Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of short-chain fatty acids in microbiota–gut–brain communication

Abstract

Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota–gut–brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota–gut–brain interactions. The effects of SCFAs on cellular systems and their interaction with gut–brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.

Key points

  • Short-chain fatty acids (SCFAs) are speculated to have a mediational role in the microbiota–gut–brain axis crosstalk.

  • SCFAs might influence psychological functioning via interactions with G protein-coupled receptors or histone deacetylases and exert their effects on the brain via direct humoral effects, indirect hormonal and immune pathways and neural routes.

  • Dietary intervention studies indirectly implicate a mediational role for SCFAs in cognition and emotion.

  • Animal studies provide direct evidence of the effects of SCFAs on neuropsychiatric disorders and psychological functioning, whereas human studies are sparse, suffer from methodological limitations and offer inconsistent conclusions.

  • SCFAs should be quantified in the systemic circulation in dietary intervention studies, in which the effects on psychological functioning and psychopathology are an outcome of interest.

  • SCFAs could ultimately be used as interventional substances to target microbiota–gut–brain interactions in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolism of SCFAs from dietary fibre to systemic circulation.
Fig. 2: SCFA cellular signalling pathways.
Fig. 3: Potential gut–brain pathways through which SCFAs might modulate brain function.

Similar content being viewed by others

References

  1. Mayer, E. A. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    CAS  PubMed  Google Scholar 

  2. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  3. De Palma, G., Collins, S. M., Bercik, P. & Verdu, E. F. The microbiota-gut-brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J. Physiol. 592, 2989–2997 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Kleiman, S. C. et al. The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 77, 969–981 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Kang, D. W. et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLOS ONE 8, e68322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, H. et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 48, 186–194 (2015).

    PubMed  Google Scholar 

  7. Liu, X., Cao, S. & Zhang, X. Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. J. Agr. Food. Chem. 63, 7885–7895 (2015).

    CAS  Google Scholar 

  8. Stilling, R. M. et al. The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 99, 110–132 (2016).

    CAS  PubMed  Google Scholar 

  9. Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62, 1589–1592 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    CAS  PubMed  Google Scholar 

  12. Macfarlane, S. & Macfarlane, G. T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62, 67–72 (2003).

    CAS  PubMed  Google Scholar 

  13. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stumpff, F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch. 470, 571–598 (2018).

    CAS  PubMed  Google Scholar 

  15. Schonfeld, P. & Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res. 57, 943–954 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Bloemen, J. G. et al. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 28, 657–661 (2009).

    CAS  PubMed  Google Scholar 

  17. Boets, E. et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J. Physiol. 595, 541–555 (2017).

    CAS  PubMed  Google Scholar 

  18. Hellman, L., Rosenfeld, R. S. & Gallagher, T. F. Cholesterol synthesis from C14-acetate in man. J. Clin. Invest. 33, 142–149 (1954).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellerstein, M. K. et al. Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87, 1841–1852 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiltrout, D. W. & Satter, L. D. Contribution of propionate to glucose synthesis in the lactating and nonlactating cow. J. Dairy Sci. 55, 307–317 (1972).

    CAS  PubMed  Google Scholar 

  21. Boets, E. et al. Quantification of in vivo colonic short chain fatty acid production from inulin. Nutrients 7, 8916–8929 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Layden, B. T., Angueira, A. R., Brodsky, M., Durai, V. & Lowe, W. L. Jr. Short chain fatty acids and their receptors: new metabolic targets. Transl Res. 161, 131–140 (2013).

    CAS  PubMed  Google Scholar 

  23. Yamashita, H., Kaneyuki, T. & Tagawa, K. Production of acetate in the liver and its utilization in peripheral tissues. Biochim. Biophys. Acta 1532, 79–87 (2001).

    CAS  PubMed  Google Scholar 

  24. Bell-Parikh, L. C. & Guengerich, F. P. Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J. Biol. Chem. 274, 23833–23840 (1999).

    CAS  PubMed  Google Scholar 

  25. Bugaut, M. Occurrence, absorption and metabolism of short chain fatty acids in the digestive tract of mammals. Comp. Biochem. Physiol. B 86, 439–472 (1987).

    CAS  PubMed  Google Scholar 

  26. Mitchell, R. W., On, N. H., Del Bigio, M. R., Miller, D. W. & Hatch, G. M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 117, 735–746 (2011).

    CAS  PubMed  Google Scholar 

  27. Vijay, N. & Morris, M. E. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des. 20, 1487–1498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kekuda, R., Manoharan, P., Baseler, W. & Sundaram, U. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Digest. Dis. Sci. 58, 660–667 (2013).

    CAS  PubMed  Google Scholar 

  29. Oldendorf, W. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224, 1450–1453 (1973).

    CAS  PubMed  Google Scholar 

  30. Bachmann, C., Colombo, J.-P. & Berüter, J. Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography. Clin. Chim. Acta 92, 153–159 (1979).

    CAS  PubMed  Google Scholar 

  31. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, S. W. et al. Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl. Med. Biol. 40, 912–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Song, W. S., Nielson, B. R., Banks, K. P. & Bradley, Y. C. Normal organ standard uptake values in carbon-11 acetate PET imaging. Nucl. Med. Commun. 30, 462–465 (2009).

    PubMed  Google Scholar 

  34. Seltzer, M. A. et al. Radiation dose estimates in humans for (11)C-acetate whole-body PET. J. Nucl. Med. 45, 1233–1236 (2004).

    CAS  PubMed  Google Scholar 

  35. Lewis, K. et al. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel. Dis. 16, 1138–1148 (2010).

    PubMed  Google Scholar 

  36. Peng, L., Li, Z. R., Green, R. S., Holzman, I. R. & Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139, 1619–1625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Daly, K. & Shirazi-Beechey, P. S. P. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell. Biol. 25, 49–62 (2006).

    CAS  PubMed  Google Scholar 

  38. Allen, A. & Flemstrom, G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell. Physiol. 288, C1–C19 (2005).

    CAS  PubMed  Google Scholar 

  39. Pelaseyed, T. et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 260, 8–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Barcelo, A. et al. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46, 218–224 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaudier, E., Rival, M., Buisine, M. P., Robineau, I. & Hoebler, C. Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiol. Res. 58, 111–119 (2009).

    CAS  PubMed  Google Scholar 

  42. Scheppach, W. et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51–56 (1992).

    CAS  PubMed  Google Scholar 

  43. Cherbut, C. et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am. J. Physiol. 275, G1415–G1422 (1998).

    CAS  PubMed  Google Scholar 

  44. Dass, N. B. et al. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol. Motil. 19, 66–74 (2007).

    CAS  PubMed  Google Scholar 

  45. Fukumoto, S. et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1269–R1276 (2003).

    CAS  PubMed  Google Scholar 

  46. Ropert, A. et al. Colonic fermentation and proximal gastric tone in humans. Gastroenterology 111, 289–296 (1996).

    CAS  PubMed  Google Scholar 

  47. Jouet, P. et al. Effect of short-chain fatty acids and acidification on the phasic and tonic motor activity of the human colon. Neurogastroenterol. Motil. 25, 943–949 (2013).

    CAS  PubMed  Google Scholar 

  48. Greer, J. B. & O’Keefe, S. J. Microbial induction of immunity, inflammation, and cancer. Front. Physiol. 1, 168 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Encarnação, J. C., Abrantes, A. M., Pires, A. S. & Botelho, M. F. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 34, 465–478 (2015).

    PubMed  Google Scholar 

  50. O’Keefe, S. J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    CAS  PubMed  Google Scholar 

  52. Karaki, S.-i et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353–360 (2006).

    CAS  PubMed  Google Scholar 

  53. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  55. Nohr, M. K. et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290, 126–137 (2015).

    CAS  PubMed  Google Scholar 

  56. Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    PubMed  Google Scholar 

  57. Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ahmed, K., Tunaru, S. & Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends. Pharmacol. Sci. 30, 557–562 (2009).

    CAS  PubMed  Google Scholar 

  59. Bonini, J. A., Anderson, S. M. & Steiner, D. F. Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung. Biochem. Biophys. Res. Commun. 234, 190–193 (1997).

    CAS  PubMed  Google Scholar 

  60. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    CAS  PubMed  Google Scholar 

  61. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  62. Marks, P. A., Richon, V. M., Miller, T. & Kelly, W. K. Histone deacetylase inhibitors. Adv. Cancer Res. 91, 137–168 (2004).

    CAS  PubMed  Google Scholar 

  63. Waldecker, M., Kautenburger, T., Daumann, H., Busch, C. & Schrenk, D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587–593 (2008).

    CAS  PubMed  Google Scholar 

  64. Soliman, M. L. & Rosenberger, T. A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem. 352, 173–180 (2011).

    CAS  PubMed  Google Scholar 

  65. Volmar, C.-H. & Wahlestedt, C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1, 20–27 (2015).

    Google Scholar 

  66. Whittle, N. & Singewald, N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem. Soc. Trans. 42, 569–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schroeder, F. A., Lin, C. L., Crusio, W. E. & Akbarian, S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 (2007).

    CAS  PubMed  Google Scholar 

  68. Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178–182 (2007).

    CAS  PubMed  Google Scholar 

  69. Stafford, J. M., Raybuck, J. D., Ryabinin, A. E. & Lattal, K. M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry 72, 25–33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cousens, L. S., Gallwitz, D. & Alberts, B. M. Different accessibilities in chromatin to histone acetylase. J. Biol. Chem. 254, 1716–1723 (1979).

    CAS  PubMed  Google Scholar 

  71. Soliman, M. L., Smith, M. D., Houdek, H. M. & Rosenberger, T. A. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J. Neuroinflamm. 9, 51 (2012).

    CAS  Google Scholar 

  72. Kratsman, N., Getselter, D. & Elliott, E. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102, 136–145 (2016).

    CAS  PubMed  Google Scholar 

  73. Gagliano, H., Delgado-Morales, R., Sanz-Garcia, A. & Armario, A. High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology 79, 75–82 (2014).

    CAS  PubMed  Google Scholar 

  74. Nishitsuji, K. et al. Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome. Sci. Rep. 7, 15876 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Val-Laillet, D. et al. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J. 32, 2160–2171 (2018).

    CAS  PubMed  Google Scholar 

  76. Carrer, A. et al. Impact of a high-fat diet on tissue Acyl-CoA and histone acetylation levels. J. Biol. Chem. 292, 3312–3322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Krautkramer, K. A. et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell. 64, 982–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell. 58, 203–215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fellows, R. et al. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105 (2018).

    PubMed  PubMed Central  Google Scholar 

  80. Miller, A. H. & Raison, C. L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 16, 22–34 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Segerstrom, S. C. & Miller, G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601 (2004).

    PubMed  PubMed Central  Google Scholar 

  82. Capuron, L. & Miller, A. H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130, 226–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Frick, L. R., Williams, K. & Pittenger, C. Microglial dysregulation in psychiatric disease. Clin. Dev. Immunol. 2013, 608654 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. Correa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T. & Vinolo, M. A. Regulation of immune cell function by short-chain fatty acids. Clin. Transl Immunol. 5, e73 (2016).

    Google Scholar 

  85. Rodrigues, H. G., Takeo Sato, F., Curi, R. & Vinolo, M. A. R. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur. J. Pharmacol. 785, 50–58 (2016).

    CAS  PubMed  Google Scholar 

  86. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS  PubMed  Google Scholar 

  87. Kim, C. H., Park, J. & Kim, M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 14, 277–288 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gurav, A. et al. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem. J. 469, 267–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446 (2013).

    CAS  PubMed  Google Scholar 

  91. Chen, S. et al. Effect of inhibiting the signal of mammalian target of rapamycin on memory T cells. Transplant. Proc. 46, 1642–1648 (2014).

    CAS  PubMed  Google Scholar 

  92. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8, 80–93 (2015).

    CAS  PubMed  Google Scholar 

  94. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ang, Z. et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci. Rep. 6, 34145 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Möhle, L. et al. Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956 (2016).

    PubMed  Google Scholar 

  97. McLoughlin, R. F., Berthon, B. S., Jensen, M. E., Baines, K. J. & Wood, L. G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am. J. Clin. Nutr. 106, 930–945 (2017).

    CAS  PubMed  Google Scholar 

  98. Freeland, K. R. & Wolever, T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 103, 460–466 (2010).

    CAS  PubMed  Google Scholar 

  99. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Hamer, H. M. et al. Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin. Nutr. 28, 88–93 (2009).

    CAS  PubMed  Google Scholar 

  101. Hamer, H. M. et al. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 29, 738–744 (2010).

    CAS  PubMed  Google Scholar 

  102. van der Beek, C. M. et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130, 2073–2082 (2016).

    PubMed  Google Scholar 

  103. Lecerf, J. M. et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 108, 1847–1858 (2012).

    CAS  PubMed  Google Scholar 

  104. Clarke, S. T. et al. beta2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults. Br. J. Nutr. 115, 1748–1759 (2016).

    CAS  PubMed  Google Scholar 

  105. Queenan, K. M. et al. Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 6, 6 (2007).

    PubMed  PubMed Central  Google Scholar 

  106. Stewart, M. L., Nikhanj, S. D., Timm, D. A., Thomas, W. & Slavin, J. L. Evaluation of the effect of four fibers on laxation, gastrointestinal tolerance and serum markers in healthy humans. Ann. Nutr. Metab. 56, 91–98 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Macfarlane, S., Cleary, S., Bahrami, B., Reynolds, N. & Macfarlane, G. T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, double-blind, placebo-controlled crossover study. Aliment. Pharmacol. Ther. 38, 804–816 (2013).

    CAS  PubMed  Google Scholar 

  108. Varatharaj, A. & Galea, I. The blood-brain barrier in systemic inflammation. Brain. Behav. Immun. 60, 1–12 (2017).

    CAS  PubMed  Google Scholar 

  109. Hoogland, I. C. M., Houbolt, C., van Westerloo, D. J., van Gool, W. A. & van de Beek, D. Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflamm. 12, 114 (2015).

    Google Scholar 

  110. Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S. & Salminen, A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br. J. Pharmacol. 141, 874–880 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Savignac, H. M. et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice. Brain. Behav. Immun. 52, 120–131 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Neyrinck, A. M. et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90, 1236–1243 (2009).

    PubMed  Google Scholar 

  114. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).

    CAS  Google Scholar 

  116. Larraufie, P. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8, 74 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sam, A. H., Troke, R. C., Tan, T. M. & Bewick, G. A. The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46–56 (2012).

    CAS  PubMed  Google Scholar 

  118. Trapp, S. & Richards, J. E. The gut hormone glucagon-like peptide-1 produced in brain: is this physiologically relevant? Curr. Opin. Pharmacol. 13, 964–969 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Katsurada, K. & Yada, T. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist. J. Diabetes Investig. 7 (Suppl. 1), 64–69 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Alvarez, E. et al. The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. J. Neurochem. 92, 798–806 (2005).

    CAS  PubMed  Google Scholar 

  121. van Bloemendaal, L. et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 63, 4186 (2014).

    PubMed  Google Scholar 

  122. Anderberg, R. H. et al. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality. Psychoneuroendocrinology 65, 54–66 (2016).

    CAS  PubMed  Google Scholar 

  123. Gil-Lozano, M. et al. GLP-1(7–36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans. Endocrinology 151, 2629–2640 (2010).

    CAS  PubMed  Google Scholar 

  124. During, M. J. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9, 1173–1179 (2003).

    CAS  PubMed  Google Scholar 

  125. Isacson, R. et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur. J. Pharmacol. 650, 249–255 (2011).

    CAS  PubMed  Google Scholar 

  126. McClean, P. L., Parthsarathy, V., Faivre, E. & Holscher, C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 6587–6594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Porter, D. W., Irwin, N., Flatt, P. R., Hölscher, C. & Gault, V. A. Prolonged GIP receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. Eur. J. Pharmacol. 650, 688–693 (2011).

    CAS  PubMed  Google Scholar 

  128. Morimoto, R. et al. Expression of peptide YY in human brain and pituitary tissues. Nutrition 24, 878–884 (2008).

    CAS  PubMed  Google Scholar 

  129. Murphy, K. G. & Bloom, S. R. Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859 (2006).

    CAS  PubMed  Google Scholar 

  130. Nonaka, N., Shioda, S., Niehoff, M. L. & Banks, W. A. Characterization of blood-brain barrier permeability to PYY3-36 in the mouse. J. Pharmacol. Exp. Ther. 306, 948–953 (2003).

    CAS  PubMed  Google Scholar 

  131. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    CAS  PubMed  Google Scholar 

  132. Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).

    PubMed  Google Scholar 

  133. Painsipp, E., Herzog, H. & Holzer, P. The gut-mood axis: a novel role of the gut hormone peptide YY on emotional-affective behaviour in mice. BMC Pharmacol. 9, A13 (2009).

    PubMed Central  Google Scholar 

  134. Painsipp, E., Herzog, H., Sperk, G. & Holzer, P. Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y. Br. J. Pharmacol. 163, 1302–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Tschenett, A. et al. Reduced anxiety and improved stress coping ability in mice lacking NPY-Y2 receptors. Eur. J. Neurosci. 18, 143–148 (2003).

    PubMed  Google Scholar 

  136. Heilig, M. The NPY system in stress, anxiety and depression. Neuropeptides 38, 213–224 (2004).

    CAS  PubMed  Google Scholar 

  137. Byrne, C. S. et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 104, 5–14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    CAS  PubMed  Google Scholar 

  139. Hube, F. et al. Difference in leptin mRNA levels between omental and subcutaneous abdominal adipose tissue from obese humans. Horm. Metab. Res. 28, 690–693 (1996).

    CAS  PubMed  Google Scholar 

  140. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    CAS  PubMed  Google Scholar 

  141. Byrne, C. S., Chambers, E. S., Morrison, D. J. & Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 39, 1331–1338 (2015).

    CAS  Google Scholar 

  142. Xiong, Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl Acad. Sci. USA 101, 1045–1050 (2004).

    CAS  PubMed  Google Scholar 

  143. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    CAS  PubMed  Google Scholar 

  144. Al-Lahham, S. H. et al. Regulation of adipokine production in human adipose tissue by propionic acid. Eur. J. Clin. Invest. 40, 401–407 (2010).

    CAS  PubMed  Google Scholar 

  145. Ivan, J. et al. The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev. 26, 1724–1733 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381–2386 (2010).

    CAS  PubMed  Google Scholar 

  147. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLOS ONE 7, e35240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    CAS  PubMed  Google Scholar 

  149. Frost, G. et al. Effect of short chain fatty acids on the expression of free fatty acid receptor 2 (Ffar2), Ffar3 and early-stage adipogenesis. Nutr. Diabetes 4, e128 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Banks, W. A. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr. Pharm. Des. 7, 125–133 (2001).

    CAS  PubMed  Google Scholar 

  151. Kastin, A. J. & Pan, W. Dynamic regulation of leptin entry into brain by the blood–brain barrier. Regul. Pept. 92, 37–43 (2000).

    CAS  PubMed  Google Scholar 

  152. Banks, W. A., Niehoff, M. L., Martin, D. & Farrell, C. L. Leptin transport across the blood-brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene. Brain Res. 950, 130–136 (2002).

    CAS  PubMed  Google Scholar 

  153. Sachot, C., Rummel, C., Bristow, A. F. & Luheshi, G. N. The role of the vagus nerve in mediating the long-term anorectic effects of leptin. J. Neuroendocrinol. 19, 250–261 (2007).

    CAS  PubMed  Google Scholar 

  154. de Lartigue, G., Ronveaux, C. C. & Raybould, H. E. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol. Metab. 3, 595–607 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. Morrison, C. D. Leptin signaling in brain: a link between nutrition and cognition? Biochim. Biophys. Acta 1792, 401–408 (2009).

    CAS  PubMed  Google Scholar 

  156. Farr, O. M., Tsoukas, M. A. & Mantzoros, C. S. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders. Metabolism 64, 114–130 (2015).

    CAS  PubMed  Google Scholar 

  157. Olszewski, P. K., Schiöth, H. B. & Levine, A. S. Ghrelin in the CNS: From hunger to a rewarding and memorable meal? Brain. Res. Rev. 58, 160–170 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Date, Y. Ghrelin and the vagus nerve. Methods Enzymol. 514, 261–269 (2012).

    CAS  PubMed  Google Scholar 

  159. Cabral, A., De Francesco, P. N. & Perello, M. Brain circuits mediating the orexigenic action of peripheral ghrelin: narrow gates for a vast kingdom. Front. Endocrinol. 6, 44 (2015).

    Google Scholar 

  160. Wren, A. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    CAS  PubMed  Google Scholar 

  161. Fukumori, R. et al. Plasma ghrelin concentration is decreased by short chain fatty acids in wethers. Domest. Anim. Endocrinol. 41, 50–55 (2011).

    CAS  PubMed  Google Scholar 

  162. Tarini, J. & Wolever, T. M. The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl. Physiol. Nutr. Metab. 35, 9–16 (2010).

    CAS  PubMed  Google Scholar 

  163. Rahat-Rozenbloom, S., Fernandes, J., Cheng, J. & Wolever, T. M. S. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur. J. Clin. Nutr. 71, 953 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    CAS  PubMed  Google Scholar 

  165. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat. Neurosci. 9, 381–388 (2006).

    CAS  PubMed  Google Scholar 

  166. Li, E. et al. Ghrelin directly stimulates adult hippocampal neurogenesis: implications for learning and memory. Endocr. J. 60, 781–789 (2013).

    CAS  PubMed  Google Scholar 

  167. Bali, A. & Jaggi, A. S. An integrative review on role and mechanisms of ghrelin in stress, anxiety and depression. Curr. Drug Targets 17, 495–507 (2016).

    CAS  PubMed  Google Scholar 

  168. Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev. 26, 19–39 (2005).

    PubMed  PubMed Central  Google Scholar 

  169. Horino, M., Machlin, L. J., Hertelendy, F. & Kipnis, D. M. Effect of short-chain fatty acids on plasma insulin in ruminant and nonruminant species. Endocrinology 83, 118–128 (1968).

    CAS  PubMed  Google Scholar 

  170. Trenkle, A. Effects of short-chain fatty acids, feeding, fasting and type of diet on plasma insulin levels in sheep. J. Nutr. 100, 1323–1330 (1970).

    CAS  PubMed  Google Scholar 

  171. Robertson, M. D., Bickerton, A. S., Dennis, A. L., Vidal, H. & Frayn, K. N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 82, 559–567 (2005).

    CAS  PubMed  Google Scholar 

  172. Gray, S. M., Meijer, R. I. & Barrett, E. J. Insulin regulates brain function, but how does it get there? Diabetes 63, 3992–3997 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Daniel, L., Pnina, V. & Konstantin, B. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system. Diabetes. Metab. Res. Rev. 32, 11–20 (2016).

    Google Scholar 

  174. Craft, S. et al. Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69, 29–38 (2012).

    PubMed  Google Scholar 

  175. Reger, M. A. et al. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70, 440–448 (2008).

    CAS  PubMed  Google Scholar 

  176. Stanley, M., Macauley, S. L. & Holtzman, D. M. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence? J. Exp. Med. 213, 1375–1385 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Swaminathan, S. K. et al. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain. J. Cerebr. Blood Flow Metab. 38, 904–918 (2017).

    Google Scholar 

  178. McIntyre, R. S. et al. A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disord. 14, 697–706 (2012).

    CAS  PubMed  Google Scholar 

  179. LeBlanc, J. G. et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 16, 79 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Ryan, J. P., Sheu, L. K., Critchley, H. D. & Gianaros, P. J. A. Neural circuitry linking insulin resistance to depressed mood. Psychosom. Med. 74, 476–482 (2012).

    PubMed  PubMed Central  Google Scholar 

  181. Benedict, C. et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29, 1326–1334 (2004).

    CAS  PubMed  Google Scholar 

  182. Bohringer, A., Schwabe, L., Richter, S. & Schachinger, H. Intranasal insulin attenuates the hypothalamic–pituitary–adrenal axis response to psychosocial stress. Psychoneuroendocrinology 33, 1394–1400 (2008).

    CAS  PubMed  Google Scholar 

  183. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Bonaz, B., Bazin, T. & Pellissier, S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 12, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Li, Y., Hao, Y., Zhu, J. & Owyang, C. Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Gastroenterology 118, 1197–1207 (2000).

    CAS  PubMed  Google Scholar 

  186. Strader, A. D. & Woods, S. C. Gastrointestinal hormones and food intake. Gastroenterology 128, 175–191 (2005).

    CAS  PubMed  Google Scholar 

  187. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10, 1116–1124 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hosoi, T., Okuma, Y., Matsuda, T. & Nomura, Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton. Neurosci. 120, 104–107 (2005).

    CAS  PubMed  Google Scholar 

  189. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    CAS  PubMed  Google Scholar 

  190. Bercik, P. et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lal, S., Kirkup, A. J., Brunsden, A. M., Thompson, D. G. & Grundy, D. Vagal afferent responses to fatty acids of different chain length in the rat. Am. J. Physiol. Gastrointest. Liver. Physiol. 281, G907–G915 (2001).

    CAS  PubMed  Google Scholar 

  192. Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130–135 (2018).

    CAS  PubMed  Google Scholar 

  193. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl Med. 6, 263ra158 (2014).

    PubMed  PubMed Central  Google Scholar 

  194. Hoyles, L. et al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome 6, 55 (2018).

    PubMed  PubMed Central  Google Scholar 

  195. Nankova, B. B., Agarwal, R., MacFabe, D. F. & La Gamma, E. F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells—possible relevance to autism spectrum disorders. PLOS ONE 9, e103740 (2014).

    PubMed  PubMed Central  Google Scholar 

  196. Nagatsu, T. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem. 30, 15–35 (1995).

    CAS  PubMed  Google Scholar 

  197. Morís, G. & Vega, J. A. Neurotrophic factors: basis for their clinical application. Neurologia 18, 18–28 (2003).

    PubMed  Google Scholar 

  198. Savignac, H. M. et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem. Int. 63, 756–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Varela, R. B. et al. Sodium butyrate and mood stabilizers block ouabain-induced hyperlocomotion and increase BDNF, NGF and GDNF levels in brain of Wistar rats. J. Psychiatr. Res. 61, 114–121 (2015).

    PubMed  Google Scholar 

  200. Sun, J. et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci. Lett. 618, 159–166 (2016).

    CAS  PubMed  Google Scholar 

  201. Intlekofer, K. A. et al. Exercise and sodium butyrate transform a subthreshold learning event into long-term memory via a brain-derived neurotrophic factor-dependent mechanism. Neuropsychopharmacology 38, 2027–2034 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Barichello, T. et al. Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol. Neurobiol. 52, 734–740 (2015).

    CAS  PubMed  Google Scholar 

  203. Kim, H. J., Leeds, P. & Chuang, D. M. The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J. Neurochem. 110, 1226–1240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wu, X. et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol. 11, 1123–1134 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    CAS  PubMed  Google Scholar 

  206. Lucki, I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry. 44, 151–162 (1998).

    CAS  PubMed  Google Scholar 

  207. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    CAS  PubMed  Google Scholar 

  208. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Stasi, C., Bellini, M., Bassotti, G., Blandizzi, C. & Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol. 18, 613–621 (2014).

    CAS  PubMed  Google Scholar 

  210. Bonnin, A. & Levitt, P. Fetal, maternal and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience 197, 1–7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Côté, F. et al. Maternal serotonin is crucial for murine embryonic development. Proc. Natl Acad. Sci. USA 104, 329 (2007).

    PubMed  Google Scholar 

  212. Browning, K. N. Role of central vagal 5-HT(3) receptors in gastrointestinal physiology and pathophysiology. Front. Neurosci. 9, 413 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Sanders, M. E. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis. 46, S58–S61 (2008).

    PubMed  Google Scholar 

  214. Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    PubMed  Google Scholar 

  215. Garcia-Mantrana, I., Selma-Royo, M., Alcantara, C. & Collado, M. C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9, 890–890 (2018).

    PubMed  PubMed Central  Google Scholar 

  216. Macfarlane, G. T. & Macfarlane, S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol. 45, S120–S127 (2011).

    CAS  PubMed  Google Scholar 

  217. Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).

    CAS  PubMed  Google Scholar 

  218. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    CAS  PubMed  Google Scholar 

  219. Verbeke, K. A. et al. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 28, 42–66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Derrien, M. & van Hylckama Vlieg, J. E. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23, 354–366 (2015).

    CAS  PubMed  Google Scholar 

  221. Sakata, T., Kojima, T., Fujieda, M., Takahashi, M. & Michibata, T. Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro. Proc. Nutr. Soc. 62, 73–80 (2003).

    CAS  PubMed  Google Scholar 

  222. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  223. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

    PubMed  Google Scholar 

  224. Gutierrez-Diaz, I., Fernandez-Navarro, T., Sanchez, B., Margolles, A. & Gonzalez, S. Mediterranean diet and faecal microbiota: a transversal study. Food Funct. 7, 2347–2356 (2016).

    CAS  PubMed  Google Scholar 

  225. Sandhu, K. V. et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 179, 223–244 (2017).

    CAS  PubMed  Google Scholar 

  226. Liu, J. et al. Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed. Res. Int. 2015, 412946 (2015).

    PubMed  PubMed Central  Google Scholar 

  227. Burokas, A. et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol. Psychiatry 82, 472–487 (2017).

    CAS  PubMed  Google Scholar 

  228. Kao, A. C., Spitzer, S., Anthony, D. C., Lennox, B. & Burnet, P. W. J. Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Transl Psychiatry 8, 66 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Gronier, B. et al. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS((R))) ingestion. Eur. Neuropsychopharmacol. 28, 211–224 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Hopfner, F. et al. Gut microbiota in Parkinson disease in a northern German cohort. Brain Res. 1667, 41–45 (2017).

    CAS  PubMed  Google Scholar 

  231. Li, W. et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci. China Life. Sci. 60, 1223–1233 (2017).

    PubMed  Google Scholar 

  232. Bedarf, J. R. et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30, 1351–1360 (2015).

    CAS  PubMed  Google Scholar 

  234. Unger, M. M. et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72 (2016).

    PubMed  Google Scholar 

  235. Paiva, I. et al. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum. Mol. Genet. 26, 2231–2246 (2017).

    CAS  PubMed  Google Scholar 

  236. Laurent, R. S., O’Brien, L. M. & Ahmad, S. T. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246, 382–390 (2013).

    Google Scholar 

  237. Sharma, S., Taliyan, R. & Singh, S. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: modulation of histone deacetylase activity. Behav. Brain. Res. 291, 306–314 (2015).

    CAS  PubMed  Google Scholar 

  238. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Govindarajan, N., Agis-Balboa, R. C., Walter, J., Sananbenesi, F. & Fischer, A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. 26, 187–197 (2011).

    CAS  PubMed  Google Scholar 

  240. Ho, L. et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 18, 83–90 (2018).

    CAS  PubMed  Google Scholar 

  241. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D. & Rubin, R. A. Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 22 (2011).

    PubMed  PubMed Central  Google Scholar 

  242. Wang, L. et al. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digest. Dis. Sci. 57, 2096–2102 (2012).

    CAS  PubMed  Google Scholar 

  243. de Theije, C. G. et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain. Behav. Immun. 37, 197–206 (2014).

    PubMed  Google Scholar 

  244. MacFabe, D. F. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb. Ecol. Health. Dis. 26, 28177 (2015).

    PubMed  Google Scholar 

  245. Szczesniak, O., Hestad, K. A., Hanssen, J. F. & Rudi, K. Isovaleric acid in stool correlates with human depression. Nutr. Neurosci. 19, 279–283 (2016).

    CAS  PubMed  Google Scholar 

  246. Skonieczna-Zydecka, K. et al. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients 10, E1939 (2018).

    PubMed  Google Scholar 

  247. Kelly, J. R. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016).

    PubMed  Google Scholar 

  248. Michels, N., Van de Wiele, T. & De Henauw, S. Chronic psychosocial stress and gut health in children: associations with calprotectin and fecal short-chain fatty acids. Psychosom. Med. 79, 927–935 (2017).

    CAS  PubMed  Google Scholar 

  249. Moretti, M. et al. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav. Pharmacol. 22, 766–772 (2011).

    CAS  PubMed  Google Scholar 

  250. Resende, W. R. et al. Effects of sodium butyrate in animal models of mania and depression: implications as a new mood stabilizer. Behav. Pharmacol. 24, 569–579 (2013).

    CAS  PubMed  Google Scholar 

  251. Kiraly, D. D. et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci. Rep. 6, 35455 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Joseph, J., Depp, C., Shih, P.-a.B., Cadenhead, K. S. & Schmid-Schönbein, G. Modified mediterranean diet for enrichment of short chain fatty acids: potential adjunctive therapeutic to target immune and metabolic dysfunction in schizophrenia? Front. Neurosci. 11, 155 (2017).

    PubMed  PubMed Central  Google Scholar 

  253. Arnoldussen, I. A. C. et al. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. Int. J. Obes. 41, 935 (2017).

    CAS  Google Scholar 

  254. Powers, L. et al. Assay of the concentration and stable isotope enrichment of short-chain fatty acids by gas chromatography/mass spectrometry. J. Mass Spectrom. 30, 747–754 (1995).

    CAS  Google Scholar 

  255. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Lamendella, R., Domingo, J. W., Ghosh, S., Martinson, J. & Oerther, D. B. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Moeller, A. H. et al. Chimpanzees and humans harbor compositionally similar gut enterotypes. Nat. Commun. 3, 1179–1179 (2012).

    PubMed  PubMed Central  Google Scholar 

  258. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Blackwood, D. H. R. et al. Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am. J. Hum. Genet. 69, 428–433 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Anderzhanova, E., Kirmeier, T. & Wotjak, C. T. Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol. Stress 7, 47–56 (2017).

    PubMed  PubMed Central  Google Scholar 

  261. Salgado, J. V. & Sandner, G. A critical overview of animal models of psychiatric disorders: challenges and perspectives. Braz. J. Psychiatry 35, S77–S81 (2013).

    PubMed  Google Scholar 

  262. Kelly, J. R. et al. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain. Behav. Immun. 61, 50–59 (2017).

    CAS  PubMed  Google Scholar 

  263. Annison, G., Illman, R. J. & Topping, D. L. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J. Nutr. 133, 3523–3528 (2003).

    CAS  PubMed  Google Scholar 

  264. Basson, A., Trotter, A., Rodriguez-Palacios, A. & Cominelli, F. Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front. Immunol. 7, 290 (2016).

    PubMed  PubMed Central  Google Scholar 

  265. Pierre, K. & Pellerin, L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94, 1–14 (2005).

    CAS  PubMed  Google Scholar 

  266. Halestrap, A. P. & Meredith, D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch. 447, 619–628 (2004).

    CAS  PubMed  Google Scholar 

  267. Sepponen, K., Ruusunen, M., Pakkanen, J. A. & Poso, A. R. Expression of CD147 and monocarboxylate transporters MCT1, MCT2 and MCT4 in porcine small intestine and colon. Vet. J. 174, 122–128 (2007).

    CAS  PubMed  Google Scholar 

  268. Ganapathy, V. et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 10, 193–199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Coady, M. J. et al. The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J. Physiol. 557, 719–731 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Martin, P. M. et al. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J. Neurochem. 98, 279–288 (2006).

    CAS  PubMed  Google Scholar 

  271. Srinivas, S. R. et al. Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2). Biochem. J. 392, 655–664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Gopal, E. et al. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim. Biophys. Acta 1768, 2690–2697 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Shin, H. J. et al. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 45, 1046–1055 (2007).

    CAS  PubMed  Google Scholar 

  274. Anzai, N., Kanai, Y. & Endou, H. Organic anion transporter family: current knowledge. J. Pharmacol. Sci. 100, 411–426 (2006).

    CAS  PubMed  Google Scholar 

  275. Islam, R. et al. Mouse organic anion transporter 2 (mOat2) mediates the transport of short chain fatty acid propionate. J. Pharmacol. Sci. 106, 525–528 (2008).

    CAS  PubMed  Google Scholar 

  276. Nøhr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    PubMed  Google Scholar 

  277. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569 (2013).

    CAS  PubMed  Google Scholar 

  278. Nakajima, A. et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages. PLOS ONE 12, e0179696 (2017).

    PubMed  PubMed Central  Google Scholar 

  279. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    CAS  PubMed  Google Scholar 

  280. Priori, D. et al. The olfactory receptor OR51E1 is present along the gastrointestinal tract of pigs, co-localizes with enteroendocrine cells and is modulated by intestinal microbiota. PLOS ONE 10, e0129501 (2015).

    PubMed  PubMed Central  Google Scholar 

  281. Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    CAS  PubMed  Google Scholar 

  282. Gelis, L. et al. Functional characterization of the odorant receptor 51E2 in human melanocytes. J. Biol. Chem. 291, 17772–17786 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Puhl Iii, H. L., Won, Y.-J., Lu, V. B. & Ikeda, S. R. Human GPR42 is a transcribed multisite variant that exhibits copy number polymorphism and is functional when heterologously expressed. Sci. Rep. 5, 12880 (2015).

    PubMed Central  Google Scholar 

  284. Liaw, C. W. & Connolly, D. T. Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42. DNA Cell Biol. 28, 555–560 (2009).

    CAS  PubMed  Google Scholar 

  285. Li, L., Ma, L. & Fu, P. Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug. Des. Devel. Ther. 11, 3531–3542 (2017).

Download references

Acknowledgements

The financial support for B.D. from an unrestricted grant from Nestlé is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

B.D. performed the literature review and wrote the manuscript. L.V.O., B.V. and K.V. revised the intellectual content of the manuscript critically.

Corresponding author

Correspondence to Kristin Verbeke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalile, B., Van Oudenhove, L., Vervliet, B. et al. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16, 461–478 (2019). https://doi.org/10.1038/s41575-019-0157-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0157-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing