Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention

Abstract

One quarter of the global population is estimated to have nonalcoholic fatty liver disease (NAFLD). The incidence of nonalcoholic steatohepatitis (NASH) is projected to increase by up to 56% in the next 10 years. NAFLD is already the fastest growing cause of hepatocellular carcinoma (HCC) in the USA, France and the UK. Globally, the prevalence of NAFLD-related HCC is likely to increase concomitantly with the growing obesity epidemic. The estimated annual incidence of HCC ranges from 0.5% to 2.6% among patients with NASH cirrhosis. The incidence of HCC among patients with non-cirrhotic NAFLD is lower, approximately 0.1 to 1.3 per 1,000 patient-years. Although the incidence of NAFLD-related HCC is lower than that of HCC of other aetiologies such as hepatitis C, more people have NAFLD than other liver diseases. Urgent measures that increase global awareness and tackle the metabolic risk factors are necessary to reduce the impending burden of NAFLD-related HCC. Emerging evidence indicates that reduced immune surveillance, increased gut inflammation and gut dysbiosis are potential key steps in tumorigenesis. In this Review, we discuss the global epidemiology, projections and risk factors for NAFLD-related HCC, and propose preventive strategies to tackle this growing problem.

Key points

  • Nonalcoholic fatty liver disease (NAFLD) includes simple steatosis and nonalcoholic steatohepatitis (NASH); NASH can be progressive and predisposes individuals to the development of fibrosis and cancer.

  • NAFLD-related hepatocellular carcinoma (HCC) can develop in the absence of cirrhosis.

  • NAFLD is the fastest growing cause of HCC in many parts of the world, including the USA and parts of Europe.

  • The incidence of NAFLD-related HCC is projected to increase dramatically by 2030, with increases of 82%, 117% and 122% from 2016 in China, France and the USA, respectively.

  • Diabetes is the most important risk factor for HCC development in patients with NAFLD; thus, screening and early treatment are essential.

  • Dysregulation of the gut microbiota and reduced immune surveillance are two new mechanisms that have been implicated in NAFLD hepatocarcinogenesis, and further research is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The estimated proportion of HCC attributed to NAFLD.
Fig. 2: Pathogenesis and prevention of NAFLD-related HCC.
Fig. 3: Proposed algorithm for HCC screening in NAFLD.

Similar content being viewed by others

References

  1. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease–meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016). This meta-analysis of studies from 1989 to 2015 reported that the global prevalence of NAFLD is 25%.

    PubMed  Google Scholar 

  2. Loomba, R. & Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    CAS  PubMed  Google Scholar 

  3. Zhou, F. et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. Hepatology 70, 1119–1133 (2019).

    PubMed  Google Scholar 

  4. Li, J. et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 4, 389–398 (2019).

    PubMed  Google Scholar 

  5. Adams, L. A. et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129, 113–121 (2005).

    PubMed  Google Scholar 

  6. White, D. L., Kanwal, F. & El-Serag, H. B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10, 1342–1359.e2 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018). This modelling study projected a rapid increase in incidence and prevalence of NAFLD-related HCC in the USA, Europe and China by 2030.

    PubMed  Google Scholar 

  8. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Baffy, G., Brunt, E. M. & Caldwell, S. H. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J. Hepatol. 56, 1384–1391 (2012).

    PubMed  Google Scholar 

  10. Eslam, M., Sanyal, A. J. & George, J., & International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).

    CAS  PubMed  Google Scholar 

  11. Younossi, Z. M. et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology https://doi.org/10.1002/hep.31420 (2020).

    Article  PubMed  Google Scholar 

  12. Global Burden of Disease Liver Cancer Collaboration et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 3, 1683–1691 (2017).

    Google Scholar 

  13. Yang, J. D. et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16, 589–604 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Global Burden of Disease Cancer Collaboration et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol. 5, 1749–1768 (2019).

    Google Scholar 

  15. Henley, S. J. et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 126, 2225–2249 (2020).

    PubMed  Google Scholar 

  16. Younossi, Z. M. et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 62, 1723–1730 (2015). This article reported a 9% yearly increase in NAFLD-related HCC prevalence in the USA from 2004 to 2009.

    CAS  PubMed  Google Scholar 

  17. Stine, J. G. et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. Aliment. Pharmacol. Ther. 48, 696–703 (2018). This meta-analysis of 19 studies and 168,571 individuals with NASH reported that the prevalence of NAFLD-related HCC in patients with NASH but without cirrhosis is approximately 38% compared with 14% for other liver diseases.

    PubMed  PubMed Central  Google Scholar 

  18. Desai, A., Sandhu, S., Lai, J.-P. & Sandhu, D. S. Hepatocellular carcinoma in non-cirrhotic liver: a comprehensive review. World J. Hepatol. 11, 1–18 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019).

    PubMed  Google Scholar 

  20. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief. 131, 1–8 (2013).

    Google Scholar 

  21. Younossi, Z. et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin. Gastroenterol. Hepatol. 17, 748–755.e3 (2019).

    PubMed  Google Scholar 

  22. Cho, E. J. et al. Relative etiological role of prior hepatitis B virus infection and nonalcoholic fatty liver disease in the development of non-B non-C hepatocellular carcinoma in a hepatitis B-endemic area. Digestion 84, 17–22 (2011).

    PubMed  Google Scholar 

  23. Liew, Z.-H., Goh, G. B.-B., Hao, Y., Chang, P.-E. & Tan, C.-K. Comparison of hepatocellular carcinoma in patients with cryptogenic versus hepatitis B etiology: a study of 1079 cases over 3 decades. Dig. Dis. Sci. 64, 585–590 (2019).

    CAS  PubMed  Google Scholar 

  24. Dyson, J. et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 60, 110–117 (2014). This study from the UK showed a substantial increase in the proportion of NAFLD-related HCC from <10% in 2000 to 34.8% in 2010.

    PubMed  Google Scholar 

  25. Pais, R. et al. Temporal trends, clinical patterns and outcomes of NAFLD-related HCC in patients undergoing liver resection over a 20-year period. Aliment. Pharmacol. Ther. 46, 856–863 (2017).

    CAS  PubMed  Google Scholar 

  26. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

    PubMed  Google Scholar 

  27. Sanyal, A. J. et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43, 682–689 (2006).

    PubMed  Google Scholar 

  28. Bhala, N. et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 54, 1208–1216 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Yang, J. D. et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology 71, 907–916 (2020).

    CAS  PubMed  Google Scholar 

  30. Kanwal, F. et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 155, 1828–1837.e2 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Yatsuji, S. et al. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J. Gastroenterol. Hepatol. 24, 248–254 (2009).

    CAS  PubMed  Google Scholar 

  32. Thrift, A. P., El-Serag, H. B. & Kanwal, F. Global epidemiology and burden of HCV infection and HCV-related disease. Nat. Rev. Gastroenterol. Hepatol. 14, 122–132 (2017).

    PubMed  Google Scholar 

  33. Amarapurkar, D. N., Dharod, M., Gautam, S. & Patel, N. Risk of development of hepatocellular carcinoma in patients with NASH-related cirrhosis. Trop. Gastroenterol. 34, 159–163 (2013).

    CAS  PubMed  Google Scholar 

  34. Mittal, S. et al. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the veteran affairs population. Clin. Gastroenterol. Hepatol. 13, 594–601.e1 (2015).

    PubMed  Google Scholar 

  35. Sanyal, A., Poklepovic, A., Moyneur, E. & Barghout, V. Population-based risk factors and resource utilization for HCC: US perspective. Curr. Med. Res. Opin. 26, 2183–2191 (2010).

    CAS  PubMed  Google Scholar 

  36. Mittal, S. et al. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 124–131.e1 (2016).

    CAS  PubMed  Google Scholar 

  37. Tateishi, R. et al. Clinical characteristics, treatment, and prognosis of non-B, non-C hepatocellular carcinoma: a large retrospective multicenter cohort study. J. Gastroenterol. 50, 350–360 (2015).

    CAS  PubMed  Google Scholar 

  38. Piscaglia, F. et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology 63, 827–838 (2016).

    PubMed  Google Scholar 

  39. Yasui, K. et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin. Gastroenterol. Hepatol. 9, 428–433 (2011).

    PubMed  Google Scholar 

  40. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    Google Scholar 

  41. Omata, M. et al. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol. Int. 11, 317–370 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Google Scholar 

  43. Alexander, M. et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med. 17, 95 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Kawamura, Y. et al. Large-scale long-term follow-up study of Japanese patients with non-alcoholic fatty liver disease for the onset of hepatocellular carcinoma. Am. J. Gastroenterol. 107, 253–261 (2012).

    CAS  PubMed  Google Scholar 

  45. Ito, T. et al. Utility and limitations of noninvasive fibrosis markers for predicting prognosis in biopsy-proven Japanese non-alcoholic fatty liver disease patients. J. Gastroenterol. Hepatol. 34, 207–214 (2019).

    CAS  PubMed  Google Scholar 

  46. Seko, Y. et al. Development of hepatocellular carcinoma in Japanese patients with biopsy-proven non-alcoholic fatty liver disease: association between PNPLA3 genotype and hepatocarcinogenesis/fibrosis progression. Hepatol. Res. 47, 1083–1092 (2017).

    CAS  PubMed  Google Scholar 

  47. Kim, G.-A. et al. Association between non-alcoholic fatty liver disease and cancer incidence rate. J. Hepatol. 68, 140–146 (2018).

    Google Scholar 

  48. Lee, T.-Y. et al. The occurrence of hepatocellular carcinoma in different risk stratifications of clinically noncirrhotic nonalcoholic fatty liver disease. Int. J. Cancer 141, 1307–1314 (2017).

    CAS  PubMed  Google Scholar 

  49. Alexander, M. et al. Real-world data reveal a diagnostic gap in non-alcoholic fatty liver disease. BMC Med. 16, 130 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Mercado-Irizarry, A. & Torres, E. A. Cryptogenic cirrhosis: current knowledge and future directions. Clin. Liver Dis. 7, 69–72 (2016).

    Google Scholar 

  51. Caldwell, S. & Marchesini, G. Cryptogenic vs. NASH-cirrhosis: the rose exists well before its name... J. Hepatol. 68, 391–392 (2018).

    PubMed  Google Scholar 

  52. Thuluvath, P. J., Kantsevoy, S., Thuluvath, A. J. & Savva, Y. Is cryptogenic cirrhosis different from NASH cirrhosis? J. Hepatol. 68, 519–525 (2018).

    PubMed  Google Scholar 

  53. Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    PubMed  Google Scholar 

  54. Ganslmayer, M. et al. A large cohort of patients with hepatocellular carcinoma in a single European centre: aetiology and prognosis now and in a historical cohort. Swiss Med. Wkly. 144, w13900 (2014).

    PubMed  Google Scholar 

  55. Aljumah, A. A. et al. Clinical presentation, risk factors, and treatment modalities of hepatocellular carcinoma: a single tertiary care center experience. Gastroenterol. Res. Pract. 2016, 1989045 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Yapali, S. & Tozun, N. Epidemiology and viral risk factors for hepatocellular carcinoma in the Eastern Mediterranean countries. Hepatoma Res. 4, 24 (2018).

    Google Scholar 

  57. Yang, J. D. et al. Characteristics, management, and outcomes of patients with hepatocellular carcinoma in Africa: a multicountry observational study from the Africa Liver Cancer Consortium. Lancet Gastroenterol. Hepatol. 2, 103–111 (2017).

    PubMed  Google Scholar 

  58. Paul, S. B. et al. Clinical profile, etiology and therapeutic outcome in 324 hepatocellular carcinoma patients at a tertiary care center in India. Oncology 77, 162–171 (2009).

    PubMed  Google Scholar 

  59. Patkar, S., Parray, A., Mahendra, B., Kurunkar, S. & Goel, M. Performance of Hong Kong liver cancer staging system in patients of hepatocellular carcinoma treated with surgical resection: an Indian validation study. J. Surg. Oncol. 120, 1119–1125 (2019).

    PubMed  Google Scholar 

  60. Yuen, M.-F., Hou, J.-L. & Chutaputti, A., Asia Pacific Working Party on Prevention of Hepatocellular Carcinoma. Hepatocellular carcinoma in the Asia Pacific region. J. Gastroenterol. Hepatol. 24, 346–353 (2009).

    PubMed  Google Scholar 

  61. Goh, K.-L. et al. Liver cancer in Malaysia: epidemiology and clinical presentation in a multiracial Asian population. J. Dig. Dis. 16, 152–158 (2015).

    PubMed  Google Scholar 

  62. Jasirwan, C. O. M. et al. Risk factors of mortality in the patients with hepatocellular carcinoma: a multicenter study in Indonesia. Curr. Probl. Cancer 44, 100480 (2019).

    PubMed  Google Scholar 

  63. Somboon, K., Siramolpiwat, S. & Vilaichone, R.-K. Epidemiology and survival of hepatocellular carcinoma in the central region of Thailand. Asian Pac. J. Cancer Prev. 15, 3567–3570 (2014).

    PubMed  Google Scholar 

  64. Wong, R. J., Cheung, R. & Ahmed, A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the US. Hepatology 59, 2188–2195 (2014).

    PubMed  Google Scholar 

  65. Heffernan, A., Cooke, G. S., Nayagam, S., Thursz, M. & Hallett, T. B. Scaling up prevention and treatment towards the elimination of hepatitis C: a global mathematical model. Lancet 393, 1319–1329 (2019).

    PubMed  PubMed Central  Google Scholar 

  66. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    CAS  PubMed  Google Scholar 

  67. Hanumanthappa, N. et al. Epidemiology, clinical treatment patterns, and survival of hepatocellular carcinoma in Manitoba. Can. Liv. J. 3, 194–202 (2020).

    Google Scholar 

  68. Swain, M. G. et al. Burden of nonalcoholic fatty liver disease in Canada, 2019-2030: a modelling study. CMAJ Open 8, E429–E436 (2020).

    PubMed  PubMed Central  Google Scholar 

  69. Debes, J. D. et al. Hepatocellular carcinoma in South America: evaluation of risk factors, demographics and therapy. Liver Int. 38, 136–143 (2018).

    PubMed  Google Scholar 

  70. Fassio, E. et al. Etiology of hepatocellular carcinoma in Latin America: a prospective, multicenter, international study. Ann. Hepatol. 9, 63–69 (2010).

    PubMed  Google Scholar 

  71. Park, J.-W. et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE study. Liver Int. 35, 2155–2166 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. van der Poorten, D. et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause? Hepatology 57, 2180–2188 (2013).

    PubMed  Google Scholar 

  73. Tokushige, K., Hashimoto, E., Horie, Y., Taniai, M. & Higuchi, S. Hepatocellular carcinoma in Japanese patients with nonalcoholic fatty liver disease, alcoholic liver disease, and chronic liver disease of unknown etiology: report of the nationwide survey. J. Gastroenterol. 46, 1230–1237 (2011).

    PubMed  Google Scholar 

  74. Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    PubMed  Google Scholar 

  75. Ma, C. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531, 253–257 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017). This study demonstrated in a mouse model that IgA cells accumulated in patients with NASH and suppressed CD8+ T cells, which reduced immune surveillance and promoted hepatocarcinogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Davila, J. A., Morgan, R. O., Shaib, Y., McGlynn, K. A. & El-Serag, H. B. Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study. Gut 54, 533–539 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. El-Serag, H. B., Hampel, H. & Javadi, F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin. Gastroenterol. Hepatol. 4, 369–380 (2006).

    PubMed  Google Scholar 

  79. Kanwal, F. et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology 71, 808–819 (2020). In this study of 271,906 patients with NAFLD diagnosed between 2004 and 2008, diabetes had the strongest association with HCC development (adjusted HR 2.77, 95% CI 2.03–3.77) among the metabolic risk factors.

    PubMed  Google Scholar 

  80. Naugler, W. E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    CAS  PubMed  Google Scholar 

  81. Chen, Y., Wang, X., Wang, J., Yan, Z. & Luo, J. Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies. Eur. J. Cancer 48, 2137–2145 (2012).

    PubMed  Google Scholar 

  82. Saunders, D., Seidel, D., Allison, M. & Lyratzopoulos, G. Systematic review: the association between obesity and hepatocellular carcinoma – epidemiological evidence. Aliment. Pharmacol. Ther. 31, 1051–1063 (2010).

    CAS  PubMed  Google Scholar 

  83. Hassan, M. M. et al. Obesity early in adulthood increases risk but does not affect outcomes of hepatocellular carcinoma. Gastroenterology 149, 119–129 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Nair, S., Mason, A., Eason, J., Loss, G. & Perrillo, R. P. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis? Hepatology 36, 150–155 (2002).

    PubMed  Google Scholar 

  85. Petrick, J. L. et al. Tobacco, alcohol use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the Liver Cancer Pooling Project. Br. J. Cancer 118, 1005–1012 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Abdel-Rahman, O. et al. Cigarette smoking as a risk factor for the development of and mortality from hepatocellular carcinoma: an updated systematic review of 81 epidemiological studies. J. Evid. Based Med. 10, 245–254 (2017).

    PubMed  Google Scholar 

  87. Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877–1887 (2009).

    CAS  PubMed  Google Scholar 

  88. Zhang, H.-L. et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J. Hepatol. 57, 803–812 (2012).

    PubMed  Google Scholar 

  89. Sharpton, S. R., Ajmera, V. & Loomba, R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin. Gastroenterol. Hepatol. 17, 296–306 (2019).

    CAS  PubMed  Google Scholar 

  90. Luther, J. et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Gäbele, E. et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol. 55, 1391–1399 (2011).

    PubMed  Google Scholar 

  92. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    CAS  PubMed  Google Scholar 

  93. Meng, Z. et al. FXR regulates liver repair after CCl4-induced toxic injury. Mol. Endocrinol. 24, 886–897 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67, 863–867 (2007).

    CAS  PubMed  Google Scholar 

  95. Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175, 2392–2405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ponziani, F. R. et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 69, 107–120 (2019). This study from Italy demonstrated that Akkermansia and Bifidobacterium species are decreased in patients with NAFLD-related HCC compared with patients with NASH cirrhosis, highlighting that dysregulation of the gut microbiome might influence NAFLD-related hepatocarcinogenesis.

    CAS  PubMed  Google Scholar 

  97. Wu, W. et al. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front. Microbiol. 8, 1804 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Fang, D. et al. Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci. Rep. 7, 8770 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Stender, S. & Loomba, R. PNPLA3 genotype and risk of liver and all-cause mortality. Hepatology 71, 777–779 (2020).

    PubMed  PubMed Central  Google Scholar 

  100. Hassan, M. M. et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol. Carcinog. 52, E139–E147 (2013).

    CAS  PubMed  Google Scholar 

  101. Singal, A. G. et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am. J. Gastroenterol. 109, 325–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y.-L. et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 61, 75–81 (2014).

    CAS  PubMed  Google Scholar 

  103. Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Donati, B. et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci. Rep. 7, 4492 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Marrero, J. A. et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68, 723–750 (2018).

    PubMed  Google Scholar 

  106. Loomba, R., Lim, J. K., Patton, H. & El-Serag, H. B. AGA clinical practice update on screening and surveillance for hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: expert review. Gastroenterology 158, 1822–1830 (2020).

    PubMed  Google Scholar 

  107. Eslam, M. et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol. Int. https://doi.org/10.1007/s12072-020-10094-2 (2020).

  108. Simmons, O. et al. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Aliment. Pharmacol. Ther. 45, 169–177 (2017).

    CAS  PubMed  Google Scholar 

  109. Morgan, T. A. et al. US LI-RADS: ultrasound liver imaging reporting and data system for screening and surveillance of hepatocellular carcinoma. Abdom. Radiol. 43, 41–55 (2018).

    Google Scholar 

  110. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  111. Chitturi, S. et al. The Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017–Part 2: management and special groups. J. Gastroenterol. Hepatol. 33, 86–98 (2018).

    PubMed  Google Scholar 

  112. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    PubMed  Google Scholar 

  113. Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Koutoukidis, D. A. et al. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: a systematic review and meta-analysis. JAMA Intern. Med. 179, 1262–1271 (2019).

    PubMed Central  Google Scholar 

  115. Lee, Y. et al. Complete resolution of nonalcoholic fatty liver disease after bariatric surgery: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 1040–1060.e11 (2019).

    PubMed  Google Scholar 

  116. Demierre, M.-F., Higgins, P. D. R., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nat. Rev. Cancer 5, 930–942 (2005).

    CAS  PubMed  Google Scholar 

  117. Singh, S., Singh, P. P., Singh, A. G., Murad, M. H. & Sanchez, W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology 144, 323–332 (2013).

    CAS  PubMed  Google Scholar 

  118. Thrift, A. P., Natarajan, Y., Liu, Y. & El-Serag, H. B. Statin use after diagnosis of hepatocellular carcinoma is associated with decreased mortality. Clin. Gastroenterol. Hepatol. 17, 2117–2125.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cholesterol Treatment Trialists’ (CTT) Collaboration et al. Lack of effect of lowering LDL cholesterol on cancer: meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PLoS ONE 7, e29849 (2012).

    Google Scholar 

  120. Blandino, G. et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun. 3, 865 (2012).

    PubMed  Google Scholar 

  121. Singh, S., Singh, P. P., Singh, A. G., Murad, M. H. & Sanchez, W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am. J. Gastroenterol. 108, 881–891 (2013).

    CAS  PubMed  Google Scholar 

  122. Ma, S., Zheng, Y., Xiao, Y., Zhou, P. & Tan, H. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine 96, e6888 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou, Y.-Y. et al. Systematic review with network meta-analysis: antidiabetic medication and risk of hepatocellular carcinoma. Sci. Rep. 6, 33743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Suissa, S. & Azoulay, L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care 35, 2665–2673 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tseng, C.-H. Metformin and risk of hepatocellular carcinoma in patients with type 2 diabetes. Liver Int. 38, 2018–2027 (2018).

    CAS  PubMed  Google Scholar 

  126. Sitia, G. et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc. Natl Acad. Sci. USA 109, E2165–E2172 (2012).

    CAS  PubMed  Google Scholar 

  127. Sahasrabuddhe, V. V. et al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J. Natl Cancer Inst. 104, 1808–1814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Singh, P. & Singh, S. Re: nonsteroidal antiinflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J. Natl Cancer Inst. 105, 666–667 (2013).

    PubMed  Google Scholar 

  129. Simon, T. G. et al. Association between aspirin use and risk of hepatocellular carcinoma. JAMA Oncol. 4, 1683–1690 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Ioannou, G. N., Green, P., Lowy, E., Mun, E. J. & Berry, K. Differences in hepatocellular carcinoma risk, predictors and trends over time according to etiology of cirrhosis. PLoS ONE 13, e0204412 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Paranaguá-Vezozzo, D. C. et al. Epidemiology of HCC in Brazil: incidence and risk factors in a ten-year cohort. Ann. Hepatol. 13, 386–393 (2014).

    PubMed  Google Scholar 

  132. Hsiang, J. C. et al. Epidemiology, disease burden and outcomes of cirrhosis in a large secondary care hospital in South Auckland, New Zealand. Intern. Med. J. 45, 160–169 (2015).

    CAS  PubMed  Google Scholar 

  133. Kimura, T. et al. Mild drinking habit is a risk factor for hepatocarcinogenesis in non-alcoholic fatty liver disease with advanced fibrosis. World J. Gastroenterol. 24, 1440–1450 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Wong, V. W.-S. et al. Long-term clinical outcomes after fatty liver screening in patients undergoing coronary angiogram: a prospective cohort study. Hepatology 63, 754–763 (2016).

    PubMed  Google Scholar 

  135. Lopes, F. et al. Influence of hepatocellular carcinoma etiology in the survival after resection. Arq. Bras. Cir. Dig. 29, 105–108 (2016).

    PubMed Central  Google Scholar 

  136. Raptis, I., Koskinas, J., Emmanouil, T. & Hadziyannis, S. Changing relative roles of hepatitis B and C viruses in the aetiology of hepatocellular carcinoma in Greece. Epidemiological and clinical observations. J. Viral Hepat. 10, 450–454 (2003).

    CAS  PubMed  Google Scholar 

  137. Liu, P.-H. et al. Hong Kong liver cancer staging system is associated with better performance for hepatocellular carcinoma: special emphasis on viral etiology. Medicine 94, e1772 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Hong, T. P. et al. Novel population-based study finding higher than reported hepatocellular carcinoma incidence suggests an updated approach is needed. Hepatology 63, 1205–1212 (2016).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K.H. Sippel and S.M. Kim for reading the manuscript and providing comments. R.L. receives funding support from NIEHS (5P42ES010337), NCATS (5UL1TR001442), NIDDK (U01DK061734, R01DK106419, P30DK120515, R01DK121378, R01DK124318), NHLBI (P01HL147835), and DOD PRCRP (W81XWH-18-2-0026). D.Q.H. receives funding support from Singapore Ministry of Health’s National Medical Research Council under its NMRC Research Training Fellowship and Exxon Mobil-NUS Research Fellowship for Clinicians. H.B.E.-S. receives funding support from the Department of Veterans Affairs (5I01CX001616-04), the Cancer Prevention and Research Institute of Texas (grant RP150587) and the National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK 56338).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussion of content, wrote the article, and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Rohit Loomba.

Ethics declarations

Competing interests

R.L. serves as a consultant or advisory board member for Anylam/Regeneron, Arrowhead Pharmaceuticals, AstraZeneca, Bristol Myers Squibb, CohBar, Eli Lilly, Galmed, Gilead, Glympse bio, Inipharm, Intercept, Ionis, Janssen Inc., Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Novo Nordisk, Pfizer, Promethera, Sagimet, 89 bio, and Viking Therapeutics. In addition, his institution has received grant support from Allergan, Boehringer Ingelheim, Bristol Myers Squibb, Cirius, Eli Lilly and Company, Galectin Therapeutics, Galmed Pharmaceuticals, GE, Genfit, Gilead, Intercept, Inventiva, Janssen, Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, Pfizer, pH Pharma, and Siemens. He is also co-founder of Liponexus, Inc.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks K. Tokushige and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D.Q., El-Serag, H.B. & Loomba, R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 18, 223–238 (2021). https://doi.org/10.1038/s41575-020-00381-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00381-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing