Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of intestinal lipid metabolism: current concepts and relevance to disease

Abstract

Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.

Key points

  • Dietary lipids are digested and are taken up by enterocytes for re-esterification and packaging into pre-chylomicrons in the endoplasmic reticulum, trafficked to the Golgi and then secreted for transport in the lymphatic system.

  • Specific proteins and enzymes are involved in this complex process; when deficient, human diseases characterized by defective lipid and fat-soluble vitamin absorption, such as abetalipoproteinaemia and chylomicron storage disease, occur.

  • Cytoplasmic lipid droplets are multiprotein-coated structures that serve as dynamic triacylglycerol storage pools in the enterocyte and are involved in several aspects of enterocyte lipid metabolism.

  • Pharmacotherapy targeted to specific proteins and/or molecules involved in the absorptive process, such as luminal lipases, bile acids, NPC1L1, MGAT2, DGAT1 and MTP, could be used to treat diet-induced obesity and its associated complications.

  • Studies have suggested that the gut microbiome in the small intestine has a role in regulating host metabolism and the response to dietary lipids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of various lipids.
Fig. 2: Summary of intestinal lipid uptake and transport as chylomicrons.
Fig. 3: Summary of intestinal cholesterol uptake and transport.
Fig. 4: Summary of proposed models for the metabolic fate of intestinal lipids.

Similar content being viewed by others

References

  1. Kohan, A. B., Yoder, S. M. & Tso, P. Using the lymphatics to study nutrient absorption and the secretion of gastrointestinal hormones. Physiol. Behav. 105, 82–88 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tso, P. & Balint, J. A. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am. J. Physiol. 250, G715–G726 (1986).

    CAS  PubMed  Google Scholar 

  3. D’Aquila, T., Hung, Y. H., Carreiro, A. & Buhman, K. K. Recent discoveries on absorption of dietary fat: presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim. Biophys. Acta 1861, 730–747 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Xiao, C., Stahel, P., Carreiro, A. L., Buhman, K. K. & Lewis, G. F. Recent advances in triacylglycerol mobilization by the gut. Trends Endocrinol. Metab. 29, 151–163 (2018).

    CAS  PubMed  Google Scholar 

  5. Hussain, M. M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 25, 200–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Welty, F. K. Hypobetalipoproteinemia and abetalipoproteinemia. Curr. Opin. Lipidol. 25, 161–168 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferreira, H. et al. Chylomicron retention disease: a description of a new mutation in a very rare disease. Pediatr. Gastroenterol. Hepatol. Nutr. 21, 134–140 (2018).

    PubMed  Google Scholar 

  8. Shiau, Y. F. et al. Intestinal triglycerides are derived from both endogenous and exogenous sources. Am. J. Physiol. 248, G164–G169 (1985).

    CAS  PubMed  Google Scholar 

  9. Bernback, S., Blackberg, L. & Hernell, O. Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim. Biophys. Acta 1001, 286–293 (1989).

    CAS  PubMed  Google Scholar 

  10. Hamosh, M. et al. Fat digestion in the newborn. Characterization of lipase in gastric aspirates of premature and term infants. J. Clin. Invest. 67, 838–846 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tso, P. Gastrointestinal digestion and absorption of lipid. Adv. Lipid Res. 21, 143–186 (1985).

    CAS  PubMed  Google Scholar 

  12. Watkins, J. B. Lipid digestion and absorption. Pediatrics 75, 151–156 (1985).

    CAS  PubMed  Google Scholar 

  13. Phan, C. T. & Tso, P. Intestinal lipid absorption and transport. Front. Biosci. 6, D299–D319 (2001).

    CAS  PubMed  Google Scholar 

  14. Einarsson, K. et al. Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism. Eur. J. Clin. Pharmacol. 40, S53–S58 (1991).

    PubMed  Google Scholar 

  15. Chow, S. L. & Hollander, D. A dual, concentration-dependent absorption mechanism of linoleic acid by rat jejunum in vitro. J. Lipid Res. 20, 349–356 (1979).

    CAS  PubMed  Google Scholar 

  16. Lobo, M. V. et al. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. J. Histochem. Cytochem. 49, 1253–1260 (2001).

    CAS  PubMed  Google Scholar 

  17. Lynes, M., Narisawa, S., Millan, J. L. & Widmaier, E. P. Interactions between CD36 and global intestinal alkaline phosphatase in mouse small intestine and effects of high-fat diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1738–R1747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nassir, F., Wilson, B., Han, X., Gross, R. W. & Abumrad, N. A. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J. Biol. Chem. 282, 19493–19501 (2007).

    CAS  PubMed  Google Scholar 

  19. Drover, V. A. et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J. Clin. Invest. 115, 1290–1297 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nauli, A. M. et al. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology 131, 1197–1207 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).

    CAS  PubMed  Google Scholar 

  22. Milger, K. et al. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J. Cell Sci. 119, 4678–4688 (2006).

    CAS  PubMed  Google Scholar 

  23. Gimeno, R. E. et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. J. Biol. Chem. 278, 49512–49516 (2003).

    CAS  PubMed  Google Scholar 

  24. Moulson, C. L. et al. Cloning of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial roles for fatty acid transport protein 4 in skin and hair development. Proc. Natl Acad. Sci. USA 100, 5274–5279 (2003).

    CAS  PubMed  Google Scholar 

  25. Herrmann, T. et al. Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J. Cell Biol. 161, 1105–1115 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moulson, C. L. et al. Keratinocyte-specific expression of fatty acid transport protein 4 rescues the wrinkle-free phenotype in Slc27a4/Fatp4 mutant mice. J. Biol. Chem. 282, 15912–15920 (2007).

    CAS  PubMed  Google Scholar 

  27. Shim, J. et al. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J. Lipid Res. 50, 491–500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Niot, I., Poirier, H., Tran, T. T. & Besnard, P. Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog. Lipid Res. 48, 101–115 (2009).

    CAS  PubMed  Google Scholar 

  29. Siddiqi, S., Sheth, A., Patel, F., Barnes, M. & Mansbach, C. M. 2nd Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim. Biophys. Acta 1831, 1311–1321 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thumser, A. E. & Storch, J. Liver and intestinal fatty acid-binding proteins obtain fatty acids from phospholipid membranes by different mechanisms. J. Lipid Res. 41, 647–656 (2000).

    CAS  PubMed  Google Scholar 

  31. Hsu, K. T. & Storch, J. Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms. J. Biol. Chem. 271, 13317–13323 (1996).

    CAS  PubMed  Google Scholar 

  32. Corsico, B., Cistola, D. P., Frieden, C. & Storch, J. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc. Natl Acad. Sci. USA 95, 12174–12178 (1998).

    CAS  PubMed  Google Scholar 

  33. Storch, J. & Corsico, B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu. Rev. Nutr. 28, 73–95 (2008).

    CAS  PubMed  Google Scholar 

  34. Van Heek, M. et al. In vivo metabolism-based discovery of a potent cholesterol absorption inhibitor, SCH58235, in the rat and rhesus monkey through the identification of the active metabolites of SCH48461. J. Pharmacol. Exp. Ther. 283, 157–163 (1997).

    PubMed  Google Scholar 

  35. Sylven, C. & Borgstrom, B. Absorption and lymphatic transport of cholesterol in the rat. J. Lipid Res. 9, 596–601 (1968).

    CAS  PubMed  Google Scholar 

  36. Turley, S. D. & Dietschy, J. M. Sterol absorption by the small intestine. Curr. Opin. Lipidol. 14, 233–240 (2003).

    CAS  PubMed  Google Scholar 

  37. Altmann, S. W. et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    CAS  PubMed  Google Scholar 

  38. Jia, L., Betters, J. L. & Yu, L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol. 73, 239–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L. J. et al. Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. J. Biol. Chem. 286, 7397–7408 (2011).

    CAS  PubMed  Google Scholar 

  40. Geach, T. Coronary heart disease: NPC1L1 mutations lower CHD risk. Nat. Rev. Cardiol. 12, 3 (2015).

    PubMed  Google Scholar 

  41. Myocardial Infarction Genetics Consortium Investigators, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).

    Google Scholar 

  42. Kern, F. Jr. Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day. Mechanisms of adaptation. N. Engl. J. Med. 324, 896–899 (1991).

    PubMed  Google Scholar 

  43. Li, P. S. et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat. Med. 20, 80–86 (2014).

    PubMed  Google Scholar 

  44. Nihei, W. et al. NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. J. Lipid Res. 59, 2181–2187 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ge, L. et al. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc. Natl Acad. Sci. USA 108, 551–556 (2011).

    CAS  PubMed  Google Scholar 

  46. Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    CAS  PubMed  Google Scholar 

  47. Johnson, T. A. & Pfeffer, S. R. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis. Mol. Biol. Cell 27, 1845–1852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bietrix, F. et al. Accelerated lipid absorption in mice overexpressing intestinal SR-BI. J. Biol. Chem. 281, 7214–7219 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mardones, P. et al. Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J. Lipid Res. 42, 170–180 (2001).

    CAS  PubMed  Google Scholar 

  50. Hayashi, A. A. et al. Intestinal SR-BI is upregulated in insulin-resistant states and is associated with overproduction of intestinal apoB48-containing lipoproteins. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G326–G337 (2011).

    CAS  PubMed  Google Scholar 

  51. Lino, M. et al. Intestinal scavenger receptor class B type I as a novel regulator of chylomicron production in healthy and diet-induced obese states. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G350–G359 (2015).

    CAS  PubMed  Google Scholar 

  52. Morel, E. et al. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 199–211 (2018).

    CAS  PubMed  Google Scholar 

  53. Reboul, E. et al. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem. 281, 4739–4745 (2006).

    CAS  PubMed  Google Scholar 

  54. Reboul, E. Vitamin E intestinal absorption: regulation of membrane transport across the enterocyte. IUBMB Life 71, 416–423 (2019).

    CAS  PubMed  Google Scholar 

  55. During, A., Dawson, H. D. & Harrison, E. H. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J. Nutr. 135, 2305–2312 (2005).

    CAS  PubMed  Google Scholar 

  56. Borel, P. et al. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. J. Nutr. 143, 448–456 (2013).

    CAS  PubMed  Google Scholar 

  57. Weingartner, O. et al. Vascular effects of diet supplementation with plant sterols. J. Am. Coll. Cardiol. 51, 1553–1561 (2008).

    PubMed  Google Scholar 

  58. Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    CAS  PubMed  Google Scholar 

  59. Lutjohann, D., Bjorkhem, I., Beil, U. F. & von Bergmann, K. Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. J. Lipid Res. 36, 1763–1773 (1995).

    CAS  PubMed  Google Scholar 

  60. Bjorkhem, I. et al. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: abnormal levels of 24S- and 27-hydroxycholesterol. J. Lipid Res. 42, 366–371 (2001).

    CAS  PubMed  Google Scholar 

  61. Bhattacharyya, A. K. & Connor, W. E. Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J. Clin. Invest. 53, 1033–1043 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miettinen, T. A. Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur. J. Clin. Invest. 10, 27–35 (1980).

    CAS  PubMed  Google Scholar 

  63. Hu, M., Yuen, Y. P., Kwok, J. S., Griffith, J. F. & Tomlinson, B. Potential effects of NPC1L1 polymorphisms in protecting against clinical disease in a chinese family with sitosterolaemia. J. Atheroscler. Thromb. 21, 989–995 (2014).

    CAS  PubMed  Google Scholar 

  64. Plosch, T. et al. Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor. Gastroenterology 126, 290–300 (2004).

    PubMed  Google Scholar 

  65. Yu, L. et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl Acad. Sci. USA 99, 16237–16242 (2002).

    CAS  PubMed  Google Scholar 

  66. Wang, J. et al. Relative roles of ABCG5/ABCG8 in liver and intestine. J. Lipid Res. 56, 319–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Temel, R. E. & Brown, J. M. A new framework for reverse cholesterol transport: non-biliary contributions to reverse cholesterol transport. World J. Gastroenterol. 16, 5946–5952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Temel, R. E. & Brown, J. M. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol. Sci. 36, 440–451 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jakulj, L. et al. Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab. 24, 783–794 (2016).

    CAS  PubMed  Google Scholar 

  70. van der Veen, J. N. et al. Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol. J. Biol. Chem. 284, 19211–19219 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Kruit, J. K. et al. Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128, 147–156 (2005).

    CAS  PubMed  Google Scholar 

  72. de Boer, J. F. et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152, 1126–1138.e6 (2017).

    PubMed  Google Scholar 

  73. Vrins, C. L. et al. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux. J. Lipid Res. 50, 2046–2054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Siddiqi, S. & Mansbach, C. M. 2nd Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine. J. Lipid Res. 56, 859–870 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kayden, H. J., Senior, J. R. & Mattson, F. H. The monoglyceride pathway of fat absorption in man. J. Clin. Invest. 46, 1695–1703 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Babayan, V. K. Medium chain triglycerides and structured lipids. Lipids 22, 417–420 (1987).

    CAS  PubMed  Google Scholar 

  77. Yen, C. L. & Farese, R. V. Jr. MGAT2, a monoacylglycerol acyltransferase expressed in the small intestine. J. Biol. Chem. 278, 18532–18537 (2003).

    CAS  PubMed  Google Scholar 

  78. Cheng, D. et al. Identification of acyl coenzyme A:monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption. J. Biol. Chem. 278, 13611–13614 (2003).

    CAS  PubMed  Google Scholar 

  79. Yue, Y. G. et al. The acyl coenzymeA:monoacylglycerol acyltransferase 3 (MGAT3) gene is a pseudogene in mice but encodes a functional enzyme in rats. Lipids 46, 513–520 (2011).

    CAS  PubMed  Google Scholar 

  80. Nelson, D. W., Gao, Y., Yen, M. I. & Yen, C. L. Intestine-specific deletion of acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance. J. Biol. Chem. 289, 17338–17349 (2014).

    CAS  PubMed  Google Scholar 

  81. Gao, Y., Nelson, D. W., Banh, T., Yen, M. I. & Yen, C. L. E. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J. Lipid Res. 54, 1644–1652 (2013).

    CAS  PubMed  Google Scholar 

  82. Hall, A. M. et al. Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J. Lipid Res. 53, 990–999 (2012).

    CAS  PubMed  Google Scholar 

  83. Cao, J., Cheng, L. & Shi, Y. Catalytic properties of MGAT3, a putative triacylgycerol synthase. J. Lipid Res. 48, 583–591 (2007).

    CAS  PubMed  Google Scholar 

  84. Brandt, C., McFie, P. J. & Stone, S. J. Biochemical characterization of human acyl coenzyme A: 2-monoacylglycerol acyltransferase-3 (MGAT3). Biochem. Biophys. Res. Commun. 475, 264–270 (2016).

    CAS  PubMed  Google Scholar 

  85. Smith, S. J. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25, 87–90 (2000).

    CAS  PubMed  Google Scholar 

  86. Chen, H. C., Ladha, Z., Smith, S. J. & Farese, R. V. Jr Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am. J. Physiol. Endocrinol. Metab. 284, E213–E218 (2003).

    CAS  PubMed  Google Scholar 

  87. Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279, 11767–11776 (2004).

    CAS  PubMed  Google Scholar 

  88. van Rijn, J. M. et al. Intestinal failure and aberrant lipid metabolism in patients with DGAT1 deficiency. Gastroenterology 155, 130–143.e15 (2018).

    PubMed  Google Scholar 

  89. Haas, J. T. et al. DGAT1 mutation is linked to a congenital diarrheal disorder. J. Clin. Invest. 122, 4680–4684 (2012).

    CAS  PubMed  Google Scholar 

  90. Dawson, P. A. & Rudel, L. L. Intestinal cholesterol absorption. Curr. Opin. Lipidol. 10, 315–320 (1999).

    CAS  PubMed  Google Scholar 

  91. Nguyen, T. M., Sawyer, J. K., Kelley, K. L., Davis, M. A. & Rudel, L. L. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation. J. Lipid Res. 53, 95–104 (2012).

    CAS  PubMed  Google Scholar 

  92. Lee, O., Chang, C. C., Lee, W. & Chang, T. Y. Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J. Lipid Res. 39, 1722–1727 (1998).

    CAS  PubMed  Google Scholar 

  93. Meiner, V. et al. Tissue expression studies on the mouse acyl-CoA: cholesterol acyltransferase gene (Acact): findings supporting the existence of multiple cholesterol esterification enzymes in mice. J. Lipid Res. 38, 1928–1933 (1997).

    CAS  PubMed  Google Scholar 

  94. Anderson, R. A. et al. Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem. 273, 26747–26754 (1998).

    CAS  PubMed  Google Scholar 

  95. Cases, S. et al. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J. Biol. Chem. 273, 26755–26764 (1998).

    CAS  PubMed  Google Scholar 

  96. Buhman, K. K. et al. Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat. Med. 6, 1341–1347 (2000).

    CAS  PubMed  Google Scholar 

  97. Repa, J. J., Buhman, K. K., Farese, R. V. Jr., Dietschy, J. M. & Turley, S. D. ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology 40, 1088–1097 (2004).

    CAS  PubMed  Google Scholar 

  98. Meiner, V. L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl Acad. Sci. USA 93, 14041–14046 (1996).

    CAS  PubMed  Google Scholar 

  99. O’Doherty, P. J., Kakis, G. & Kuksis, A. Role of luminal lecithin in intestinal fat absorption. Lipids 8, 249–255 (1973).

    PubMed  Google Scholar 

  100. Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. eLife 4, e06557 (2015).

    PubMed Central  Google Scholar 

  101. Li, Z. et al. Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 149, 1519–1529 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kabir, I. et al. Small intestine but not liver lysophosphatidylcholine acyltransferase 3 (Lpcat3) deficiency has a dominant effect on plasma lipid metabolism. J. Biol. Chem. 291, 7651–7660 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Demignot, S., Beilstein, F. & Morel, E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie 96, 48–55 (2014).

    CAS  PubMed  Google Scholar 

  104. Sabesin, S. M. & Frase, S. Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J. Lipid Res. 18, 496–511 (1977).

    CAS  PubMed  Google Scholar 

  105. de Wit, N. J. et al. The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med. Genomics 1, 14 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Kondo, H. et al. Differential regulation of intestinal lipid metabolism-related genes in obesity-resistant A/J vs. obesity-prone C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 291, E1092–E1099 (2006).

    CAS  PubMed  Google Scholar 

  107. Hayashi, H. et al. Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am. J. Physiol. 259, G709–G719 (1990).

    CAS  PubMed  Google Scholar 

  108. Morel, E. et al. Lipid-dependent bidirectional traffic of apolipoprotein B in polarized enterocytes. Mol. Biol. Cell 15, 132–141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Atzel, A. & Wetterau, J. R. Identification of two classes of lipid molecule binding sites on the microsomal triglyceride transfer protein. Biochemistry 33, 15382–15388 (1994).

    CAS  PubMed  Google Scholar 

  110. Gordon, D. A., Jamil, H., Gregg, R. E., Olofsson, S. O. & Boren, J. Inhibition of the microsomal triglyceride transfer protein blocks the first step of apolipoprotein B lipoprotein assembly but not the addition of bulk core lipids in the second step. J. Biol. Chem. 271, 33047–33053 (1996).

    CAS  PubMed  Google Scholar 

  111. Atzel, A. & Wetterau, J. R. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry 32, 10444–10450 (1993).

    CAS  PubMed  Google Scholar 

  112. Hussain, M. M., Bakillah, A., Nayak, N. & Shelness, G. S. Amino acids 430-570 in apolipoprotein B are critical for its binding to microsomal triglyceride transfer protein. J. Biol. Chem. 273, 25612–25615 (1998).

    CAS  PubMed  Google Scholar 

  113. Jiang, Z. G., Liu, Y., Hussain, M. M., Atkinson, D. & McKnight, C. J. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J. Mol. Biol. 383, 1181–1194 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie, Y. et al. Compensatory increase in hepatic lipogenesis in mice with conditional intestine-specific Mttp deficiency. J. Biol. Chem. 281, 4075–4086 (2006).

    CAS  PubMed  Google Scholar 

  115. Wetterau, J. R. et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258, 999–1001 (1992).

    CAS  PubMed  Google Scholar 

  116. Ricci, B. et al. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J. Biol. Chem. 270, 14281–14285 (1995).

    CAS  PubMed  Google Scholar 

  117. Muller, D. P. Vitamin E and neurological function. Mol. Nutr. Food Res. 54, 710–718 (2010).

    CAS  PubMed  Google Scholar 

  118. Runge, P. et al. Oral vitamin E supplements can prevent the retinopathy of abetalipoproteinaemia. Br. J. Ophthalmol. 70, 166–173 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Muller, D. P., Lloyd, J. K. & Bird, A. C. Long-term management of abetalipoproteinaemia. Possible role for vitamin E. Arch. Dis. Child. 52, 209–214 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hooper, A. J. et al. Postprandial lipoprotein metabolism in familial hypobetalipoproteinemia. J. Clin. Endocrinol. Metab. 92, 1474–1478 (2007).

    CAS  PubMed  Google Scholar 

  121. Schonfeld, G., Lin, X. & Yue, P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol. Life Sci. 62, 1372–1378 (2005).

    CAS  PubMed  Google Scholar 

  122. Lehner, R., Lian, J. & Quiroga, A. D. Lumenal lipid metabolism: implications for lipoprotein assembly. Arterioscler. Thromb. Vasc. Biol. 32, 1087–1093 (2012).

    CAS  PubMed  Google Scholar 

  123. Yang, L. Y. & Kuksis, A. Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols. J. Lipid Res. 32, 1173–1186 (1991).

    CAS  PubMed  Google Scholar 

  124. Halpern, J., Tso, P. & Mansbach, C. M. 2nd Mechanism of lipid mobilization by the small intestine after transport blockade. J. Clin. Invest. 82, 74–81 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Nutting, D. F., Kumar, N. S., St Hilaire, R. J. & Mansbach, C. M. 2nd Nutrient absorption. Curr. Opin. Clin. Nutr. Metab. Care 2, 413–419 (1999).

    CAS  PubMed  Google Scholar 

  126. Lu, S. et al. Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by increasing chylomicron size. J. Biol. Chem. 281, 3473–3483 (2006).

    CAS  PubMed  Google Scholar 

  127. Kohan, A. B. et al. Apolipoprotein A-IV regulates chylomicron metabolism-mechanism and function. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G628–G636 (2012).

    CAS  PubMed  Google Scholar 

  128. Kohan, A. B. et al. Is apolipoprotein A-IV rate limiting in the intestinal transport and absorption of triglyceride? Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1128–G1135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Black, D. D. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G519–524 (2007).

    CAS  PubMed  Google Scholar 

  130. Ostos, M. A. et al. Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 1023–1028 (2001).

    CAS  PubMed  Google Scholar 

  131. Qin, X., Swertfeger, D. K., Zheng, S., Hui, D. Y. & Tso,P. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am. J. Physiol. 274, H1836–H1840 (1998).

    CAS  PubMed  Google Scholar 

  132. Vowinkel, T. et al. Apolipoprotein A-IV inhibits experimental colitis. J. Clin. Invest. 114, 260–269 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fujimoto, K., Cardelli, J. A. & Tso, P. Increased apolipoprotein A-IV in rat mesenteric lymph after lipid meal acts as a physiological signal for satiation. Am. J. Physiol. 262, G1002–G1006 (1992).

    CAS  PubMed  Google Scholar 

  134. Fujimoto, K., Fukagawa, K., Sakata, T. & Tso, P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats. J. Clin. Invest. 91, 1830–1833 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lo, C. C. et al. Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 153, 5857–5865 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, X., Wang, F., Xu, M., Howles, P. & Tso, P. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt signaling. Sci. Rep. 7, 41289 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, F. et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc. Natl Acad. Sci. USA 109, 9641–9646 (2012).

    CAS  PubMed  Google Scholar 

  138. Li, X. et al. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J. Biol. Chem. 289, 2396–2404 (2014).

    CAS  PubMed  Google Scholar 

  139. Xu, X. R. et al. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat. Commun. 9, 3608 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Wong, W. M. et al. Apolipoprotein AIV gene variant S347 is associated with increased risk of coronary heart disease and lower plasma apolipoprotein AIV levels. Circ. Res. 92, 969–975 (2003).

    CAS  PubMed  Google Scholar 

  141. Kronenberg, F. et al. Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease. J. Am. Coll. Cardiol. 36, 751–757 (2000).

    CAS  PubMed  Google Scholar 

  142. Rao, R. et al. Circulating apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 13, 468–473 (2017).

    PubMed  Google Scholar 

  143. Mansbach, C. M. 2nd & Nevin, P. Intracellular movement of triacylglycerols in the intestine. J. Lipid Res. 39, 963–968 (1998).

    CAS  PubMed  Google Scholar 

  144. Siddiqi, S. et al. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J. Lipid Res. 51, 1918–1928 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Siddiqi, S. A., Mahan, J., Siddiqi, S., Gorelick, F. S. & Mansbach, C. M. 2nd. Vesicle-associated membrane protein 7 is expressed in intestinal ER. J. Cell Sci. 119, 943–950 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Sane, A. T. et al. Understanding chylomicron retention disease through Sar1b Gtpase gene disruption: insight from cell culture. Arterioscler. Thromb. Vasc. Biol. 37, 2243–2251 (2017).

    CAS  PubMed  Google Scholar 

  147. Charcosset, M. et al. Anderson or chylomicron retention disease: molecular impact of five mutations in the SAR1B gene on the structure and the functionality of Sar1b protein. Mol. Genet. Metab. 93, 74–84 (2008).

    CAS  PubMed  Google Scholar 

  148. Siddiqi, S., Siddiqi, S. A. & Mansbach, C. M. 2nd. Sec24C is required for docking the prechylomicron transport vesicle with the Golgi. J. Lipid Res. 51, 1093–1100 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Siddiqi, S. A. et al. The identification of a novel endoplasmic reticulum to Golgi SNARE complex used by the prechylomicron transport vesicle. J. Biol. Chem. 281, 20974–20982 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Katz, L., Hanson, P. I., Heuser, J. E. & Brennwald, P. Genetic and morphological analyses reveal a critical interaction between the C-termini of two SNARE proteins and a parallel four helical arrangement for the exocytic SNARE complex. EMBO J. 17, 6200–6209 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Siddiqi, S. A., Gorelick, F. S., Mahan, J. T. & Mansbach, C. M. 2nd. COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J. Cell Sci. 116, 415–427 (2003).

    CAS  PubMed  Google Scholar 

  152. Berriot-Varoqueaux, N. et al. Apolipoprotein B48 glycosylation in abetalipoproteinemia and Anderson’s disease. Gastroenterology 121, 1101–1108 (2001).

    CAS  PubMed  Google Scholar 

  153. Levy, E., Poinsot, P. & Spahis, S. Chylomicron retention disease: genetics, biochemistry, and clinical spectrum. Curr. Opin. Lipidol. 30, 134–139 (2019).

    CAS  PubMed  Google Scholar 

  154. Tso, P., Balint, J. A. & Rodgers, J. B. Effect of hydrophobic surfactant (Pluronic L-81) on lymphatic lipid transport in the rat. Am. J. Physiol. 239, G348–G353 (1980).

    CAS  PubMed  Google Scholar 

  155. Kvietys, P. R., Specian, R. D., Grisham, M. B. & Tso, P. Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. Am. J. Physiol. 261, G384–G391 (1991).

    CAS  PubMed  Google Scholar 

  156. Jattan, J. et al. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine. J. Lipid Res. 58, 853–865 (2017).

    CAS  PubMed  Google Scholar 

  157. Wang, F. et al. Overexpression of apolipoprotein C-III decreases secretion of dietary triglyceride into lymph. Physiol. Rep. 2, e00247 (2014).

    PubMed  Google Scholar 

  158. Windler, E., Chao, Y. & Havel, R. J. Determinants of hepatic uptake of triglyceride-rich lipoproteins and their remnants in the rat. J. Biol. Chem. 255, 5475–5480 (1980).

    CAS  PubMed  Google Scholar 

  159. Tso, P. & Gollamudi, S. R. Pluronic L-81: a potent inhibitor of the transport of intestinal chylomicrons. Am. J. Physiol. 247, G32–G36 (1984).

    CAS  PubMed  Google Scholar 

  160. Ockner, R. K., Hughes, F. B. & Isselbacher, K. J. Very low density lipoproteins in intestinal lymph: role in triglyceride and cholesterol transport during fat absorption. J. Clin. Invest. 48, 2367–2373 (1969).

    CAS  PubMed  Google Scholar 

  161. Mahley, R. W. et al. Lipoproteins associated with the Golgi apparatus isolated from epithelial cells of rat small intestine. Lab. Invest. 25, 435–444 (1971).

    CAS  PubMed  Google Scholar 

  162. Nutting, D., Hall, J., Barrowman, J. A. & Tso, P. Further studies on the mechanism of inhibition of intestinal chylomicron transport by Pluronic L-81. Biochim. Biophys. Acta 1004, 357–362 (1989).

    CAS  PubMed  Google Scholar 

  163. Glickman, R. M. & Green, P. H. The intestine as a source of apolipoprotein A1. Proc. Natl Acad. Sci. USA 74, 2569–2573 (1977).

    CAS  PubMed  Google Scholar 

  164. Jonas, A. Lecithin cholesterol acyltransferase. Biochim. Biophys. Acta 1529, 245–256 (2000).

    CAS  PubMed  Google Scholar 

  165. Connelly, M. A. & Williams, D. L. SR-BI and HDL cholesteryl ester metabolism. Endocr. Res. 30, 697–703 (2004).

    CAS  PubMed  Google Scholar 

  166. Brunham, L. R. et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J. Clin. Invest. 116, 1052–1062 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Repa, J. J. et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science 289, 1524–1529 (2000).

    CAS  PubMed  Google Scholar 

  168. Iqbal, J., Boutjdir, M., Rudel, L. L. & Hussain, M. M. Intestine-specific MTP and global ACAT2 deficiency lowers acute cholesterol absorption with chylomicrons and HDLs. J. Lipid Res. 55, 2261–2275 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Rashid, S., Watanabe, T., Sakaue, T. & Lewis, G. F. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin. Biochem. 36, 421–429 (2003).

    CAS  PubMed  Google Scholar 

  170. Patsch, J. R., Gotto, A. M. Jr., Olivercrona, T. & Eisenberg, S. Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc. Natl Acad. Sci. USA 75, 4519–4523 (1978).

    CAS  PubMed  Google Scholar 

  171. Iqbal, J., Parks, J. S. & Hussain, M. M. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice. J. Biol. Chem. 288, 30432–30444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhu, J., Lee, B., Buhman, K. K. & Cheng, J. X. A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-stokes Raman scattering imaging. J. Lipid Res. 50, 1080–1089 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Kassan, A. et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J. Cell Biol. 203, 985–1001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Wilfling, F., Haas, J. T., Walther, T. C. & Farese, R. V. Jr. Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hung, Y. H., Carreiro, A. L. & Buhman, K. K. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 600–614 (2017).

    CAS  PubMed  Google Scholar 

  176. D’Aquila, T. et al. Characterization of the proteome of cytoplasmic lipid droplets in mouse enterocytes after a dietary fat challenge. PLOS ONE 10, e0126823 (2015).

    PubMed  Google Scholar 

  177. Lee, B., Zhu, J., Wolins, N. E., Cheng, J. X. & Buhman, K. K. Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. Biochim. Biophys. Acta 1791, 1173–1180 (2009).

    CAS  PubMed  Google Scholar 

  178. Itabe, H., Yamaguchi, T., Nimura, S. & Sasabe, N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis. 16, 83 (2017).

    PubMed  Google Scholar 

  179. Bouchoux, J. et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol. Cell 103, 499–517 (2011).

    CAS  PubMed  Google Scholar 

  180. Frank, D. N. et al. Perilipin-2 modulates lipid absorption and microbiome responses in the mouse intestine. PLOS ONE 10, e0131944 (2015).

    PubMed  Google Scholar 

  181. Beilstein, F., Carriere, V., Leturque, A. & Demignot, S. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp. Cell Res. 340, 172–179 (2016).

    CAS  PubMed  Google Scholar 

  182. Obrowsky, S. et al. Adipose triglyceride lipase is a TG hydrolase of the small intestine and regulates intestinal PPARα signaling. J. Lipid Res. 54, 425–435 (2013).

    CAS  PubMed  Google Scholar 

  183. Khaldoun, S. A. et al. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol. Biol. Cell 25, 118–132 (2014).

    PubMed  Google Scholar 

  184. Du, H. et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J. Lipid Res. 42, 489–500 (2001).

    CAS  PubMed  Google Scholar 

  185. Porto, A. F. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and cholesteryl ester storage diseases. Pediatr. Endocrinol. Rev. 12 (Suppl. 1), 125–132 (2014).

    PubMed  Google Scholar 

  186. Soayfane, Z. et al. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr. Metab. 13, 48 (2016).

    Google Scholar 

  187. Accioly, M. T. et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68, 1732–1740 (2008).

    CAS  PubMed  Google Scholar 

  188. Moreira, L. S. et al. Cytosolic phospholipase A2-driven PGE2 synthesis within unsaturated fatty acids-induced lipid bodies of epithelial cells. Biochim. Biophys. Acta 1791, 156–165 (2009).

    CAS  PubMed  Google Scholar 

  189. Storch, J., Zhou, Y. X. & Lagakos, W. S. Metabolism of apical versus basolateral sn-2-monoacylglycerol and fatty acids in rodent small intestine. J. Lipid Res. 49, 1762–1769 (2008).

    CAS  PubMed  Google Scholar 

  190. Mansbach, C. M. 2nd & Dowell, R. F. Uptake and metabolism of circulating fatty acids by rat intestine. Am. J. Physiol. 263, G927–G933 (1992).

    CAS  PubMed  Google Scholar 

  191. Lagakos, W. S. et al. Different functions of intestinal and liver-type fatty acid-binding proteins in intestine and in whole body energy homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814 (2011).

    CAS  PubMed  Google Scholar 

  192. Thomson, A. B., Keelan, M., Clandinin, M. T. & Walker, K. Dietary fat selectively alters transport properties of rat jejunum. J. Clin. Invest. 77, 279–288 (1986).

    CAS  PubMed  Google Scholar 

  193. Sukhotnik, I. et al. Effect of a high fat diet on lipid absorption and fatty acid transport in a rat model of short bowel syndrome. Pediatr. Surg. Int. 19, 385–390 (2003).

    PubMed  Google Scholar 

  194. Uchida, A., Slipchenko, M. N., Cheng, J. X. & Buhman, K. K. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, alters triglyceride metabolism in enterocytes of mice. Biochim. Biophys. Acta 1811, 170–176 (2011).

    CAS  PubMed  Google Scholar 

  195. Berger, J. & Wagner, J. A. Physiological and therapeutic roles of peroxisome proliferator-activated receptors. Diabetes Technol. Ther. 4, 163–174 (2002).

    CAS  PubMed  Google Scholar 

  196. Mochizuki, K., Suruga, K., Kitagawa, M., Takase, S. & Goda, T. Modulation of the expression of peroxisome proliferator-activated receptor-dependent genes through disproportional expression of two subtypes in the small intestine. Arch. Biochem. Biophys. 389, 41–48 (2001).

    CAS  PubMed  Google Scholar 

  197. Karimian Azari, E., Leitner, C., Jaggi, T., Langhans, W. & Mansouri, A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLOS ONE 8, e74869 (2013).

    PubMed  PubMed Central  Google Scholar 

  198. Hooper, L. V. & Gordon, J. I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    CAS  PubMed  Google Scholar 

  199. El Aidy, S. et al. The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut 62, 1306–1314 (2013).

    CAS  PubMed  Google Scholar 

  200. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  201. Backhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    CAS  PubMed  Google Scholar 

  202. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    CAS  PubMed  Google Scholar 

  203. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sato, H. et al. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in sprague-dawley rats. Gastroenterology 151, 923–932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Ji, Y. et al. Activation of rat intestinal mucosal mast cells by fat absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1292–G1300 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Scudamore, C. L., Jepson, M. A., Hirst, B. H. & Miller, H. R. The rat mucosal mast cell chymase, RMCP-II, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. Eur. J. Cell Biol. 75, 321–330 (1998).

    CAS  PubMed  Google Scholar 

  207. Heck, A. M., Yanovski, J. A. & Calis, K. A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 20, 270–279 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hofmann, A. F. & Poley, J. R. Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62, 918–934 (1972).

    CAS  PubMed  Google Scholar 

  209. Parkinson, T. M., Gundersen, K. & Nelson, N. A. Effects of colestipol (U-26,597A), a new bile acid sequestrant, on serum lipids in experimental animals and man. Atherosclerosis 11, 531–537 (1970).

    CAS  PubMed  Google Scholar 

  210. Bilheimer, D. W., Grundy, S. M., Brown, M. S. & Goldstein, J. L. Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc. Natl Acad. Sci. USA 80, 4124–4128 (1983).

    CAS  PubMed  Google Scholar 

  211. Davidson, M. H. et al. Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects. Arch. Intern. Med. 159, 1893–1900 (1999).

    CAS  PubMed  Google Scholar 

  212. Okuma, C. et al. JTP-103237, a novel monoacylglycerol acyltransferase inhibitor, modulates fat absorption and prevents diet-induced obesity. Eur. J. Pharmacol. 758, 72–81 (2015).

    CAS  PubMed  Google Scholar 

  213. Dow, R. L. et al. Discovery of PF-04620110, a potent, selective, and orally bioavailable inhibitor of DGAT-1. ACS Med. Chem. Lett. 2, 407–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Dow, R. L. et al. Defining the key pharmacophore elements of PF-04620110: discovery of a potent, orally-active, neutral DGAT-1 inhibitor. Bioorg. Med. Chem. 21, 5081–5097 (2013).

    CAS  PubMed  Google Scholar 

  215. Rizzo, M. Lomitapide, a microsomal triglyceride transfer protein inhibitor for the treatment of hypercholesterolemia. IDrugs 13, 103–111 (2010).

    CAS  PubMed  Google Scholar 

  216. Aggarwal, D. et al. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc. Disord. 5, 30 (2005).

    PubMed  PubMed Central  Google Scholar 

  217. Hata, T. et al. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner. J. Pharmacol. Exp. Ther. 336, 850–856 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of National Institutes of Health Grants DK 103557, DK 119135, and DK 59630 (P.T.) and HD22551 (D.D.B.). The editorial assistance of A. Preston is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

C.-W.K. and D.D.B. researched data for the article. All authors contributed equally to discussion of content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Patrick Tso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks G. Lewis, M.M. Hussain and the other, anonymous, reviewer for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, CW., Qu, J., Black, D.D. et al. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 17, 169–183 (2020). https://doi.org/10.1038/s41575-019-0250-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0250-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing