).

    CAS  PubMed  Google Scholar 

  77. Russo, L. et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 55, 921–930 (2012).

    CAS  PubMed  Google Scholar 

  78. Gracia-Sancho, J. et al. Flow cessation triggers endothelial dysfunction during organ cold storage conditions: strategies for pharmacologic intervention. Transplantation 90, 142–149 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. Gracia-Sancho, J. et al. Simvastatin maintains function and viability of steatotic rat livers procured for transplantation. J. Hepatol. 58, 1140–1146 (2013).

    CAS  PubMed  Google Scholar 

  80. DeLeve, L. D., Wang, X., Hu, L., Mccuskey, M. K. & Mccuskey, R. S. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G757–G763 (2004).

    CAS  PubMed  Google Scholar 

  81. Lakshminarayanan, V., Drab-Weiss, E. A. & Roebuck, K. A. H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J. Biol. Chem. 273, 32670–32678 (1998).

    CAS  PubMed  Google Scholar 

  82. Read, M. A. et al. The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2, 493–506 (1995).

    CAS  PubMed  Google Scholar 

  83. Perry, B. C., Soltys, D., Toledo, A. H. & Toledo-Pereyra, L. H. Tumor necrosis factor-alpha in liver ischemia/reperfusion injury. J. Invest. Surg. 24, 178–188 (2011).

    PubMed  Google Scholar 

  84. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Teoh, N. C. & Farrell, G. C. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J. Gastroenterol. Hepatol. 18, 891–902 (2003).

    CAS  PubMed  Google Scholar 

  86. Casillas-Ramirez, A., Mosbah, I. B., Ramalho, F., Rosello-Catafau, J. & Peralta, C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci. 79, 1881–1894 (2006).

    CAS  PubMed  Google Scholar 

  87. Sindram, D., Porte, R. J., Hoffman, M. R., Bentley, R. C. & Clavien, P. A. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology 118, 183–191 (2000).

    CAS  PubMed  Google Scholar 

  88. Lesurtel, M. et al. Platelet-derived serotonin mediates liver regeneration. Science 312, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  89. Miyashita, T. et al. Ischemia reperfusion-facilitated sinusoidal endothelial cell injury in liver transplantation and the resulting impact of extravasated platelet aggregation. Eur. Surg. 48, 92–98 (2016).

    CAS  PubMed  Google Scholar 

  90. Go, K. L., Lee, S., Zendejas, I., Behrns, K. E. & Kim, J. S. Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury. Biomed. Res. Int. 2015, 183469 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Hide, D. et al. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy. Sci. Rep. 6, 22107 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Guixé-Muntet, S. et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J. Hepatol. 66, 86–94 (2017).

    PubMed  Google Scholar 

  93. Qu, S. et al. Heme oxygenase 1 attenuates hypoxia-reoxygenation injury in mice liver sinusoidal endothelial cells. Transplantation 102, 426–432 (2018).

    CAS  PubMed  Google Scholar 

  94. Greene, A. K. et al. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann. Surg. 237, 530–535 (2003).

    PubMed  PubMed Central  Google Scholar 

  95. Wang, L. et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J. Clin. Invest. 122, 1567–1573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Batkai, S. et al. Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J. 21, 1788–1800 (2007).

    CAS  PubMed  Google Scholar 

  97. Pacher, P. & Hasko, G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 153, 252–262 (2008).

    CAS  PubMed  Google Scholar 

  98. Marra, F. & Bertolani, C. Adipokines in liver diseases. Hepatology 50, 957–969 (2009).

    CAS  PubMed  Google Scholar 

  99. Alvarez-Mercado, A. I., Bujaldon, E., Gracia-Sancho, J. & Peralta, C. The role of adipokines in surgical procedures requiring both liver regeneration and vascular occlusion. Int. J. Mol. Sci. 19, 3395 (2018).

    PubMed Central  Google Scholar 

  100. Yokoyama, Y., Nimura, Y., Nagino, M., Bland, K. I. & Chaudry, I. H. Role of thromboxane in producing hepatic injury during hepatic stress. Arch. Surg. 140, 801–807 (2005).

    CAS  PubMed  Google Scholar 

  101. Minamino, T. et al. Thromboxane A2 receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment. Toxicol. Appl. Pharmacol. 259, 104–114 (2012).

    CAS  PubMed  Google Scholar 

  102. Isozaki, H., Okajima, K., Hara, H. & Kobayashi, M. The protective effect of thromboxane A2 synthetase inhibitor against ischemic liver injury. Surg. Today 24, 435–440 (1994).

    CAS  PubMed  Google Scholar 

  103. Hide, D. et al. A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury. Clin. Sci. 127, 527–537 (2014).

    CAS  Google Scholar 

  104. Ito, T. et al. Sinusoidal protection by sphingosine-1-phosphate receptor 1 agonist in liver ischemia-reperfusion injury. J. Surg. Res. 222, 139–152 (2018).

    CAS  PubMed  Google Scholar 

  105. Yadav, N. et al. Efficient reconstitution of hepatic microvasculature by endothelin receptor antagonism in liver sinusoidal endothelial cells. Hum. Gene Ther. 30, 365–377 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, X., Maretti-Mira, A. C., Wang, L. & DeLeve, L. D. Liver-selective MMP-9 inhibition in the rat eliminates ischemia-reperfusion injury and accelerates liver regeneration. Hepatology 69, 314–328 (2019).

    CAS  PubMed  Google Scholar 

  107. Wang, X. et al. Susceptibility of rat steatotic liver to ischemia-reperfusion is treatable with liver-selective matrix metalloproteinase inhibition. Hepatology 72, 1771–1785 (2020).

    CAS  PubMed  Google Scholar 

  108. Andrade, R. J. et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 5, 58 (2019).

    PubMed  Google Scholar 

  109. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499 (2005).

    CAS  PubMed  Google Scholar 

  110. Chen, M., Suzuki, A., Borlak, J., Andrade, R. J. & Lucena, M. I. Drug-induced liver injury: interactions between drug properties and host factors. J. Hepatol. 63, 503–514 (2015).

    CAS  PubMed  Google Scholar 

  111. Reuben, A. et al. Outcomes in adults with acute liver failure between 1998 and 2013: an observational cohort study. Ann. Intern. Med. 164, 724–732 (2016).

    PubMed  PubMed Central  Google Scholar 

  112. Donnelly, M. C. et al. Acute liver failure in Scotland: changes in aetiology and outcomes over time (the Scottish Look-Back Study). Aliment. Pharmacol. Ther. 45, 833–843 (2017).

    CAS  PubMed  Google Scholar 

  113. Suzuki, H. & Sugiyama, Y. Transport of drugs across the hepatic sinusoidal membrane: Sinusoidal drug influx and efflux in the liver. Semin. Liver Dis. 20, 251–263 (2000).

    CAS  PubMed  Google Scholar 

  114. Yuan, L. & Kaplowitz, N. Mechanisms of drug-induced liver injury. Clin. Liver Dis. 17, 507–518 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Hagenbuch, B. & Stieger, B. The SLCO (former SLC21) superfamily of transporters. Mol. Aspects Med. 34, 396–412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ito, Y., Bethea, N. W., Abril, E. R. & McCuskey, R. S. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 10, 391–400 (2003).

    CAS  PubMed  Google Scholar 

  117. McCuskey, R. S. Sinusoidal endothelial cells as an early target for hepatic toxicants. Clin. Hemorheol. Microcirc. 34, 5–10 (2006).

    CAS  PubMed  Google Scholar 

  118. Teratani, T. et al. Free cholesterol accumulation in liver sinusoidal endothelial cells exacerbates acetaminophen hepatotoxicity via TLR9 signaling. J. Hepatol. 67, 780–790 (2017).

    CAS  PubMed  Google Scholar 

  119. Ganey, P. E. et al. Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 46, 1177–1186 (2007).

    CAS  PubMed  Google Scholar 

  120. Randle, L. E. et al. α1-Adrenoceptor antagonists prevent paracetamol-induced hepatotoxicity in mice. Br. J. Pharmacol. 153, 820–830 (2008).

    CAS  PubMed  Google Scholar 

  121. Ito, Y., Abril, E. R., Bethea, N. W. & McCuskey, R. S. Inhibition of matrix metalloproteinases minimizes hepatic microvascular injury in response to acetaminophen in mice. Toxicol. Sci. 83, 190–196 (2005).

    CAS  PubMed  Google Scholar 

  122. Liu, J. et al. The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced hepatotoxicity in mice. Hepatology 37, 324–333 (2003).

    CAS  PubMed  Google Scholar 

  123. Deleve, L. D. Dacarbazine toxicity in murine liver cells: a model of hepatic endothelial injury and glutathione defense. J. Pharmacol. Exp. Ther. 268, 1261–1270 (1994).

    CAS  PubMed  Google Scholar 

  124. DeLeve, L. D. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation. Hepatology 24, 830–837 (1996).

    CAS  PubMed  Google Scholar 

  125. DeLeve, L. D., Wang, X., Kuhlenkamp, J. F. & Kaplowitz, N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venoocclusive disease. Hepatology 23, 589–599 (1996).

    CAS  PubMed  Google Scholar 

  126. Ito, Y. et al. Mechanisms and pathophysiological implications of sinusoidal endothelial cell gap formation following treatment with galactosamine/endotoxin in mice. Am. J. Physiol. Gastrointest. Liver Physiol 291, G211–G218 (2006).

    CAS  PubMed  Google Scholar 

  127. DeLeve, L. D. et al. Sinusoidal endothelial cells as a target for acetaminophen toxicity. Direct action versus requirement for hepatocyte activation in different mouse strains. Biochem. Pharmacol. 53, 1339–1345 (1997).

    CAS  PubMed  Google Scholar 

  128. McCuskey, R. S. et al. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen. J. Hepatol. 42, 371–377 (2005).

    CAS  PubMed  Google Scholar 

  129. McCuskey, R. S. S. The hepatic microvascular system in health and its response to toxicants. Anat. Rec. 291, 661–671 (2008).

    Google Scholar 

  130. Garcia-Roman, R. & Frances, R. Acetaminophen-induced liver damage in hepatic steatosis. Clin. Pharmacol. Ther. 107, 1068–1081 (2020).

    CAS  PubMed  Google Scholar 

  131. Zhang, Q. et al. Palmitate up-regulates laminin expression via ROS/integrin αvβ3 pathway in HLSECs. Oncotarget 10, 4083–4090 (2019).

    PubMed  PubMed Central  Google Scholar 

  132. Liu, J. et al. High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin αvβ3 pathway. Environ. Toxicol. Pharmacol. 42, 231–236 (2016).

    CAS  PubMed  Google Scholar 

  133. Yang, R., Miki, K., He, X., Killeen, M. E. & Fink, M. P. Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity. Crit. Care 13, R55 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Sandilands, E. A. & Bateman, D. N. Adverse reactions associated with acetylcysteine. Clin. Toxicol. 47, 81–88 (2009).

    CAS  Google Scholar 

  135. Eugenio-Perez, D., Montes de Oca-Solano, H. A. & Pedraza-Chaverri, J. Role of food-derived antioxidant agents against acetaminophen-induced hepatotoxicity. Pharm. Biol. 54, 2340–2352 (2016).

    CAS  PubMed  Google Scholar 

  136. Kigawa, G. et al. Improvement of portal flow and hepatic microcirculatory tissue flow with N-acetylcysteine in dogs with obstructive jaundice produced by bile duct ligation. Eur. J. Surg. 166, 77–84 (2000).

    CAS  PubMed  Google Scholar 

  137. Yin, H. et al. Lactoferrin protects against acetaminophen-induced liver injury in mice. Hepatology 51, 1007–1016 (2010).

    CAS  PubMed  Google Scholar 

  138. Coppell, J. A., Brown, S. A. & Perry, D. J. Veno-occlusive disease: cytokines, genetics, and haemostasis. Blood Rev. 17, 63–70 (2003).

    PubMed  Google Scholar 

  139. Park, Y. D. et al. Impaired activity of plasma von Willebrand factor-cleaving protease may predict the occurrence of hepatic veno-occlusive disease after stem cell transplantation. Bone Marrow Transpl. 29, 789–794 (2002).

    Google Scholar 

  140. Fan, C. Q. & Crawford, J. M. Sinusoidal obstruction syndrome (hepatic veno-occlusive disease). J. Clin. Exp. Hepatol. 4, 332–346 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. DeLeve, L. D. et al. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology 38, 900–908 (2003).

    CAS  PubMed  Google Scholar 

  142. Nishigori, N. et al. Von Willebrand factor-rich platelet thrombi in the liver cause sinusoidal obstruction syndrome following oxaliplatin-based chemotherapy. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  143. Takada, S. et al. Soluble thrombomodulin attenuates endothelial cell damage in hepatic sinusoidal obstruction syndrome. In Vivo 32, 1409–1417 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Otaka, F. et al. Thromboxane A2 receptor signaling in endothelial cells attenuates monocrotaline-induced liver injury. Toxicol. Appl. Pharmacol. 381, 114733 (2019).

    CAS  PubMed  Google Scholar 

  146. Navarro, V. J. & Lucena, M. I. Hepatotoxicity induced by herbal and dietary supplements. Semin. Liver Dis. 34, 172–193 (2014).

    CAS  PubMed  Google Scholar 

  147. Seeff, L. B., Bonkovsky, H. L., Navarro, V. J. & Wang, G. Herbal products and the liver: a review of adverse effects and mechanisms. Gastroenterology 148, 517–532.e3 (2015).

    CAS  PubMed  Google Scholar 

  148. Andrade, R. J., Medina-Caliz, I., Gonzalez-Jimenez, A., Garcia-Cortes, M. & Lucena, M. I. Hepatic damage by natural remedies. Semin. Liver Dis. 38, 21–40 (2018).

    PubMed  Google Scholar 

  149. European Medicines Agency. Committee on herbal medicinal products (HMPC) (EMA, 2017).

  150. Kullak-Ublick, G. A. et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 66, 1154–1164 (2017).

    CAS  PubMed  Google Scholar 

  151. Kaplowitz, N., DeLeve, L., Kaplowitz, N. & DeLeve, L. Drug-Induced Liver Disease (Academic, 2013).

  152. Xiong, A. et al. Metabolomic and genomic evidence for compromised bile acid homeostasis by senecionine, a hepatotoxic pyrrolizidine alkaloid. Chem. Res. Toxicol. 27, 775–786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ortega-Ribera, M. et al. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol. Bioeng. 115, 1–10 (2018).

    Google Scholar 

  154. Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    CAS  PubMed  Google Scholar 

  155. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348–1354 (2000).

    CAS  PubMed  Google Scholar 

  156. Katz, S. C., Pillarisetty, V. G., Bleier, J. I., Shah, A. B. & DeMatteo, R. P. Liver sinusoidal endothelial cells are insufficient to activate T cells. J. Immunol. 173, 230–235 (2004).

    CAS  PubMed  Google Scholar 

  157. Carambia, A. et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J. Hepatol. 61, 594–599 (2014).

    CAS  PubMed  Google Scholar 

  158. Schurich, A. et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol. 184, 4107–4114 (2010).

    CAS  PubMed  Google Scholar 

  159. Knolle, P. A., Böttcher, J. & Huang, L. R. The role of hepatic immune regulation in systemic immunity to viral infection. Med. Microbiol. Immunol. 204, 21–27 (2015).

    CAS  PubMed  Google Scholar 

  160. Neumann, K. et al. Chemokine transfer by liver sinusoidal endothelial cells contributes to the recruitment of CD4+ T cells into the murine liver. PLoS ONE 10, e0123867 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Wittlich, M. et al. Liver sinusoidal endothelial cell cross-priming is supported by CD4 T cell-derived IL-2. J. Hepatol. 66, 978–986 (2017).

    CAS  PubMed  Google Scholar 

  162. Caparrós, E. et al. Liver sinusoidal endothelial cells contribute to hepatic antigen-presenting cell function and Th17 expansion in cirrhosis. Cells 9, 1227 (2020).

    PubMed Central  Google Scholar 

  163. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2020).

    PubMed  PubMed Central  Google Scholar 

  164. Martin-Armas, M. et al. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J. Hepatol. 44, 939–946 (2006).

    CAS  PubMed  Google Scholar 

  165. Lalor, P. F. et al. Recruitment of lymphocytes to the human liver. Immunol. Cell Biol. 80, 52–64 (2002).

    CAS  PubMed  Google Scholar 

  166. Cheluvappa, R. et al. Liver sinusoidal endothelial cells and acute non-oxidative hepatic injury induced by Pseudomonas aeruginosa pyocyanin. Int. J. Exp. Pathol. 89, 410–418 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Leong, S. S., Cazen, R. A., Yu, G. S., LeFevre, L. & Carson, J. W. Abdominal visceral peliosis associated with bacillary angiomatosis. Ultrastructural evidence of endothelial destruction by bacilli. Arch. Pathol. Lab. Med. 116, 866–871 (1992).

    CAS  PubMed  Google Scholar 

  168. Cheluvappa, R. et al. Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells. Int. J. Infect. Dis. 14, e857–e867 (2010).

    CAS  PubMed  Google Scholar 

  169. Yao, Z. et al. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. J. Immunol. 197, 2390–2399 (2016).

    CAS  PubMed  Google Scholar 

  170. Ganesan, L. P. et al. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells. Sci. Rep. 6, 20646 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Heesch, K. et al. The function of the chemokine receptor CXCR6 in the T cell response of mice against Listeria monocytogenes. PLoS ONE 9, e97701 (2014).

    PubMed  PubMed Central  Google Scholar 

  172. Oie, C. I. et al. Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci. Rep. 10, 898 (2020).

    PubMed  PubMed Central  Google Scholar 

  173. Liu, J. et al. TLR1/2 ligand-stimulated mouse liver endothelial cells secrete IL-12 and trigger CD8+ T cell immunity in vitro. J. Immunol. 191, 6178–6190 (2013).

    CAS  PubMed  Google Scholar 

  174. Wu, J. et al. Toll-like receptor-mediated control of HBV replication by nonparenchymal liver cells in mice. Hepatology 46, 1769–1778 (2007).

    CAS  PubMed  Google Scholar 

  175. Huang, S. et al. LSECs express functional NOD1 receptors: a role for NOD1 in LSEC maturation-induced T cell immunity in vitro. Mol. Immunol. 101, 167–175 (2018).

    CAS  PubMed  Google Scholar 

  176. Breiner, K. M. M., Schaller, H. & Knolle, P. A. A. Endothelial cell-mediated uptake of a hepatitis B virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34, 803–808 (2001).

    CAS  PubMed  Google Scholar 

  177. Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl Acad. Sci. USA 99, 15655–15660 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Schulze, A., Gripon, P. & Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768 (2007).

    CAS  PubMed  Google Scholar 

  179. Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    CAS  PubMed  Google Scholar 

  180. Baiocchini, A. et al. Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C. Sci. Rep. 9, 8760 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Bruns, T. et al. CMV infection of human sinusoidal endothelium regulates hepatic T cell recruitment and activation. J. Hepatol. 63, 38–49 (2015).

    CAS  PubMed  Google Scholar 

  182. Frevert, U. et al. Intravital observation of plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3, 1034–1046 (2005).

    CAS  Google Scholar 

  183. Tavares, J. et al. Role of host cell traversal by the malaria sporozoite during liver infection. J. Exp. Med. 210, 905–915 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    CAS  PubMed  Google Scholar 

  185. Sanyal, A. J. et al. The natural history of advanced fibrosis due to nonalcoholic steatohepatitis: data from the simtuzumab trials. Hepatology 70, 1913–1927 (2019).

    CAS  PubMed  Google Scholar 

  186. Pasarín, M. et al. Sinusoidal endothelial dysfunction precedes inflammation and fibrosis in a model of NAFLD. PLoS ONE 7, e32785 (2012).

    PubMed  PubMed Central  Google Scholar 

  187. Francque, S. et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab. Invest. 92, 1428–1439 (2012).

    CAS  PubMed  Google Scholar 

  188. Maeso-Díaz et al. New rat model of advanced NASH mimicking pathophysiological features and transcriptomic signature of the human disease. Cells 8, 1062 (2019).

    PubMed Central  Google Scholar 

  189. Hammoutene, A. et al. A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J. Hepatol. 72, 528–538 (2020).

    CAS  PubMed  Google Scholar 

  190. Pasarín, M. et al. Insulin resistance and liver microcirculation in a rat model of early NAFLD. J. Hepatol. 55, 1095–1102 (2011).

    PubMed  Google Scholar 

  191. Sun, X. X. & Harris, E. N. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am. J. Physiol. Cell Physiol. 318, 1200–1213 (2020).

    Google Scholar 

  192. Van der Graaff, D. et al. Severe steatosis induces portal hypertension by systemic arterial hyporeactivity and hepatic vasoconstrictor hyperreactivity in rats. Lab. Invest. 98, 1263–1275 (2018).

    PubMed  Google Scholar 

  193. Semmler, G. et al. The impact of hepatic steatosis on portal hypertension. PLoS ONE 14, 1–14 (2019).

    Google Scholar 

  194. Zhou, L.-Y., Zeng, H., Wang, S. & Chen, J.-X. Regulatory role of endothelial PHD2 in the hepatic steatosis. Cell Physiol. Biochem. 48, 1003–1011 (2018).

    CAS  PubMed  Google Scholar 

  195. Rogers, G. W. T., Dobbs, B. R. & Fraser, R. Decreased hepatic uptake of cholesterol and retinol in the dimethylnitrosamine rat model of cirrhosis. Liver 12, 326–329 (1992).

    CAS  PubMed  Google Scholar 

  196. Fujita, K. et al. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology 50, 772–780 (2009).

    CAS  PubMed  Google Scholar 

  197. Fraser, R., Dobbs, B. R. & Rogers, G. W. T. Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology 21, 863–874 (1995).

    CAS  PubMed  Google Scholar 

  198. Simon, J. et al. Targeting hepatic glutaminase 1 ameliorates non- alcoholic steatohepatitis by restoring very-low- density lipoprotein triglyceride assembly article targeting hepatic glutaminase 1 ameliorates non-alcoholic steatohepatitis by restoring very-low-density lip. Cell Metab. 31, 605–622.e10 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Nedredal, G. I. et al. Porcine liver sinusoidal endothelial cells contribute significantly to intrahepatic ammonia metabolism. Hepatology 50, 900–908 (2009).

    CAS  PubMed  Google Scholar 

  200. Miyao, M. et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Invest. 95, 1130–1144 (2015).

    CAS  PubMed  Google Scholar 

  201. Vassilopoulos, D. & Hadziyannis, S. J. in Practical Management of Liver Diseases (ed. Younossi, Z.) 26–38 (Cambridge Univ. Press, 2008).

  202. Do, A. & Reau, N. S. Chronic viral hepatitis: current management and future directions. Hepatol. Commun. 4, 329–341 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Nguyen, V. T. T., Law, M. G. & Dore, G. J. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J. Viral Hepat. 16, 453–463 (2009).

    CAS  PubMed  Google Scholar 

  204. Attia, F., Megahed, K., Zhou, X. & Sun, P. The interactions between HBV and the innate immunity of hepatocytes. Viruses 12, 285 (2020).

    Google Scholar 

  205. Meng, Z., Chen, Y. & Lu, M. Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front. Immunol. 10, 3127 (2020).

    PubMed  PubMed Central  Google Scholar 

  206. Yang, S. et al. MMP2/MMP9-mediated CD100 shedding is crucial for inducing intrahepatic anti-HBV CD8 T cell responses and HBV clearance. J. Hepatol. 71, 685–698 (2019).

    CAS  PubMed  Google Scholar 

  207. Nahmias, Y., Casali, M., Barbe, L., Berthiaume, F. & Yarmush, M. L. Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43, 257–265 (2006).

    CAS  PubMed  Google Scholar 

  208. Abouelasrar Salama, S. et al. Induction of chemokines by hepatitis C virus proteins: synergy of the core protein with interleukin-1β and interferon-γ in liver bystander cells. J. Interf. Cytokine Res. 40, 195–206 (2020).

    CAS  Google Scholar 

  209. Rowe, I. A. et al. Paracrine signals from liver sinusoidal endothelium regulate hepatitis C virus replication. Hepatology 59, 375–384 (2013).

    PubMed  Google Scholar 

  210. Brenndörfer, E. D. et al. Anti-tumor necrosis factor α treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis C. Hepatology 52, 1553–1563 (2010).

    PubMed  Google Scholar 

  211. Giugliano, S. et al. Hepatitis C virus infection induces autocrine interferon signaling by human liver endothelial cells and release of exosomes, which inhibits viral replication. Gastroenterology 148, 392–402.e13 (2015).

    CAS  PubMed  Google Scholar 

  212. Schmidt, F. P. et al. Interferon- and ribavirin-free therapy with new direct acting antivirals (DAA) for chronic hepatitis C improves vascular endothelial function. Int. J. Cardiol. 271, 296–300 (2018).

    PubMed  Google Scholar 

  213. Davis, J. S. et al. The effect of curing hepatitis C with direct-acting antiviral treatment on endothelial function. Antivir. Ther. 23, 687–694 (2018).

    CAS  PubMed  Google Scholar 

  214. Wang, B.-Y., Ju, X.-H., Fu, B.-Y., Zhang, J. & Cao, Y.-X. Effects of ethanol on liver sinusoidal endothelial cells-fenestrae of rats. Hepatobiliary Pancreat. Dis. Int. 4, 422–426 (2005).

    PubMed  Google Scholar 

  215. Nevzorova, Y. A., Boyer-Diaz, Z., Cubero, F. J. & Gracia-Sancho, J. Animal models for liver disease - a practical approach for translational research. J. Hepatol. 73, 423–440 (2020).

    PubMed  Google Scholar 

  216. Gracia-Sancho, J. et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60, 517–524 (2011).

    CAS  PubMed  Google Scholar 

  217. Cogger, V. C., Hunt, N. J. & Le Couteur, D. G. in The Liver (eds Arias, I. M. et al.) 435–443 (Wiley, 2020).

  218. Ruart, M. et al. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J. Hepatol. 70, 458–469 (2019).

    CAS  PubMed  Google Scholar 

  219. Gracia-Sancho, J. et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. Hepatol. 47, 220–227 (2007).

    CAS  PubMed  Google Scholar 

  220. Rockey, D. C. & Weisiger, R. A. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 24, 233–240 (1996).

    CAS  PubMed  Google Scholar 

  221. Graupera, M. et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 37, 172–181 (2003).

    CAS  PubMed  Google Scholar 

  222. Planagumà, A. et al. The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARγ activation. FASEB J. 19, 1120–1122 (2005).

    PubMed  Google Scholar 

  223. Graupera, M. et al. 5-Lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology 122, 387–393 (2002).

    CAS  PubMed  Google Scholar 

  224. Rockey, D. C. & Chung, J. J. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology 114, 344–351 (1998).

    CAS  PubMed  Google Scholar 

  225. Gracia-Sancho, J. et al. Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis. Gastroenterology 133, 959–966 (2007).

    CAS  PubMed  Google Scholar 

  226. Rosado, E. et al. Interaction between NO and COX pathways modulating hepatic endothelial cells from control and cirrhotic rats. J. Cell. Mol. Med. 16, 2461–2470 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Lisman, T. & Luyendyk, J. P. Platelets as modulators of liver diseases. Semin. Thromb. Hemost. 44, 114–125 (2018).

    CAS  PubMed  Google Scholar 

  228. Tripodi, A., Primignani, M., Mannucci, P. M. & Caldwell, S. H. Changing concepts of cirrhotic coagulopathy. Am. J. Gastroenterol. 112, 274–281 (2017).

    PubMed  Google Scholar 

  229. Cerini, F. et al. Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J. Hepatol. 64, 834–842 (2016).

    CAS  PubMed  Google Scholar 

  230. Bosch, J., Gracia-Sancho, J. & Abraldes, J. G. Cirrhosis as new indication for statins. Gut 69, 953–962 (2020).

    CAS  PubMed  Google Scholar 

  231. Marrone, G. et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J. Hepatol. 58, 98–103 (2013).

    CAS  PubMed  Google Scholar 

  232. Marrone, G. et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 64, 1434–1443 (2015).

    CAS  PubMed  Google Scholar 

  233. Rodríguez, S. et al. A nitric oxide-donating statin decreases portal pressure with a better toxicity profile than conventional statins in cirrhotic rats. Sci. Rep. 7, 40461 (2017).

    PubMed  PubMed Central  Google Scholar 

  234. Hunt, N. J. et al. Manipulating fenestrations in young and old liver sinusoidal endothelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G144–G154 (2019).

    CAS  PubMed  Google Scholar 

  235. Zafra, C. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 126, 749–755 (2004).

    CAS  PubMed  Google Scholar 

  236. Abraldes, J. G. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 136, 1651–1658 (2009).

    CAS  PubMed  Google Scholar 

  237. Tripathi, D. M. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 155, 1564–1577 (2018).

    CAS  PubMed  Google Scholar 

  238. Pose, E. et al. Safety of two different doses of simvastatin plus rifaximin in decompensated cirrhosis (LIVERHOPE-SAFETY): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 31–41 (2020).

    PubMed  Google Scholar 

  239. Biecker, E. et al. Treatment of bile duct-ligated rats with the nitric oxide synthase transcription enhancer AVE 9488 ameliorates portal hypertension. Liver Int. 28, 331–338 (2008).

    CAS  PubMed  Google Scholar 

  240. Matei, V. et al. The eNOS cofactor tetrahydrobiopterin improves endothelial dysfunction in livers of rats with CCl4 cirrhosis. Hepatology 44, 44–52 (2006).

    CAS  PubMed  Google Scholar 

  241. Matei, V. et al. Three-day tetrahydrobiopterin therapy increases in vivo hepatic NOS activity and reduces portal pressure in CCl4 cirrhotic rats. J. Hepatol. 49, 192–197 (2008).

    CAS  PubMed  Google Scholar 

  242. Yokoyama, Y. et al. Role of thromboxane A2 in early BDL-induced portal hypertension. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G453–G460 (2003).

    CAS  PubMed  Google Scholar 

  243. Graupera, M. et al. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G763–G770 (2005).

    CAS  PubMed  Google Scholar 

  244. Lin, L. et al. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid. Nanomed. Nanotechnol. Biol. Med. 13, 2329–2339 (2017).

    CAS  Google Scholar 

  245. Guillaume, M. et al. Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rats. J. Hepatol. 58, 240–246 (2013).

    CAS  PubMed  Google Scholar 

  246. Di Pascoli, M. et al. Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 58, 904–910 (2013).

    PubMed  Google Scholar 

  247. Boyer-Diaz, Z. et al. A nutraceutical rich in docosahexaenoic acid improves portal hypertension in a preclinical model of advanced chronic liver disease. Nutrients 11, 1–14 (2019).

    Google Scholar 

  248. De Gottardi, A. et al. Postprandial effects of dark chocolate on portal hypertension in patients with cirrhosis: results of a phase 2, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 96, 584–590 (2012).

    PubMed  Google Scholar 

  249. Loffredo, L. et al. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutr. Metab. Cardiovasc. Dis. 28, 143–149 (2018).

    CAS  Google Scholar 

  250. Gracia-Sancho, J., Villarreal, G., Zhang, Y. & García-Cardeña, G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc. Res. 85, 514–519 (2010).

    CAS  PubMed  Google Scholar 

  251. Wu, W. et al. Flow-dependent regulation of Krüppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124, 633–641 (2011).

    CAS  PubMed  Google Scholar 

  252. Gongol, B. et al. Shear stress regulation of miR-93 and miR-484 maturation through nucleolin. Proc. Natl Acad. Sci. USA 116, 12974–12979 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Schwabl, P. et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. Hepatol. 66, 724–733 (2017).

    CAS  PubMed  Google Scholar 

  255. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    CAS  PubMed  Google Scholar 

  256. Rodríguez-Vilarrupla, A. et al. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 56, 1033–1039 (2012).

    PubMed  Google Scholar 

  257. Tsai, H. C. et al. Beneficial effects of the peroxisome proliferator-activated receptor α/γ agonist aleglitazar on progressive hepatic and splanchnic abnormalities in cirrhotic rats with portal hypertension. Am. J. Pathol. 188, 1608–1624 (2018).

    CAS  PubMed  Google Scholar 

  258. Boyer-Diaz, Z. et al. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J. Hepatol. https://doi.org/10.1016/j.jhep.2020.11.045 (2020).

    Article  PubMed  Google Scholar 

  259. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Matsuzaki, K. et al. Chronic inflammation associated with hepatitis C virus infection perturbs hepatic transforming growth factor beta signaling, promoting cirrhosis and hepatocellular carcinoma. Hepatology 46, 48–57 (2007).

    CAS  PubMed  Google Scholar 

  261. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019).

    CAS  PubMed  Google Scholar 

  262. Kin, M., Torimura, T., Ueno, T., Inuzuka, S. & Tanikawa, K. Sinusoidal capillarization in small hepatocellular carcinoma. Pathol. Int. 44, 771–778 (1994).

    CAS  PubMed  Google Scholar 

  263. Wu, L. Q. et al. Phenotypic and functional differences between human liver cancer endothelial cells and liver sinusoidal endothelial cells. J. Vasc. Res. 45, 78–86 (2008).

    PubMed  Google Scholar 

  264. Geraud, C. et al. Endothelial transdifferentiation in hepatocellular carcinoma: loss of stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int. 33, 1428–1440 (2013).

    CAS  PubMed  Google Scholar 

  265. Thomann, S. et al. YAP orchestrates heterotypic endothelial cell communication via HGF/c-MET signaling in liver tumorigenesis. Cancer Res. 80, 5502–5514 (2020).

    CAS  PubMed  Google Scholar 

  266. Pinato, D. J. et al. Immune-based therapies for hepatocellular carcinoma. Oncogene 39, 3620–3637 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Wadkin, J. C. R. et al. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G138–G149 (2017).

    PubMed  PubMed Central  Google Scholar 

  268. Knolle, P. A. & Wohlleber, D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol. Immunol. 13, 347–353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Wu, K., Kryczek, I., Chen, L., Zou, W. & Welling, T. H. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 69, 8067–8075 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Benedicto, A. et al. Decreased expression of the β2 integrin on tumor cells is associated with a reduction in liver metastasis of colorectal cancer in mice. BMC Cancer 17, 827 (2017).

    PubMed  PubMed Central  Google Scholar 

  272. Benedicto, A. et al. Liver sinusoidal endothelial cell ICAM-1 mediated tumor/endothelial crosstalk drives the development of liver metastasis by initiating inflammatory and angiogenic responses. Sci. Rep. 9, 13111 (2019).

    PubMed  PubMed Central  Google Scholar 

  273. Yu, X. et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10, 574 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Sarcognato, S., Garcia-Lezana, T. & Villanueva, A. Mechanisms of action of drugs effective in hepatocellular carcinoma. Clin. Liver Dis. 14, 62–65 (2019).

    Google Scholar 

  275. Llovet, J. M., Montal, R., Sia, D. & Finn, R. S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616 (2018).

    PubMed  Google Scholar 

  276. Li, W. et al. Regulation of tumorigenesis and metastasis of hepatocellular carcinoma tumor endothelial cells by microRNA-3178 and underlying mechanism. Biochem. Biophys. Res. Commun. 464, 881–887 (2015).

    CAS  PubMed  Google Scholar 

  277. Xu, W. et al. Immunotherapy for hepatocellular carcinoma: recent advances and future perspectives. Ther. Adv. Med. Oncol. 11, 1758835919862692 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Guixé-Muntet, S. et al. Nuclear deformation mediates liver cell mechanosensing in cirrhosis. JHEP Rep. 2, 100145 (2020).

    PubMed  PubMed Central  Google Scholar 

  279. Scoazec, J. –Y. & Feldmann, G. Both macrophages and endothelial cells of the human hepatic sinusoid express the CD4 molecule, a receptor for the human immunodeficiency virus. Hepatology 12, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  280. Knolle, P. A. et al. Induction of cytokine production in naive CD4+ T cells by antigen- presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward T(h1) cells. Gastroenterology 116, 1428–1440 (1999).

    CAS  PubMed  Google Scholar 

  281. March, S., Hui, E. E., Underhill, G. H., Khetani, S. & Bhatia, S. N. Microenvironmental regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology 50, 920–928 (2009).

    CAS  PubMed  Google Scholar 

  282. Muro, H., Shirasawa, H., Kosugi, I. & Nakamura, S. Defect of Fc receptors and phenotypical changes in sinusoidal endothelial cells in human liver cirrhosis. Am. J. Pathol. 143, 105 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Harb, R. et al. Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology 137, 704–712 (2009).

    PubMed  Google Scholar 

  284. Ohmori, S. et al. High expression of CD34-positive sinusoidal endothelial cells is a risk factor for hepatocellular carcinoma in patients with HCV-associated chronic liver diseases. Hum. Pathol. 32, 1363–1370 (2001).

    CAS  PubMed  Google Scholar 

  285. Cui, S. et al. Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol. Int. 46, 751–756 (1996).

    CAS  PubMed  Google Scholar 

  286. Zhao, S. et al. Tetramethylpyrazine attenuates sinusoidal angiogenesis via inhibition of hedgehog signaling in liver fibrosis. IUBMB Life 69, 115–127 (2017).

    CAS  PubMed  Google Scholar 

  287. Couvelard, A. et al. Structural and functional differentiation of sinusoidal endothelial cells during liver organogenesis in humans. Blood 87, 4568–4580 (1996).

    CAS  PubMed  Google Scholar 

  288. Volpes, R., van den Oord, J. J. & Desmet, V. J. Adhesive molecules in liver disease. Immunohistochemical distribution of thrombospondin receptors in chronic HBV infection. J. Hepatol. 10, 297–304 (1990).

    CAS  PubMed  Google Scholar 

  289. Hollenbaugh, D. et al. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 182, 33–40 (1995).

    CAS  PubMed  Google Scholar 

  290. Knolle, P. A. & Gerken, G. Local control of the immune response in the liver. Immunol. Rev. 174, 21–34 (2000).

    CAS  PubMed  Google Scholar 

  291. Leifeld, L. et al. Enhanced expression of CD80 (B7-1), CD86 (B7-2), and CD40 and their ligands CD28 and CD154 in fulminant hepatic failure. Am. J. Pathol. 154, 1711–1720 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Scoazec, J.-W. et al. Expression of complement-regulatory proteins in normal and UW-preserved human liver. Gastroenterology107, 505–516 (1994).

    CAS  PubMed  Google Scholar 

  293. Oteiza, A., Li, R., McCuskey, R. S., Smedsrød, B. & Sørensen, K. K. Effects of oxidized low-density lipoproteins on the hepatic microvasculature. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G684–G693 (2011).

    CAS  PubMed  Google Scholar 

  294. van Oosten, M., van de Bilt, E., de Vries, H. E., van Berkel, T. J. C. & Kuiper, J. Vascular adhesion molecule–1 and intercellular adhesion molecule–1 expression on rat liver cells after lipopolysaccharide administration in vivo. Hepatology 22, 1538–1546 (1995).

    PubMed  Google Scholar 

  295. Volpes, R., van den Oord, J. J. & Desmet, V. J. Immunohistochemical study of adhesion molecules in liver inflammation. Hepatology 12, 59–65 (1990).

    CAS  PubMed  Google Scholar 

  296. Volpes, R., van den Oord, J. J. & Desmet, V. J. Hepatic expression of intercellular adhesion molecule-1 (ICAM-1) in viral hepatitis B. Hepatology 12, 148–154 (1990).

    CAS  PubMed  Google Scholar 

  297. Lohse, A. W. et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110, 1175–1181 (1996).

    CAS  PubMed  Google Scholar 

  298. Øie, C. I. et al. Rat liver sinusoidal endothelial cells (LSECs) express functional low density lipoprotein receptor-related protein-1 (LRP-1). J. Hepatol. 55, 1346–1352 (2011).

    PubMed  Google Scholar 

  299. Minhajat, R. et al. Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol. Int. 56, 717–723 (2006).

    CAS  PubMed  Google Scholar 

  300. Adams, D. H., Burra, P., Hubscher, S. G., Elias, E. & Newman, W. Endothelial activation and circulating vascular adhesion molecules in alcoholic liver disease. Hepatology 19, 588–594 (1994).

    CAS  PubMed  Google Scholar 

  301. Schrage, A. et al. Murine CD146 is widely expressed on endothelial cells and is recognized by the monoclonal antibody ME-9F1. Histochem. Cell Biol. 129, 441–451 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Connolly, M. K. et al. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J. Immunol. 185, 2200–2208 (2010).

    CAS  PubMed  Google Scholar 

  303. Hansen, B., Arteta, B. & Smedsrød, B. The physiological scavenger receptor function of hepatic sinusoidal endothelial and Kupffer cells is independent of scavenger receptor class A type I and II. Mol. Cell. Biochem. 240, 1–8 (2002).

    CAS  PubMed  Google Scholar 

  304. Malovic, I. et al. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 45, 1454–1461 (2007).

    CAS  PubMed  Google Scholar 

  305. Asumendi, A., Alvarez, A., Martinez, I., Smedsrød, B. & Vidal-Vanaclocha, F. Hepatic sinusoidal endothelium heterogeneity with respect to mannose receptor activity is interleukin-1 dependent. Hepatology 23, 1521–1529 (1996).

    CAS  PubMed  Google Scholar 

  306. Lai, W. K. et al. Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am. J. Pathol. 169, 200–208 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Bashirova, A. A. et al. A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J. Exp. Med. 193, 671–678 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Na, H. et al. Novel roles of DC-SIGNR in colon cancer cell adhesion, migration, invasion, and liver metastasis. J. Hematol. Oncol. 10, 28 (2017).

    PubMed  PubMed Central  Google Scholar 

  309. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Zuo, Y. et al. Novel roles of liver sinusoidal endothelial cell lectin in colon carcinoma cell adhesion, migration and in-vivo metastasis to the liver. Gut 62, 1169–1178 (2013).

    CAS  PubMed  Google Scholar 

  311. Liu, W. et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J. Biol. Chem. 279, 18748–18758 (2004).

    CAS  PubMed  Google Scholar 

  312. Tang, L. et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology 137, 1498–1508.e5 (2009).

    CAS  PubMed  Google Scholar 

  313. Arimoto, J. et al. Expression of LYVE-1 in sinusoidal endothelium is reduced in chronically inflamed human livers. J. Gastroenterol. 45, 317–325 (2010).

    CAS  PubMed  Google Scholar 

  314. Politz, O. et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem. J. 362, 155–164 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Lautenschlager, I. et al. Distribution of the major histocompatibility complex antigens on different cellular components of human liver. Cell. Immunol. 85, 191–200 (1984).

    CAS  PubMed  Google Scholar 

  316. Uhrig, A. et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J. Leukoc. Biol. 77, 626–633 (2005).

    CAS  PubMed  Google Scholar 

  317. Kaipainen, A. et al. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J. Exp. Med. 178, 2077–2088 (1993).

    CAS  PubMed  Google Scholar 

  318. Ding, B. Sen et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Mandili, G. et al. Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. J. Hepatol. 62, 573–580 (2015).

    CAS  PubMed  Google Scholar 

  320. Ajamieh, H. et al. Acute atorvastatin is hepatoprotective against ischaemia-reperfusion injury in mice by modulating eNOS and microparticle formation. Liver Int. 35, 2174–2186 (2015).

    CAS  PubMed  Google Scholar 

  321. Rabie, M. A., Zaki, H. F. & Sayed, H. M. Telluric acid ameliorates hepatic ischemia reperfusion-induced injury in rats: involvement of TLR4, Nrf2, and PI3K/Akt signaling pathways. Biochem. Pharmacol. 168, 404–411 (2019).

    CAS  PubMed  Google Scholar 

  322. Sabry, M. M., Ramadan, N. M., Al Dreny, B. A., Rashed, L. A. & Abo El Enein, A. Protective effect of apelin preconditioning in a rat model of hepatic ischemia reperfusion injury; possible interaction between the apelin/APJ system, Ang II/AT1R system and eNOS. United European Gastroenterol. J. 7, 689–698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Lassailly, G. et al. Nucleotide-binding oligomerization domain 1 (NOD1) modulates liver ischemia reperfusion through the expression adhesion molecules. J. Hepatol. 70, 1159–1169 (2019).

    CAS  PubMed  Google Scholar 

  324. Deleve, L. D. et al. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Gastroenterology 125, 882–890 (2003).

    CAS  PubMed  Google Scholar 

  325. La Mura, V. et al. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. Hepatology 57, 1172–1181 (2013).

    PubMed  Google Scholar 

  326. Welz, M. et al. Perforin inhibition protects from lethal endothelial damage during fulminant viral hepatitis. Nat. Commun. 9, 4805 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Abraldes, J. G. et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J. Hepatol. 46, 1040–1046 (2007).

    CAS  PubMed  Google Scholar 

  328. Verbeke, L. et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59, 2286–2298 (2014).

    CAS  PubMed  Google Scholar 

  329. Pietrosi, G. et al. Human amniotic stem cells improve hepatic microvascular dysfunction and portal hypertension in cirrhotic rats. Liver Int. 40, 2500–2514 (2020).

    CAS  PubMed  Google Scholar 

  330. Hu, L. et al. AMPK agonist AICAR ameliorates portal hypertension and liver cirrhosis via NO pathway in the BDL rat model. J. Mol. Med. 97, 423–434 (2019).

    CAS  PubMed  Google Scholar 

  331. Gracia–Sancho, J. et al. Emricasan ameliorates portal hypertension and liver fibrosis in cirrhotic rats through a hepatocyte–mediated paracrine mechanism. Hepatol. Commun. 3, 987–1000 (2019).

    PubMed  PubMed Central  Google Scholar 

  332. Zhang, R., Chen, J., Liu, D. & Wang, Y. Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats. Front. Med. 13, 398–408 (2019).

    PubMed  Google Scholar 

  333. Bravo, M. et al. Restoration of liver sinusoidal cell phenotypes by statins improves portal hypertension and histology in rats with NASH. Sci. Rep. 9, 1–12 (2019).

    CAS  Google Scholar 

  334. Hide, D. et al. Simvastatin-loaded polymeric micelles are more effective and less toxic than conventional statins in a pre-clinical model of advanced chronic liver disease. Nanomedicine 29, 102267 (2020).

    CAS  PubMed  Google Scholar 

  335. Meireles, C. Z. et al. Simvastatin attenuates liver injury in rodents with biliary cirrhosis submitted to hemorrhage/resuscitation. Shock 47, 370–377 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge current and former members of the Liver Vascular Biology Research Group at IDIBAPS-Hospital Clínic de Barcelona and Inselspital-Bern and the Hepatic and Intestinal Immunobiology Group at Miguel Hernández University for their contributions and commitment towards basic and translational liver research; the funding agencies supporting the authors’ research, mainly the Spanish Ministry of Science and Innovation, the Instituto de Salud Carlos III, CIBEREHD, Generalitat de Catalunya, Generalitat Valenciana and the Swiss National Science Foundation (currently AES PI20/00220 and PI16/0967, PID2019-107036RB-I00, AGAUR-SGR2017-517, the CERCA Program, PROMETEO 2016/001 and SNF 320030_189252/1); and the International Society for Hepatic Sinusoidal Research (ISHSR) for its support of sinusoidal research and discussion.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding authors

Correspondence to Jordi Gracia-Sancho or Rubén Francés.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

US National Library of Medicine ClinicalTrials.gov: https://clinicaltrials.gov/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracia-Sancho, J., Caparrós, E., Fernández-Iglesias, A. et al. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 18, 411–431 (2021). https://doi.org/10.1038/s41575-020-00411-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00411-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing