Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and cellular mechanisms of liver fibrosis and its regression

Abstract

Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.

Key points

  • Most chronic liver diseases, such as hepatitis C virus infection or non-alcoholic hepatic steatohepatitis, can progress to liver fibrosis with the formation of a fibrous scar.

  • Experimental and clinical liver fibrosis regresses with the removal of the aetiological agent or with new therapeutic interventions.

  • Chronic liver injury leads to activation of hepatic stellate cells, the major source of the fibrous scar in liver fibrosis.

  • Hepatic stellate cells have four known phenotypes — quiescent, activated, inactivated and senescent — each of which has a critical role in liver fibrosis and its regression.

  • During regression of liver fibrosis, activated hepatic stellate cells can undergo apoptosis or revert to an inactivated phenotype; the inactivated cells have a phenotype that is similar to but distinct from quiescent hepatic stellate cells.

  • Macrophages can promote fibrogenesis by the secretion of TGFβ and other agonists, but they also support the regression of fibrosis through the secretion of collagenases that resorb the fibrous scar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Portal fibroblasts and HSCs are located in different areas of the hepatic lobule.
Fig. 2: Phenotypic changes in HSCs during development and regression of liver fibrosis.
Fig. 3: Characteristics of activated HSCs.
Fig. 4: Therapeutic opportunities for blocking fibrosis development.

Similar content being viewed by others

References

  1. Friedman, S. L. Liver fibrosis – from bench to bedside. J. Hepatol. 38 (Suppl. 1), S38–S53 (2003).

    PubMed  Google Scholar 

  2. Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lo, R. C. & Kim, H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin. Mol. Hepatol. 23, 302–307 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083.e22 (2012).

    CAS  PubMed  Google Scholar 

  5. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu, M. et al. Serum biomarkers indicate long-term reduction in liver fibrosis in patients with sustained virological response to treatment for HCV infection. Clin. Gastroenterol. Hepatol. 14, 1044–1055.e3 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Kisseleva, T. & Brenner, D. A. Mechanisms of fibrogenesis. Exp. Biol. Med. 233, 109–122 (2008).

    CAS  Google Scholar 

  9. Schmitt-Graff, A., Kruger, S., Bochard, F., Gabbiani, G. & Denk, H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am. J. Pathol. 138, 1233–1242 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kisseleva, T. & Brenner, D. A. Hepatic stellate cells and the reversal of fibrosis. J. Gastroenterol. Hepatol. 21 (Suppl. 3), S84–S87 (2006).

    CAS  PubMed  Google Scholar 

  11. Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gomperts, B. N. & Strieter, R. M. Fibrocytes in lung disease. J. Leukoc. Biol. 82, 449–456 (2007).

    CAS  PubMed  Google Scholar 

  13. Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    CAS  PubMed  Google Scholar 

  14. Taura, K. et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).

    PubMed  Google Scholar 

  15. Scholten, D. et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139, 987–998 (2010).

    CAS  PubMed  Google Scholar 

  16. Ueno, T. et al. Hepatic stellate cells and intralobular innervation in human liver cirrhosis. Hum. Pathol. 28, 953–959 (1997).

    CAS  PubMed  Google Scholar 

  17. Goddard, C. J. et al. Localisation and semiquantitative assessment of hepatic procollagen mRNA in primary biliary cirrhosis. Gut 43, 433–440 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Iwaisako, K. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl Acad. Sci. USA 111, E3297–E3305 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishio, T. et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J. Hepatol. 71, 573–585 (2019).

    PubMed  Google Scholar 

  20. Dranoff, J. A. & Wells, R. G. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51, 1438–1444 (2010).

    PubMed  Google Scholar 

  21. Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc. Natl Acad. Sci. USA 98, 6686–6691 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu, A. S. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53, 1685–1695 (2011).

    PubMed  Google Scholar 

  23. Russo, F. P. et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130, 1807–1821 (2006).

    PubMed  Google Scholar 

  24. Kallis, Y. N. & Forbes, S. J. The bone marrow and liver fibrosis: friend or foe? Gastroenterology 137, 1218–1221 (2009).

    CAS  PubMed  Google Scholar 

  25. Short, B. J., Brouard, N. & Simmons, P. J. Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol. Biol. 482, 259–268 (2009).

    CAS  PubMed  Google Scholar 

  26. Simmons, P. J., Przepiorka, D., Thomas, E. D. & Torok-Storb, B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328, 429–432 (1987).

    CAS  PubMed  Google Scholar 

  27. Song, L. & Tuan, R. S. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 18, 980–982 (2004).

    CAS  PubMed  Google Scholar 

  28. Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. & Phan, S. H. Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–252 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thorgeirsson, S. S. & Grisham, J. W. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 43, 2–8 (2006).

    PubMed  Google Scholar 

  31. Alison, M. R., Islam, S. & Lim, S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J. Pathol. 217, 282–298 (2009).

    CAS  PubMed  Google Scholar 

  32. Kisseleva, T. et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  33. Kharaziha, P. et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur. J. Gastroenterol. Hepatol. 21, 1199–1205 (2009).

    CAS  PubMed  Google Scholar 

  34. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).

    CAS  PubMed  Google Scholar 

  35. Senoo, H., Kojima, N. & Sato, M. Vitamin A-storing cells (stellate cells). Vitam. Horm. 75, 131–159 (2007).

    CAS  PubMed  Google Scholar 

  36. Hazra, S. et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem. 279, 11392–11401 (2004).

    CAS  PubMed  Google Scholar 

  37. She, H., Xiong, S., Hazra, S. & Tsukamoto, H. Adipogenic transcriptional regulation of hepatic stellate cells. J. Biol. Chem. 280, 4959–4967 (2005).

    CAS  PubMed  Google Scholar 

  38. Koyama, Y. et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J. Clin. Invest. 127, 1254–1270 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Xu, F., Liu, C., Zhou, D. & Zhang, L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem. 64, 157–167 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dooley, S. et al. Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFβ signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett. 502, 4–10 (2001).

    CAS  PubMed  Google Scholar 

  41. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-beta-independent Smad signaling. J. Immunol. 187, 2814–2823 (2011).

    CAS  PubMed  Google Scholar 

  43. Kordes, C., Sawitza, I., Gotze, S., Herebian, D. & Haussinger, D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J. Clin. Invest. 124, 5503–5515 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Lua, I., James, D., Wang, J., Wang, K. S. & Asahina, K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 60, 311–322 (2014).

    CAS  PubMed  Google Scholar 

  45. Zhu, C. et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl Med. 10, eaat0344 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lan, T., Kisseleva, T. & Brenner, D. A. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS ONE 10, e0129743 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 58, 1801–1813 (2013).

    CAS  PubMed  Google Scholar 

  49. Lee, Y. S. et al. Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci. Rep. 7, 3710 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  52. Meier, A. et al. Inhibition of human neutrophil extracellular trap (NET) production by propofol and lipid emulsion. Front. Pharmacol. 10, 323 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saijou, E. et al. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model. Hepatol. Commun. 2, 703–717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moles, A. et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J. Hepatol. 60, 782–791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gehrke, N. et al. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G319–G333 (2018).

    PubMed  Google Scholar 

  56. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    CAS  PubMed  Google Scholar 

  57. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS  PubMed  Google Scholar 

  58. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    CAS  PubMed  Google Scholar 

  59. Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    CAS  PubMed  Google Scholar 

  60. Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J. Hepatol. 30, 77–87 (1999).

    CAS  PubMed  Google Scholar 

  61. de Gouville, A. C. et al. Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br. J. Pharmacol. 145, 166–177 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Bonniaud, P. et al. TGF-β and Smad3 signaling link inflammation to chronic fibrogenesis. J. Immunol. 175, 5390–5395 (2005).

    CAS  PubMed  Google Scholar 

  63. Kulkarni, A. B. & Karlsson, S. Inflammation and TGF beta 1: lessons from the TGF beta 1 null mouse. Res. Immunol. 148, 453–456 (1997).

    CAS  PubMed  Google Scholar 

  64. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139, 323–334.e7 (2010).

    CAS  PubMed  Google Scholar 

  65. Sudo, K., Yamada, Y., Moriwaki, H., Saito, K. & Seishima, M. Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice. Cytokine 29, 236–244 (2005).

    CAS  PubMed  Google Scholar 

  66. Liu, C. et al. Transcriptional repression of the transforming growth factor beta (TGF-beta) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor kappaB (NF-kappaB) p50 enhances TGF-beta signaling in hepatic stellate cells. J. Biol. Chem. 289, 7082–7091 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  PubMed  Google Scholar 

  68. Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Radaeva, S., Sun, R., Pan, H. N., Hong, F. & Gao, B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39, 1332–1342 (2004).

    CAS  PubMed  Google Scholar 

  70. Baeck, C. et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61, 416–426 (2012).

    CAS  PubMed  Google Scholar 

  71. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Iredale, J. P. Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. 21, 427–436 (2001).

    CAS  PubMed  Google Scholar 

  74. Shetty, S., Lalor, P. F. & Adams, D. H. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat. Rev. Gastroenterol. Hepatol. 15, 555–567 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142, 918–927.e6 (2012).

    PubMed  Google Scholar 

  76. Deleve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48, 920–930 (2008).

    CAS  PubMed  Google Scholar 

  77. DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K. & McCuskey, R. S. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G757–G763 (2004).

    CAS  PubMed  Google Scholar 

  78. Maretti-Mira, A. C., Wang, X., Wang, L. & DeLeve, L. D. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69, 1259–1272 (2019).

    CAS  PubMed  Google Scholar 

  79. Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    PubMed  Google Scholar 

  80. Desmouliere, A. et al. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab. Invest. 76, 765–778 (1997).

    CAS  PubMed  Google Scholar 

  81. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abe, R., Donnelly, S. C., Peng, T., Bucala, R. & Metz, C. N. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166, 7556–7562 (2001).

    CAS  PubMed  Google Scholar 

  83. Kisseleva, T. & Brenner, D. A. Fibrogenesis of parenchymal organs. Proc. Am. Thorac. Soc. 5, 338–342 (2008).

    PubMed  PubMed Central  Google Scholar 

  84. Strieter, R. M., Gomperts, B. N. & Keane, M. P. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest. 117, 549–556 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Karhadkar, T. R., Pilling, D., Cox, N. & Gomer, R. H. Sialidase inhibitors attenuate pulmonary fibrosis in a mouse model. Sci. Rep. 7, 15069 (2017).

    PubMed  PubMed Central  Google Scholar 

  86. Quan, T. E., Cowper, S., Wu, S. P., Bockenstedt, L. K. & Bucala, R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 36, 598–606 (2004).

    CAS  PubMed  Google Scholar 

  87. Phillips, R. J. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Scholten, D. et al. Migration of fibrocytes in fibrogenic liver injury. Am. J. Pathol. 179, 189–198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, J. et al. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg. Nutr. 4, 34–47 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Kisseleva, T. et al. Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection. J. Mol. Med. 89, 997–1013 (2011).

    PubMed  Google Scholar 

  91. El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273.e1 (2012).

    PubMed  Google Scholar 

  92. Tornesello, M. L., Buonaguro, L., Izzo, F. & Buonaguro, F. M. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 7, 25087–25102 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Liu, W., Baker, R. D., Bhatia, T., Zhu, L. & Baker, S. S. Pathogenesis of nonalcoholic steatohepatitis. Cell. Mol. Life Sci. 73, 1969–1987 (2016).

    CAS  PubMed  Google Scholar 

  94. Mazzanti, R., Arena, U. & Tassi, R. Hepatocellular carcinoma: Where are we? World J. Exp. Med. 6, 21–36 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Byass, P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 12, 159 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Paquissi, F. C. Immunity and fibrogenesis: the role of Th17/IL-17 axis in HBV and HCV-induced chronic hepatitis and progression to cirrhosis. Front. Immunol. 8, 1195 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Kanda, T., Goto, T., Hirotsu, Y., Moriyama, M. & Omata, M. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: a review. Int. J. Mol. Sci. 20, 1358 (2019).

    CAS  PubMed Central  Google Scholar 

  98. Loomba, R. & Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    CAS  PubMed  Google Scholar 

  99. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Google Scholar 

  100. Di Rosa, M. & Malaguarnera, L. Genetic variants in candidate genes influencing NAFLD progression. J. Mol. Med. 90, 105–118 (2012).

    CAS  PubMed  Google Scholar 

  101. Kim, J. Y. et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175, 133–145.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Musso, G. et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 42, 1175–1183 (2005).

    CAS  PubMed  Google Scholar 

  103. Malaguarnera, M., Di Rosa, M., Nicoletti, F. & Malaguarnera, L. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 87, 679–695 (2009).

    CAS  PubMed  Google Scholar 

  104. Maricic, I. et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J. Immunol. 201, 3017–3035 (2018).

    CAS  PubMed  Google Scholar 

  105. Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Seki, E. & Schnabl, B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J. Physiol. 590, 447–458 (2012).

    CAS  PubMed  Google Scholar 

  108. Moschen, A. R., Kaser, S. & Tilg, H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol. Metab. 24, 537–545 (2013).

    CAS  PubMed  Google Scholar 

  109. Llorente, C. et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat. Commun. 8, 837 (2017).

    PubMed  PubMed Central  Google Scholar 

  110. Zhou, D. et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7, 1529 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Teschke, R. Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 6, 106 (2018).

    CAS  PubMed Central  Google Scholar 

  113. O’Shea, R. S., Dasarathy, S., McCullough, A. J., Practice Guideline Committee of the American Association for the Study of Liver Diseases & Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    PubMed  Google Scholar 

  114. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    CAS  PubMed  Google Scholar 

  115. Maltby, J., Wright, S., Bird, G. & Sheron, N. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. Hepatology 24, 1156–1160 (1996).

    CAS  PubMed  Google Scholar 

  116. Dominguez, M. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 136, 1639–1650 (2009).

    PubMed  Google Scholar 

  117. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    CAS  PubMed  Google Scholar 

  118. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    CAS  PubMed  Google Scholar 

  119. Ikenaga, N. et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66, 1697–1708 (2017).

    CAS  PubMed  Google Scholar 

  120. Chen, P. et al. Microbiota and alcoholic liver disease. Alcohol. Clin. Exp. Res. 40, 1791–1792 (2016).

    PubMed  Google Scholar 

  121. Hirschfield, G. M. & Heathcote, E. J. Cholestasis and cholestatic syndromes. Curr. Opin. Gastroenterol. 25, 175–179 (2009).

    PubMed  Google Scholar 

  122. Wagner, M., Zollner, G. & Trauner, M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin. Liver Dis. 30, 160–177 (2010).

    CAS  PubMed  Google Scholar 

  123. Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    CAS  PubMed  Google Scholar 

  124. Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175, 2392–2405 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Gulamhusein, A. F. & Hirschfield, G. M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 17, 93–110 (2020).

    PubMed  Google Scholar 

  126. Eaton, J. E., Talwalkar, J. A., Lazaridis, K. N., Gores, G. J. & Lindor, K. D. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology 145, 521–536 (2013).

    CAS  PubMed  Google Scholar 

  127. Feldman, A. G. & Sokol, R. J. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat. Rev. Gastroenterol. Hepatol. 16, 346–360 (2019).

    PubMed  Google Scholar 

  128. Shneider, B. L. et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J. Pediatr. 148, 467–474 (2006).

    PubMed  Google Scholar 

  129. Ramachandran, P. & Iredale, J. P. Reversibility of liver fibrosis. Ann. Hepatol. 8, 283–291 (2009).

    PubMed  Google Scholar 

  130. Hammel, P. et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N. Engl. J. Med. 344, 418–423 (2001).

    CAS  PubMed  Google Scholar 

  131. Arthur, M. J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122, 1525–1528 (2002).

    PubMed  Google Scholar 

  132. Kweon, Y. O. et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J. Hepatol. 35, 749–755 (2001).

    CAS  PubMed  Google Scholar 

  133. Dixon, J. B., Bhathal, P. S., Hughes, N. R. & O’Brien, P. E. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology 39, 1647–1654 (2004).

    PubMed  Google Scholar 

  134. Czaja, A. J. & Carpenter, H. A. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J. Hepatol. 40, 646–652 (2004).

    CAS  PubMed  Google Scholar 

  135. Pares, A., Caballeria, J., Bruguera, M., Torres, M. & Rodes, J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 2, 33–42 (1986).

    CAS  PubMed  Google Scholar 

  136. Hafeez, S. & Ahmed, M. H. Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J. Obes. 2013, 839275 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Issa, R. et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126, 1795–1808 (2004).

    CAS  PubMed  Google Scholar 

  138. Issa, R. et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48, 548–557 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Schnabl, B. et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34, 89–100 (2001).

    CAS  PubMed  Google Scholar 

  140. Kendall, T. J. et al. p75 Neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology 49, 901–910 (2009).

    CAS  PubMed  Google Scholar 

  141. Patel, R. et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 104, 317–324 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS  PubMed  Google Scholar 

  143. Lee, C. G. et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J. Exp. Med. 200, 377–389 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Huby, A. C. et al. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE 4, e6721 (2009).

    PubMed  PubMed Central  Google Scholar 

  145. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37, 653–664 (2003).

    CAS  PubMed  Google Scholar 

  147. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    CAS  PubMed  Google Scholar 

  148. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Kong, X., Feng, D., Mathews, S. & Gao, B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J. Gastroenterol. Hepatol. 28, 56–60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Novo, E. et al. Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut 55, 1174–1182 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gao, B., Radaeva, S. & Park, O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 86, 513–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

    CAS  PubMed  Google Scholar 

  154. Glassner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest. 92, 967–977 (2012).

    PubMed  Google Scholar 

  155. Puche, J. E. et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57, 339–350 (2013).

    PubMed  Google Scholar 

  156. Parsons, C. J. et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 40, 1106–1115 (2004).

    CAS  PubMed  Google Scholar 

  157. Oakley, F. et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128, 108–120 (2005).

    CAS  PubMed  Google Scholar 

  158. Jeong, W. I., Park, O., Radaeva, S. & Gao, B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44, 1441–1451 (2006).

    CAS  PubMed  Google Scholar 

  159. Mohar, I., Brempelis, K. J., Murray, S. A., Ebrahimkhani, M. R. & Crispe, I. N. Isolation of non-parenchymal cells from the mouse liver. Methods Mol. Biol. 1325, 3–17 (2015).

    CAS  PubMed  Google Scholar 

  160. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  161. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS  PubMed  Google Scholar 

  162. Ishikawa, S. et al. CD1d-restricted natural killer T cells contribute to hepatic inflammation and fibrogenesis in mice. J. Hepatol. 54, 1195–1204 (2011).

    CAS  PubMed  Google Scholar 

  163. Popov, Y. et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G323–G334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Uchinami, H., Seki, E., Brenner, D. A. & D’Armiento, J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44, 420–429 (2006).

    CAS  PubMed  Google Scholar 

  165. Wei, J. et al. IkappaB kinase-beta inhibitor attenuates hepatic fibrosis in mice. World J. Gastroenterol. 17, 5203–5213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kisseleva, T. & Brenner, D. A. Inactivation of myofibroblasts during regression of liver fibrosis. Cell Cycle 12, 381–382 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    PubMed  Google Scholar 

  168. Kluwe, J. et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60, 1260–1268 (2011).

    CAS  PubMed  Google Scholar 

  169. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  170. Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    CAS  PubMed  Google Scholar 

  171. Gaca, M. D. et al. Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol. 22, 229–239 (2003).

    CAS  PubMed  Google Scholar 

  172. Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138, 705–714 (2010).

    CAS  PubMed  Google Scholar 

  173. Perugorria, M. J. et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 56, 1129–1139 (2012).

    CAS  PubMed  Google Scholar 

  174. Liu, X. et al. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158, 1728–1744.e14 (2020).

    CAS  PubMed  Google Scholar 

  175. Schuppan, D., Ashfaq-Khan, M., Yang, A. T. & Kim, Y. O. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 68–69, 435–451 (2018).

    PubMed  Google Scholar 

  176. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS  PubMed  Google Scholar 

  178. Feld, J. J. et al. Sofosbuvir and Velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 373, 2599–2607 (2015).

    CAS  PubMed  Google Scholar 

  179. Lynch, S. M. & Wu, G. Y. Hepatitis C virus: a review of treatment guidelines, cost-effectiveness, and access to therapy. J. Clin. Transl Hepatol. 4, 310–319 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. Chen Yi Mei, S. L. G. et al. Sustained virological response halts fibrosis progression: A long-term follow-up study of people with chronic hepatitis C infection. PLoS ONE 12, e0185609 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    PubMed  Google Scholar 

  182. Lassailly, G. et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149, 379–388 (2015).

    PubMed  Google Scholar 

  183. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 576 (2017).

    CAS  PubMed  Google Scholar 

  184. Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. https://doi.org/10.1515/hmbci-2017-0002 (2017).

  185. Gao, B., Ahmad, M. F., Nagy, L. E. & Tsukamoto, H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 70, 249–259 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Canbay, A., Feldstein, A., Baskin-Bey, E., Bronk, S. F. & Gores, G. J. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308, 1191–1196 (2004).

    CAS  PubMed  Google Scholar 

  187. Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, S., Wang, J., Liu, Q. & Harnish, D. C. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51, 380–388 (2009).

    CAS  PubMed  Google Scholar 

  189. Xiang, M. et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    CAS  PubMed  Google Scholar 

  190. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    CAS  PubMed  Google Scholar 

  191. Ratziu, V. et al. REGENERATE: design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp. Clin. Trials 84, 105803 (2019).

    PubMed  Google Scholar 

  192. Brandl, K. et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J. Hepatol. 69, 396–405 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    CAS  PubMed  Google Scholar 

  194. Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    CAS  PubMed  Google Scholar 

  195. Ahn, H. et al. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 71, 223–231 (2015).

    CAS  PubMed  Google Scholar 

  196. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  198. Watanabe, A. et al. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol 296, G1248–G1257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Linton, S. D. Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top. Med. Chem. 5, 1697–1717 (2005).

    CAS  PubMed  Google Scholar 

  200. MacKenzie, S. H., Schipper, J. L. & Clark, A. C. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 13, 568–576 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Shiffman, M. et al. Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 49, 64–73 (2019).

    CAS  PubMed  Google Scholar 

  202. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    CAS  PubMed  Google Scholar 

  203. Petrasek, J. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476–3489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    CAS  PubMed  Google Scholar 

  205. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Pilling, D. et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol. 179, 4035–4044 (2007).

    CAS  PubMed  Google Scholar 

  207. Verna, E. C. et al. Novel association between serum pentraxin-2 levels and advanced fibrosis in well-characterised patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 42, 582–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    CAS  PubMed  Google Scholar 

  209. Hammerich, L., Heymann, F. & Tacke, F. Role of IL-17 and Th17 cells in liver diseases. Clin. Dev. Immunol. 2011, 345803 (2011).

    PubMed  Google Scholar 

  210. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  211. Zhang, X., Jin, J., Peng, X., Ramgolam, V. S. & Markovic-Plese, S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J. Immunol. 180, 6988–6996 (2008).

    CAS  PubMed  Google Scholar 

  212. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  Google Scholar 

  213. Ma, H. Y. et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J. Hepatol. 72, 946–959 (2020).

    CAS  PubMed  Google Scholar 

  214. Ki, S. H. et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52, 1291–1300 (2010).

    CAS  PubMed  Google Scholar 

  215. Weston, C. J. et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J. Clin. Invest. 125, 501–520 (2015).

    PubMed  Google Scholar 

  216. Fan, X. et al. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-beta1. PLoS ONE 8, e82190 (2013).

    PubMed  PubMed Central  Google Scholar 

  217. Ling, H. et al. Transforming growth factor beta neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS ONE 8, e54499 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Akhurst, R. J. & Hata, A. Targeting the TGFbeta signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  220. Henderson, N. C. et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    CAS  PubMed  Google Scholar 

  221. Peng, Z. W. et al. Integrin alphavbeta6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology 63, 217–232 (2016).

    CAS  PubMed  Google Scholar 

  222. Meurer, S. K. et al. Overexpression of endoglin modulates TGF-beta1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS ONE 8, e56116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Blanco, F. J. et al. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J. Cell Physiol. 204, 574–584 (2005).

    CAS  PubMed  Google Scholar 

  224. Duffy, A. G. et al. Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin. Cancer Res. 23, 4633–4641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Rancoule, C. et al. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin. Investig. Drugs 20, 657–667 (2011).

    CAS  PubMed  Google Scholar 

  226. Mazzocca, A. et al. Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts. Hepatology 54, 920–930 (2011).

    CAS  PubMed  Google Scholar 

  227. Giannone, F. A. et al. Reversal of liver fibrosis by the antagonism of endocannabinoid CB1 receptor in a rat model of CCl4-induced advanced cirrhosis. Lab. Invest. 92, 384–395 (2012).

    CAS  PubMed  Google Scholar 

  228. Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245–1256 (2009).

    CAS  PubMed  Google Scholar 

  229. Qu, K. et al. New insight into the anti-liver fibrosis effect of multitargeted tyrosine kinase inhibitors: from molecular target to clinical trials. Front. Pharmacol. 6, 300 (2015).

    PubMed  Google Scholar 

  230. Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS  PubMed  Google Scholar 

  231. Moreno, M. et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology 51, 942–952 (2012).

    Google Scholar 

  232. Yang, L. et al. Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. J. Hepatol. 43, 317–323 (2005).

    CAS  PubMed  Google Scholar 

  233. Yokohama, S. et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40, 1222–1225 (2004).

    CAS  PubMed  Google Scholar 

  234. Yoshiji, H. et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr. Med. Chem. 14, 2749–2754 (2007).

    CAS  PubMed  Google Scholar 

  235. Yoshiji, H. et al. Angiotensin-II induces the tissue inhibitor of metalloproteinases-1 through the protein kinase-C signaling pathway in rat liver fibrosis development. Hepatol. Res. 27, 51–56 (2003).

    CAS  PubMed  Google Scholar 

  236. Abu Dayyeh, B. K., Yang, M., Dienstag, J. L. & Chung, R. T. The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C trial cohort. Dig. Dis. Sci. 56, 564–568 (2011).

    CAS  PubMed  Google Scholar 

  237. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    CAS  PubMed  Google Scholar 

  238. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Massey, V. L. et al. The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology 65, 969–982 (2017).

    CAS  PubMed  Google Scholar 

  240. Mohammadi, M., Olsen, S. K. & Goetz, R. A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr. Opin. Struct. Biol. 15, 506–516 (2005).

    CAS  PubMed  Google Scholar 

  241. Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS  PubMed  Google Scholar 

  242. Rahman, S. et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 6, 8 (2005).

    PubMed  PubMed Central  Google Scholar 

  243. Wijelath, E. S. et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ. Res. 99, 853–860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Wells, R. G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J. Clin. Gastroenterol. 39, S158–S161 (2005).

    CAS  PubMed  Google Scholar 

  245. Bollyky, P. L. et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 86, 567–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Bollyky, P. L. et al. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. J. Immunol. 179, 744–747 (2007).

    CAS  PubMed  Google Scholar 

  247. Meran, S. et al. Involvement of hyaluronan in regulation of fibroblast phenotype. J. Biol. Chem. 282, 25687–25697 (2007).

    CAS  PubMed  Google Scholar 

  248. Webber, J., Meran, S., Steadman, R. & Phillips, A. Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J. Biol. Chem. 284, 9083–9092 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Iredale, J. P. & Pellicoro, A. “It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast: it keeps him young” (Konrad Lorenz, 1903–1989). Gastroenterology 140, 1395–1398 (2011).

    PubMed  Google Scholar 

  250. Hynes, R. O. & Naba, A. Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    PubMed  PubMed Central  Google Scholar 

  251. Brenner, D. A. et al. New aspects of hepatic fibrosis. J. Hepatol. 32, 32–38 (2000).

    CAS  PubMed  Google Scholar 

  252. Popov, Y. et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 140, 1642–1652 (2011).

    CAS  PubMed  Google Scholar 

  253. Liu, S. B. et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 30, 1599–1609 (2016).

    CAS  PubMed  Google Scholar 

  254. Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    CAS  PubMed  Google Scholar 

  255. Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

    CAS  PubMed  Google Scholar 

  256. Rowbottom, M. W. et al. Identification of 4-(aminomethyl)-6-(trifluoromethyl)-2-(phenoxy)pyridine derivatives as potent, selective, and orally efficacious inhibitors of the copper-dependent amine oxidase, lysyl oxidase-like 2 (LOXL2). J. Med. Chem. 60, 4403–4423 (2017).

    CAS  PubMed  Google Scholar 

  257. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    PubMed  PubMed Central  Google Scholar 

  258. Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Murphy, F. R. et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J. Biol. Chem. 277, 11069–11076 (2002).

    CAS  PubMed  Google Scholar 

  260. Zhang, L. P. et al. Increased expression of plasminogen activator and plasminogen activator inhibitor during liver fibrogenesis of rats: role of stellate cells. J. Hepatol. 31, 703–711 (1999).

    CAS  PubMed  Google Scholar 

  261. Flevaris, P. & Vaughan, D. The role of plasminogen activator inhibitor type-1 in fibrosis. Semin. Thromb. Hemost. 43, 169–177 (2017).

    CAS  PubMed  Google Scholar 

  262. Hu, P. F. et al. Inhibition of plasminogen activator inhibitor-1 expression by siRNA in rat hepatic stellate cells. J. Gastroenterol. Hepatol. 23, 1917–1925 (2008).

    CAS  PubMed  Google Scholar 

  263. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Mahady, S. E., Webster, A. C., Walker, S., Sanyal, A. & George, J. The role of thiazolidinediones in non-alcoholic steatohepatitis - a systematic review and meta analysis. J. Hepatol. 55, 1383–1390 (2011).

    CAS  PubMed  Google Scholar 

  265. Duran, A. et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30, 595–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Wahsh, E., Abu-Elsaad, N., El-Karef, A. & Ibrahim, T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: an experimental study. Eur. J. Pharmacol. 789, 362–369 (2016).

    CAS  PubMed  Google Scholar 

  267. Hah, N., Sherman, M. H., Yu, R. T., Downes, M. & Evans, R. M. Targeting transcriptional and epigenetic reprogramming in stromal cells in fibrosis and cancer. Cold Spring Harb. Symp. Quant. Biol. 80, 249–255 (2015).

    PubMed  Google Scholar 

  268. Ding, N., Liddle, C., Evans, R. M. & Downes, M. Hepatic actions of vitamin D receptor ligands: a sunshine option for chronic liver disease? Expert Rev. Clin. Pharmacol. 6, 597–599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Varga, J., Brenner D. & Phan S. E. Fibrosis Research. Methods and Protocols (Humana Press, 2005).

  270. Pellicoro, A. et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 55, 1965–1975 (2012).

    CAS  PubMed  Google Scholar 

  271. Lee, Y. A., Wallace, M. C. & Friedman, S. L. Pathobiology of liver fibrosis: a translational success story. Gut 64, 830–841 (2015).

    CAS  PubMed  Google Scholar 

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00013598.

  273. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01672866.

  274. Du, K. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465–1479.e13 (2018).

    CAS  PubMed  Google Scholar 

  275. Lalor, P. F., Shields, P., Grant, A. & Adams, D. H. Recruitment of lymphocytes to the human liver. Immunol. Cell Biol. 80, 52–64 (2002).

    CAS  PubMed  Google Scholar 

  276. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01051219.

  277. Yoshiji, H., Kuriyama, S. & Fukui, H. Blockade of renin-angiotensin system in antifibrotic therapy. J. Gastroenterol. Hepatol. 22 (Suppl. 1), S93–S95 (2007).

    CAS  PubMed  Google Scholar 

  278. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Okada, H., Danoff, T. M., Kalluri, R. & Neilson, E. G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 273, F563–F574 (1997).

    CAS  PubMed  Google Scholar 

  280. Zavadil, J., Haley, J., Kalluri, R., Muthuswamy, S. K. & Thompson, E. Epithelial-mesenchymal transition. Cancer Res. 68, 9574–9577 (2008).

    CAS  PubMed  Google Scholar 

  281. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS  PubMed  Google Scholar 

  282. Tuchweber, B., Desmouliere, A., Bochaton-Piallat, M. L., Rubbia-Brandt, L. & Gabbiani, G. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Lab. Invest. 74, 265–278 (1996).

    CAS  PubMed  Google Scholar 

  283. Bosselut, N. et al. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts. Proteomics 10, 1017–1028 (2010).

    CAS  PubMed  Google Scholar 

  284. Dudas, J., Mansuroglu, T., Batusic, D. & Ramadori, G. Thy-1 is expressed in myofibroblasts but not found in hepatic stellate cells following liver injury. Histochem. Cell Biol. 131, 115–127 (2009).

    CAS  PubMed  Google Scholar 

  285. Strieter, R. M., Keeley, E. C., Hughes, M. A., Burdick, M. D. & Mehrad, B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J. Leukoc. Biol. 86, 1111–1118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    PubMed  PubMed Central  Google Scholar 

  287. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Forbes, S. J. et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126, 955–963 (2004).

    PubMed  Google Scholar 

  289. Harting, M. T., Jimenez, F. & Cox, C. S. Jr. Isolation of mesenchymal stem cells (MSCs) from green fluorescent protein positive (GFP+) transgenic rodents: The grass is not always green(er). Stem Cells Dev. 18, 127–135 (2008).

    Google Scholar 

  290. Wang, Y. et al. TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS ONE 5, e14206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the NIH (AA011999, DK101737, AA022614, DK099205, DK111866, AA018663). The authors thank Christopher Glass, Xiao Liu, Karin Diggle and Kevin Lam for help with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kisseleva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks S. Dooley, N. Henderson and Y. Popov for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisseleva, T., Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 18, 151–166 (2021). https://doi.org/10.1038/s41575-020-00372-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-00372-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing