Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gastrointestinal diagnosis using non-white light imaging capsule endoscopy

Abstract

Capsule endoscopy (CE) has proved to be a powerful tool in the diagnosis and management of small bowel disorders since its introduction in 2001. However, white light imaging (WLI) is the principal technology used in clinical CE at present, and therefore, CE is limited to mucosal inspection, with diagnosis remaining reliant on visible manifestations of disease. The introduction of WLI CE has motivated a wide range of research to improve its diagnostic capabilities through integration with other sensing modalities. These developments have the potential to overcome the limitations of WLI through enhanced detection of subtle mucosal microlesions and submucosal and/or transmural pathology, providing novel diagnostic avenues. Other research aims to utilize a range of sensors to measure physiological parameters or to discover new biomarkers to improve the sensitivity, specificity and thus the clinical utility of CE. This multidisciplinary Review summarizes research into non-WLI CE devices by organizing them into a taxonomic structure on the basis of their sensing modality. The potential of these capsules to realize clinically useful virtual biopsy and computer-aided diagnosis (CADx) is also reported.

Key points

  • White light imaging (WLI) remains the dominant diagnostic modality in capsule endoscopy after nearly two decades of clinical use.

  • WLI technology limits diagnosis to the mucosal surface of the gut owing to the limited penetration depth of optical wavelengths beyond the tissue surface.

  • In the past few years, there has been an increase in the application of non-WLI diagnostic imaging and sensing technologies to capsule endoscopy, some of which are at a more advanced stage of testing than others.

  • Integrating specific diagnostic imaging technologies into capsule endoscopy devices enables submucosal imaging, improved differentiation between malignant and benign tissue and new avenues for investigating the aetiology of disease.

  • Many of these capsules require further testing to determine their clinical efficacy fully owing to the small sample sizes of the reported studies.

  • New diagnostic capsule designs will provide new opportunities for improved computer-aided diagnosis, virtual biopsy and capsule localization that could benefit clinical practice in the future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of images obtained using alternative imaging technologies.
Fig. 2: Modalities for virtual biopsy.

References

  1. 1.

    Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–418 (2000).

    CAS  PubMed  Google Scholar 

  2. 2.

    Koulaouzidis, A., Iakovidis, D. K., Karargyris, A. & Rondonotti, E. Wireless endoscopy in 2020: will it still be a capsule? World J. Gastroenterol. 21, 5119–5130 (2015).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cox, B. F. et al. Ultrasound capsule endoscopy: sounding out the future. Ann. Transl Med. 5, 201 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lay, H. et al. In-vivo evaluation of microultrasound and thermometric capsule endoscopes. IEEE Trans. Biomed. Eng. 66, 632–639 (2018).

    PubMed  Google Scholar 

  5. 5.

    Zhang, H. et al. Biochromoendoscopy: molecular imaging with capsule endoscopy for detection of adenomas of the GI tract. Gastrointest. Endosc. 68, 520–527 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Enns, R. A. et al. Clinical Practice Guidelines for the use of video capsule endoscopy. Gastroenterology 152, 497–514 (2017).

    PubMed  Google Scholar 

  7. 7.

    Pennazio, M. et al. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 47, 352–386 (2015).

    PubMed  Google Scholar 

  8. 8.

    Van de Bruaene, C. et al. Small bowel capsule endoscopy: where are we after almost 15 years of use? World J. Gastrointest. Endosc. 16, 13–36 (2015).

    Google Scholar 

  9. 9.

    Nowak, T. A global perspective on capsule endoscopy. Ann. Transl Med. 5, 422–422 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Romero-Vázquez, J. et al. Capsule endoscopy in patients refusing conventional endoscopy. World J. Gastroenterol. 20, 7424–7433 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Triester, S. L. et al. A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with obscure gastrointestinal bleeding. Am. J. Gastroenterol. 100, 2407–2418 (2005).

    PubMed  Google Scholar 

  12. 12.

    Teshima, C. W., Kuipers, E. J., van Zanten, S. V. & Mensink, P. B. F. Double balloon enteroscopy and capsule endoscopy for obscure gastrointestinal bleeding: an updated meta-analysis. J. Gastroenterol. Hepatol. 26, 796–801 (2011).

    PubMed  Google Scholar 

  13. 13.

    Kaffes, A. J., Siah, C. & Koo, J. H. Clinical outcomes after double-balloon enteroscopy in patients with obscure GI bleeding and a positive capsule endoscopy. Gastrointest. Endosc. 66, 304–309 (2007).

    PubMed  Google Scholar 

  14. 14.

    Otani, K. et al. Clinical utility of capsule endoscopy and double-balloon enteroscopy in the management of obscure gastrointestinal bleeding. Digestion 97, 52–58 (2018).

    PubMed  Google Scholar 

  15. 15.

    Ludvigsson, J. F. et al. Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut 63, 1210–1228 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chang, M. S., Rubin, M., Lewis, S. K. & Green, P. H. Diagnosing celiac disease by video capsule endoscopy (VCE) when esophogastroduodenoscopy (EGD) and biopsy is unable to provide a diagnosis: a case series. BMC Gastroenterol. 12, 90 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hopper, A., Cross, S. & Sanders, D. Patchy villous atrophy in adult patients with suspected gluten-sensitive enteropathy: is a multiple duodenal biopsy strategy appropriate? Endoscopy 40, 219–224 (2007).

    Google Scholar 

  18. 18.

    Rubio-Tapia, A. et al. ACG clinical guidelines: diagnosis and management of celiac disease. Am. J. Gastroenterol. 108, 656–676 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dionisio, P. M. et al. Capsule endoscopy has a significantly higher diagnostic yield in patients with suspected and established small-bowel crohn’s disease: a meta-analysis. Am. J. Gastroenterol. 105, 1240–1248 (2010).

    PubMed  Google Scholar 

  20. 20.

    Jensen, M. D., Nathan, T., Rafaelsen, S. R. & Kjeldsen, J. Diagnostic accuracy of capsule endoscopy for small bowel crohn’s disease is superior to that of MR enterography or CT enterography. Clin. Gastroenterol. Hepatol. 9, 124–129 (2011).

    PubMed  Google Scholar 

  21. 21.

    González-Suárez, B. et al. Comparison of capsule endoscopy and magnetic resonance enterography for the assessment of small bowel lesions in crohn’s disease. Inflamm. Bowel Dis. 24, 775–780 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Panes, J. et al. Imaging techniques for assessment of inflammatory bowel disease: Joint ECCO and ESGAR evidence-based consensus guidelines. J. Crohns Colitis 7, 556–585 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Niv, Y. Small-bowel mucosal healing assessment by capsule endoscopy as a predictor of long-term clinical remission in patients with Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 29, 844–848 (2017).

    PubMed  Google Scholar 

  24. 24.

    Koulaouzidis, A. & Plevris, J. N. Detection of the ampulla of Vater in small bowel capsule endoscopy: experience with two different systems. J. Dig. Dis. 13, 621–627 (2012).

    PubMed  Google Scholar 

  25. 25.

    Friedrich, K., Gehrke, S., Stremmel, W. & Sieg, A. First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel: a pilot study. J. Gastroenterol. Hepatol. 28, 1496–1501 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    Akin, E. et al. Comparison between capsule endoscopy and magnetic resonance enterography for the detection of polyps of the small intestine in patients with familial adenomatous polyposis. Gastroenterol. Res. Pract. 2012, 215028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Burke, C. A., Santisi, J., Church, J. & Levinthal, G. The utility of capsule endoscopy small bowel surveillance in patients with polyposis. Am. J. Gastroenterol. 100, 1498–1502 (2005).

    PubMed  Google Scholar 

  28. 28.

    Cairns, S. R. et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 59, 666–689 (2010).

    PubMed  Google Scholar 

  29. 29.

    Kurniawan, N. & Keuchel, M. in Video Capsule Endoscopy: A Reference Guide and Atlas (eds Keuchel, M., Hagenmüller, F. & Tajiri, H.) 15–20 (Springer Berlin Heidelberg, 2014).

  30. 30.

    McAlindon, M. E., Hagenmüller, F. & Fleischer, D. E. in Video Capsule Endoscopy: A Reference Guide and Atlas (eds Keuchel, M., Hagenmüller, F. & Tajiri, H.) 5–13 (Springer Berlin Heidelberg, 2014).

  31. 31.

    Spada, C. et al. Accuracy of first- and second-generation colon capsules in endoscopic detection of colorectal polyps: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 14, 1533–1543 (2016).

    PubMed  Google Scholar 

  32. 32.

    Sharma, V. K., Eliakim, R., Sharma, P. & Faigel, D. ICCE Consensus for esophageal capsule endoscopy. Endoscopy 37, 1060–1064 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Eliakim, R. et al. A prospective study of the diagnostic accuracy of PillCam ESO esophageal capsule endoscopy versus conventional upper endoscopy in patients with chronic gastroesophageal reflux diseases. J. Clin. Gastroenterol. 39, 572–578 (2005).

    PubMed  Google Scholar 

  34. 34.

    Park, J., Cho, Y. K. & Kim, J. H. Current and future use of esophageal capsule endoscopy. Clin. Endosc 51, 317–322 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Koprowski, R. Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy. Biomed. Eng. Online 14, 111 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mustafa, B. F., Samaan, M., Langmead, L. & Khasraw, M. Small bowel video capsule endoscopy: an overview. Expert Rev. Gastroenterol. Hepatol. 7, 323–329 (2013).

    CAS  PubMed  Google Scholar 

  37. 37.

    McAlindon, M. E., Sanders, D. S. & Sidhu, R. Capsule endoscopy: 10 years on and in the frontline. Frontline Gastroenterol. 1, 82–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hong, S. P., Cheon, J. H., Kim, T. I., Song, S. Y. & Kim, W. H. Comparison of the diagnostic yield of ‘MiroCam’ and ‘PillCam SB’ capsule endoscopy. Hepatogastroenterology 59, 778–781 (2012).

    PubMed  Google Scholar 

  39. 39.

    Hartmann, D., Eickhoff, A., Damian, U. & Riemann, J. F. Diagnosis of small-bowel pathology using paired capsule endoscopy with two different devices: a randomized study. Endoscopy 39, 1041–1045 (2007).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kim, H. M. et al. A pilot study of sequential capsule endoscopy using MiroCam and PillCam SB devices with different transmission technologies. Gut Liver 4, 192–200 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rahman, M. et al. Comparison of the diagnostic yield and outcomes between standard 8 h capsule endoscopy and the new 12h capsule endoscopy for investigating small bowel pathology. World J. Gastroenterol. 21, 5542–5547 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ou, G. et al. Effect of longer battery life on small bowel capsule endoscopy. World J. Gastroenterol. 21, 2677–2682 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cave, D. R. et al. A multicenter randomized comparison of the endocapsule and the Pillcam SB. Gastrointest. Endosc. 68, 487–494 (2008).

    PubMed  Google Scholar 

  44. 44.

    Niwa, H., Tajiri, H., Nakajima, M. & Yasuda, K. (eds) New Challenges in Gastrointestinal Endoscopy (Springer Japan, 2008).

  45. 45.

    Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    CAS  PubMed  Google Scholar 

  46. 46.

    Ciaccio, E. J., Bhagat, G., Lewis, S. K. & Green, P. H. Suggestions for automatic quantitation of endoscopic image analysis to improve detection of small intestinal pathology in celiac disease patients. Comput. Biol. Med. 65, 364–368 (2015).

    PubMed  Google Scholar 

  47. 47.

    Dickson, B. C., Streutker, C. J. & Chetty, R. Coeliac disease: an update for pathologists. J. Clin. Pathol. 59, 1008–1016 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Kav, T. & Sivri, B. Is enteroscopy necessary for diagnosis of celiac disease? World J. Gastroenterol. 18, 4095–4101 (2012).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Har-Noy, O. et al. Chromoendoscopy, narrow-band imaging or white light endoscopy for neoplasia detection in inflammatory bowel diseases. Dig. Dis. Sci. 62, 2982–2990 (2017).

    PubMed  Google Scholar 

  50. 50.

    Hoffman, A., Manner, H., Rey, J. W. & Kiesslich, R. A guide to multimodal endoscopy imaging for gastrointestinal malignancy — an early indicator. Nat. Rev. Gastroenterol. Hepatol. 14, 421–434 (2017).

    PubMed  Google Scholar 

  51. 51.

    Kaltenbach, T. Nonpolypoid Colorectal Neoplasms in Inflammatory Bowel Disease (Elsevier, 2014).

  52. 52.

    Khan, T. H., Shrestha, R., Wahid, K. A. & Babyn, P. Design of a smart-device and FPGA based wireless capsule endoscopic system. Sensors Actuators A Phys. 221, 77–87 (2015).

    CAS  Google Scholar 

  53. 53.

    Khan, T. H. & Wahid, K. A. White and narrow band image compressor based on a new color space for capsule endoscopy. Signal Process. Image Commun. 29, 345–360 (2014).

    Google Scholar 

  54. 54.

    Krystallis, C., Koulaouzidis, A., Douglas, S. & Plevris, J. N. Chromoendoscopy in small bowel capsule endoscopy: blue mode or Fuji intelligent colour enhancement? Dig. Liver Dis. 43, 953–957 (2011).

    PubMed  Google Scholar 

  55. 55.

    Imagawa, H. et al. Improved visibility of lesions of the small intestine via capsule endoscopy with computed virtual chromoendoscopy. Gastrointest. Endosc. 73, 299–306 (2011).

    PubMed  Google Scholar 

  56. 56.

    Giacchino, M. et al. Clinical utility and interobserver agreement of autofluorescence imaging and magnification narrow-band imaging for the evaluation of Barrett’s esophagus: a prospective tandem study. Gastrointest. Endosc. 77, 711–718 (2013).

    PubMed  Google Scholar 

  57. 57.

    Silva, F. B. et al. Endoscopic assessment and grading of Barrett’s esophagus using magnification endoscopy and narrow-band imaging: accuracy and interobserver agreement of different classification systems (with videos). Gastrointest. Endosc. 73, 7–14 (2011).

    PubMed  Google Scholar 

  58. 58.

    Pasha, S. F. et al. Comparison of the yield and miss rate of narrow band imaging and white light endoscopy in patients undergoing screening or surveillance colonoscopy: a meta-analysis. Am. J. Gastroenterol. 107, 363–370 (2012).

    PubMed  Google Scholar 

  59. 59.

    Singh, R. et al. Multicenter randomised controlled trial comparing the high definition white light endoscopy and the bright narrow band imaging for colon polyps. World J. Gastrointest. Endosc. 9, 273 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Memon, F. et al. in 2016 IEEE Int. Ultrasonics Symp. (IUS) 1–4 (IEEE, 2016).

  61. 61.

    Wang, X. et al. Development of a mechanical scanning device with high-frequency ultrasound transducer for ultrasonic capsule endoscopy. IEEE Trans. Med. Imag. 36, 1922–1929 (2017).

    Google Scholar 

  62. 62.

    Lay, H. S. et al. in 2017 IEEE Int. Ultrasonics Symp. (IUS) 1–4 (IEEE, 2017).

  63. 63.

    Correia, J. TROY: Endoscope Capsule Using Ultrasound Technology, Final Report (Instituto Agilus de Inovação Em Tecnologia de Informação S.A., 2009).

  64. 64.

    Lee, J. H. et al. in 2014 IEEE Int. Ultrasonics Symp. 734–737 (IEEE, 2014).

  65. 65.

    Chang, C. et al. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers. J. Micromech. Microeng. 24, 107002 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lay, H. S., Cox, B. F., Seetohul, V., Demore, C. E. M. & Cochran, S. Design and simulation of a ring-shaped linear array for microultrasound capsule endoscopy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 589–599 (2018).

    PubMed  Google Scholar 

  67. 67.

    McNally, P. R. (ed.) in GI/Liver Secrets 4th edn 537–544 (Elsevier, 2010).

  68. 68.

    Gall, T. M. H., Markar, S. R., Jackson, D., Haji, A. & Faiz, O. Mini-probe ultrasonography for the staging of colon cancer: a systematic review and meta-analysis. Colorectal Dis. 16, O1–O8 (2014).

    CAS  PubMed  Google Scholar 

  69. 69.

    Hünerbein, M., Handke, T., Ulmer, C. & Schlag, P. M. Impact of miniprobe ultrasonography on planning of minimally invasive surgery for gastric and colonic tumors. Surg. Endosc. 18, 601–605 (2004).

    PubMed  Google Scholar 

  70. 70.

    Hurlstone, D. P., Brown, S., Cross, S. S., Shorthouse, A. J. & Sanders, D. S. Endoscopic ultrasound miniprobe staging of colorectal cancer: can management be modified? Endoscopy 37, 710–714 (2005).

    CAS  PubMed  Google Scholar 

  71. 71.

    Schembre, D., Ayub, K. & Jiranek, G. High-frequency mini-probe ultrasound: the Rodney Dangerfield of endoscopy? J. Clin. Gastroenterol. 39, 555–556 (2005).

    PubMed  Google Scholar 

  72. 72.

    Cox, B. F., Seetohul, V., Lay, H. & Cochran, S. in 2015 IEEE Int. Ultrasonics Symp. (IUS) 1–4 (IEEE, 2015).

  73. 73.

    Strobel, D., Goertz, R. S. & Bernatik, T. Diagnostics in inflammatory bowel disease: ultrasound. World J. Gastroenterol. 17, 3192–3197 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Huang, Z. et al. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue. Int. J. Oncol. 24, 59–63 (2004).

    CAS  PubMed  Google Scholar 

  75. 75.

    Moriichi, K. et al. Back-to-back comparison of auto-fluorescence imaging (AFI) versus high resolution white light colonoscopy for adenoma detection. BMC Gastroenterol. 12, 75 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Zhao, Z.-Y. et al. Detection and miss rates of autofluorescence imaging of adenomatous and polypoid lesions during colonoscopy: a systematic review and meta-analysis. Endosc. Int. Open 3, E226–E235 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Moriichi, K., Fujiya, M. & Okumura, T. The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. Clin. J. Gastroenterol. 9, 175–183 (2016).

    PubMed  Google Scholar 

  78. 78.

    Fujiya, M., Saitoh, Y., Watari, J., Moriichi, K. & Kohgo, Y. Autofluorescence imaging is useful to assess activity of ulcerative colitis. Dig. Endosc. 19, 145–149 (2007).

    Google Scholar 

  79. 79.

    Osada, T. et al. Autofluorescence imaging endoscopy for identification and assessment of inflammatory ulcerative colitis. World J. Gastroenterol. 17, 5110–5116 (2011).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Moriichi, K. et al. Quantification of autofluorescence imaging can accurately and objectively assess the severity of ulcerative colitis. Int. J. Colorectal Dis. 30, 1639–1643 (2015).

    PubMed  Google Scholar 

  81. 81.

    Al-Rawhani, M. A., Beeley, J. & Cumming, D. R. S. Wireless fluorescence capsule for endoscopy using single photon-based detection. Sci. Rep. 5, 18591 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Demosthenous, P., Pitris, C. & Georgiou, J. Infrared fluorescence-based cancer screening capsule for the small intestine. IEEE Trans. Biomed. Circuits Syst. 10, 467–476 (2016).

    PubMed  Google Scholar 

  83. 83.

    Nemiroski, A., Ryou, M., Thompson, C. C. & Westervelt, R. M. Swallowable fluorometric capsule for wireless triage of gastrointestinal bleeding. Lab Chip 15, 4479–4487 (2015).

    CAS  PubMed  Google Scholar 

  84. 84.

    Baier, J. et al. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 91, 1452–1459 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Inayama, K. et al. Basic study of an agent for reinforcement of near-infrared fluorescence on tumor tissue. Dig. Liver Dis. 35, 88–93 (2003).

    CAS  PubMed  Google Scholar 

  86. 86.

    Ito, S. et al. Principle and clinical usefulness of the infrared fluorescence endoscopy. J. Med. Invest. 53, 1–8 (2006).

    PubMed  Google Scholar 

  87. 87.

    Urbanska, K. et al. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim. Pol. 49, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  88. 88.

    Muguruma, N. et al. Labeled carcinoembryonic antigen antibodies excitable by infrared rays. A novel diagnostic method for micro cancers in the digestive tract. Intern. Med. 38, 537–542 (1999).

    CAS  PubMed  Google Scholar 

  89. 89.

    Tadatsu, M. et al. A new infrared fluorescent-Labeling agent and labeled antibody for diagnosing microcancers. Bioorg. Med. Chem. 11, 3289–3294 (2003).

    CAS  PubMed  Google Scholar 

  90. 90.

    Wagnières, G. A., Star, W. M. & Wilson, B. C. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68, 603–632 (1998).

    PubMed  Google Scholar 

  91. 91.

    Tsai, T.-H., Fujimoto, J. & Mashimo, H. Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics (Basel) 4, 57–93 (2014).

    Google Scholar 

  92. 92.

    Yang, V. X. D. et al. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest. Endosc. 61, 879–890 (2005).

    PubMed  Google Scholar 

  93. 93.

    Gora, M. J., Suter, M. J., Tearney, G. J. & Li, X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed. Opt. Express 8, 2405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Masci, E. et al. Optical coherence tomography in pediatric patients: a feasible technique for diagnosing celiac disease in children with villous atrophy. Dig. Liver Dis. 41, 639–643 (2009).

    CAS  PubMed  Google Scholar 

  95. 95.

    Shen, B. et al. In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).

    PubMed  Google Scholar 

  96. 96.

    Consolo, P. et al. Optical coherence tomography in inflammatory bowel disease: prospective evaluation of 35 patients. Dis. Colon Rectum 51, 1374–1380 (2008).

    CAS  PubMed  Google Scholar 

  97. 97.

    Adler, D. C. et al. Three-dimensional endomicroscopy of the human colon using optical coherence tomography. Opt. Express 17, 784–796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Gora, M. J. et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Liang, K. et al. Ultrahigh speed en face OCT capsule for endoscopic imaging. Biomed. Opt. Express 6, 1146 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Spada, C., Hassan, C., Campanale, M. & Costamagna, G. Colon capsule endoscopy. Tech. Gastrointest. Endosc. 17, 19–23 (2015).

    Google Scholar 

  101. 101.

    Check-Cap. Check-Cap announces FDA conditional approval of IDE to initiate U.S. pilot study of C-Scan®. PR Newswire https://www.prnewswire.com/news-releases/check-cap-announces-fda-conditional-approval-of-ide-to-initiate-us-pilot-study-of-c-scan-300764947.html (2018).

  102. 102.

    Gluck, N. et al. A novel prepless X-ray imaging capsule for colon cancer screening. Gut 65, 371–373 (2016).

    CAS  PubMed  Google Scholar 

  103. 103.

    Kimchy, Y. et al. Radiographic capsule-based system for non-cathartic colorectal cancer screening. Abdom. Radiol. 42, 1291–1297 (2017).

    Google Scholar 

  104. 104.

    Lifshitz, R. et al. in Proc. SPIE Physics of Medical Imaging 2017 (eds Flohr, T. G., Lo, J. Y. & Gilat Schmidt, T.) Vol. 10132 101321O (SPIE, 2017).

  105. 105.

    US Food and Drug Administration. What are the radiation risks from CT? FDA https://www.fda.gov/Radiation-EmittingProducts/RadiationEmittingProductsandProcedures/MedicalImaging/MedicalX-Rays/ucm115329.htm (updated 12 May 2017).

  106. 106.

    van Gelder, R. E. et al. CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology 224, 25–33 (2002).

    PubMed  Google Scholar 

  107. 107.

    Niedermann, R. et al. Prediction of human core body temperature using non-invasive measurement methods. Int. J. Biometeorol. 58, 7–15 (2014).

    PubMed  Google Scholar 

  108. 108.

    Stewart, I. B., Stewart, K. L., Worringham, C. J. & Costello, J. T. Physiological tolerance times while wearing explosive ordnance disposal protective clothing in simulated environmental extremes. PLOS ONE 9, e83740 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Halder, S. L. S. et al. Natural history of functional gastrointestinal disorders: a 12-year longitudinal population-based study. Gastroenterology 133, 799–807 (2007).

    PubMed  Google Scholar 

  110. 110.

    Talley, N. J. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20, 121–129 (2008).

    PubMed  Google Scholar 

  111. 111.

    Husebye, E. The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol. Motil. 11, 141–161 (1999).

    CAS  PubMed  Google Scholar 

  112. 112.

    Paine, P., McLaughlin, J. & Lal, S. Review article: the assessment and management of chronic severe gastrointestinal dysmotility in adults. Aliment. Pharmacol. Ther. 38, 1209–1229 (2013).

    CAS  PubMed  Google Scholar 

  113. 113.

    Pandolfino, J. E. & Kahrilas, P. J. AGA technical review on the clinical use of esophageal manometry. Gastroenterology 128, 209–224 (2005).

    PubMed  Google Scholar 

  114. 114.

    Arshak, A. et al. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract. Med. Eng. Phys. 27, 347–356 (2005).

    CAS  PubMed  Google Scholar 

  115. 115.

    Stein, E. et al. Wireless Motility Capsule Versus Other Diagnostic Technologies for Evaluating Gastroparesis and Constipation: A Comparative Effectiveness Review (Comparative Effectiveness Review No. 110) (Agency for Healthcare Research and Quality (US), 2013).

  116. 116.

    Saad, R. J. & Hasler, W. L. A technical review and clinical assessment of the wireless motility capsule. Gastroenterol. Hepatol. 7, 795–804 (2011).

    Google Scholar 

  117. 117.

    Kloetzer, L. et al. Motility of the antroduodenum in healthy and gastroparetics characterized by wireless motility capsule. Neurogastroenterol. Motil. 22, 527–533 (2010).

    CAS  PubMed  Google Scholar 

  118. 118.

    Hasler, W. L. et al. Heightened colon motor activity measured by a wireless capsule in patients with constipation: relation to colon transit and IBS. Am. J. Physiol. Liver Physiol. 297, G1107–G1114 (2009).

    CAS  Google Scholar 

  119. 119.

    Li, P., Kothari, V. & Terry, B. S. Design and preliminary experimental investigation of a capsule for measuring the small intestine contraction pressure. IEEE Trans. Biomed. Eng. 62, 2702–2708 (2015).

    PubMed  Google Scholar 

  120. 120.

    Saad, R. J. The wireless motility capsule: a one-stop shop for the evaluation of GI motility disorders. Curr. Gastroenterol. Rep. 18, 14 (2016).

    PubMed  Google Scholar 

  121. 121.

    Tran, K., Brun, R. & Kuo, B. Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. Therap. Adv. Gastroenterol. 5, 249–260 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Rao, S. S., Mysore, K., Attaluri, A. & Valestin, J. Diagnostic utility of wireless motility capsule in gastrointestinal dysmotility. J. Clin. Gastroenterol. 45, 684–690 (2011).

    PubMed  Google Scholar 

  123. 123.

    Li, P., Kreikemeier-Bower, C., Xie, W., Kothari, V. & Terry, B. S. Design of a wireless medical capsule for measuring the contact pressure between a capsule and the small intestine. J. Biomech. Eng. 139, 051003 (2017).

    Google Scholar 

  124. 124.

    Youngin, K. et al. in Proc. 2005 IEEE Int. Conf. Robot. Automat. 1321–1326 (IEEE, 2005).

  125. 125.

    Cheng, L. K., Du, P. & O’Grady, G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology (Bethesda). 28, 310–317 (2013).

    CAS  Google Scholar 

  126. 126.

    Poscente, M. D. & Mintchev, M. P. Enhanced electrogastrography: a realistic way to salvage a promise that was never kept? World J. Gastroenterol. 23, 4517–4528 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Woo, S. H. & Cho, J. H. Telemetry system for slow wave measurement from the small bowel. Med. Biol. Eng. Comput. 48, 277–283 (2010).

    CAS  PubMed  Google Scholar 

  128. 128.

    Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y. & Cho, J. Small intestinal model for electrically propelled capsule endoscopy. Biomed. Eng. Online 10, 108 (2011).

    PubMed  PubMed Central  Google Scholar 

  129. 129.

    Clarysse, S. et al. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J. Pharm. Sci. 98, 1177–1192 (2009).

    CAS  PubMed  Google Scholar 

  130. 130.

    Bai, J. P. F., Burckart, G. J. & Mulberg, A. E. Literature review of gastrointestinal physiology in the elderly, in pediatric patients, and in patients with gastrointestinal diseases. J. Pharm. Sci. 105, 476–483 (2016).

    CAS  PubMed  Google Scholar 

  131. 131.

    Fisichella, P. M., Schlottmann, F. & Patti, M. G. Evaluation of gastroesophageal reflux disease. Updates Surg. 70, 309–313 (2018).

    PubMed  Google Scholar 

  132. 132.

    Fallingborg, J., Christensen, L. A., Jacobsen, B. A. & Rasmussen, S. N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci. 38, 1989–1993 (1993).

    CAS  PubMed  Google Scholar 

  133. 133.

    Nugent, S., Kumar, D., Rampton, D., Yazaki, E. & Evans, D. Gut pH and transit time in ulcerative colitis appear sufficient for complete dissolution of pH-dependent mesalazine-containing capsules. Gut 46, A781 (2000).

    Google Scholar 

  134. 134.

    Press, A. G. G. et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 12, 673–678 (1998).

    CAS  PubMed  Google Scholar 

  135. 135.

    Fallingborg, J., Pedersen, P. & Jacobsen, B. A. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn’s disease. Dig. Dis. Sci. 43, 702–705 (1998).

    CAS  PubMed  Google Scholar 

  136. 136.

    Colson, R. H. et al. An accurate, long-term, pH-sensitive radio pill for ingestion and implantation. Biotelem. Patient Monit. 8, 213–227 (1981).

    CAS  PubMed  Google Scholar 

  137. 137.

    Hochman, J. A. & Favaloro-Sabatier, J. Tolerance and reliability of wireless pH monitoring in children. J. Pediatr. Gastroenterol. Nutr. 41, 411–415 (2005).

    PubMed  Google Scholar 

  138. 138.

    Van Der Schaar, P. J. et al. A novel ingestible electronic drug delivery and monitoring device. Gastrointest. Endosc. 78, 520–528 (2013).

    PubMed  Google Scholar 

  139. 139.

    Söderlind, E. et al. Validation of the IntelliCap® system as a tool to evaluate extended release profiles in human GI tract using metoprolol as model drug. J. Control. Release 217, 300–307 (2015).

    PubMed  Google Scholar 

  140. 140.

    Koziolek, M. et al. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap® system. J. Pharm. Sci. 104, 2855–2863 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Maurer, J. M. et al. Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of ColoPulse tablets. PLOS ONE 10, e0129076 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Maqbool, S., Parkman, H. P. & Friedenberg, F. K. Wireless capsule motility: comparison of the SmartPill® GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci. 54, 2167–2174 (2009).

    PubMed  Google Scholar 

  143. 143.

    Rao, S. S. et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin. Gastroenterol. Hepatol. 7, 537–544 (2009).

    PubMed  Google Scholar 

  144. 144.

    Hasler, W. L. The use of SmartPill for gastric monitoring. Expert Rev. Gastroenterol. Hepatol. 8, 587–600 (2014).

    CAS  PubMed  Google Scholar 

  145. 145.

    Kuo, B. et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment. Pharmacol. Ther. 27, 186–196 (2007).

    PubMed  Google Scholar 

  146. 146.

    Farmer, A. D. Caecal pH is a biomarker of excessive colonic fermentation. World J. Gastroenterol. 20, 5000 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Cummins, G. et al. Luminally expressed gastrointestinal biomarkers. Expert Rev. Gastroenterol. Hepatol. 11, 1119–1134 (2017).

    CAS  PubMed  Google Scholar 

  148. 148.

    Twomey, K. et al. Characterization of the electrochemical behavior of gastrointestinal fluids using a multielectrode sensor probe. IEEE Trans. Biomed. Eng. 58, 2521–2527 (2011).

    PubMed  Google Scholar 

  149. 149.

    Caffrey, C. M., Twomey, K. & Ogurtsov, V. I. Development of a wireless swallowable capsule with potentiostatic electrochemical sensor for gastrointestinal track investigation. Sensors Actuators B Chem 218, 8–15 (2015).

    Google Scholar 

  150. 150.

    Yen, Y.-K., Capua, E. & Naaman, R. Application of a GaAs-based sensor for detecting hemoglobin in gastrointestinal environments. IEEE Sens. J. 17, 660–666 (2017).

    CAS  Google Scholar 

  151. 151.

    Schostek, S. et al. Telemetric real-time sensor for the detection of acute upper gastrointestinal bleeding. Biosens. Bioelectron 78, 524–529 (2016).

    CAS  PubMed  Google Scholar 

  152. 152.

    Qiao, P., Liu, H., Yan, X., Jia, Z. & Pi, X. A. Smart capsule system for automated detection of intestinal bleeding using HSL color recognition. PLOS ONE 11, e0166488 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. 153.

    Kapsoritakis, A. N. et al. Mean platelet volume: a useful marker of inflammatory bowel disease activity. Am. J. Gastroenterol. 96, 776–781 (2001).

    CAS  PubMed  Google Scholar 

  154. 154.

    Schostek, S. et al. Volunteer case series of a new telemetric sensor for blood detection in the upper gastrointestinal tract: the HemoPill. Dig. Dis. Sci. 61, 2956–2962 (2016).

    PubMed  Google Scholar 

  155. 155.

    Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Momozawa, Y., Deffontaine, V., Louis, E. & Medrano, J. F. Characterization of bacteria in biopsies of colon and stools by high throughput sequencing of the V2 region of bacterial 16s rRNA gene in human. PLOS ONE 6, e16952 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Wolin, M. J. Fermentation in the rumen and human large intestine. Science 213, 1463–1468 (1981).

    CAS  PubMed  Google Scholar 

  158. 158.

    Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Google Scholar 

  159. 159.

    Kalantar-Zadeh, K. et al. Intestinal gas capsules: a proof-of-concept demonstration. Gastroenterology 150, 37–39 (2016).

    PubMed  Google Scholar 

  160. 160.

    Ou, J. Z. et al. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. Sci. Rep. 6, 33387 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Deutsch, J. C. The optical biopsy of small gastric lesions. Gastrointest. Endosc. 79, 64–65 (2014).

    PubMed  Google Scholar 

  162. 162.

    Qumseya, B. J. et al. Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with barrett’s esophagus: a meta-analysis and systematic review. Clin. Gastroenterol. Hepatol. 11, 1562–1570 (2013).

    PubMed  PubMed Central  Google Scholar 

  163. 163.

    Su, P. et al. Efficacy of confocal laser endomicroscopy for discriminating colorectal neoplasms from non-neoplasms: a systematic review and meta-analysis. Colorectal Dis. 15, e1–e12 (2013).

    CAS  PubMed  Google Scholar 

  164. 164.

    Ypsilantis, E., Pissas, D., Papagrigoriadis, S. & Haji, A. Use of confocal laser endomicroscopy to assess the adequacy of endoscopic treatment of gastrointestinal neoplasia. Surg. Laparosc. Endosc. Percutan. Tech. 25, 1–5 (2015).

    PubMed  Google Scholar 

  165. 165.

    Fugazza, A. et al. Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases: a systematic review and meta-analysis. Biomed. Res. Int. 2016, 4638683 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Mori, Y., Kudo, S., Berzin, T., Misawa, M. & Takeda, K. Computer-aided diagnosis for colonoscopy. Endoscopy 49, 813–819 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. 167.

    Leggett, C. L. & Wang, K. K. Computer-aided diagnosis in GI endoscopy: looking into the future. Gastrointest. Endosc. 84, 842–844 (2016).

    PubMed  Google Scholar 

  168. 168.

    Kang, J. U. Virtual biopsy. Proc. IEEE 98, 503–505 (2010).

    CAS  Google Scholar 

  169. 169.

    Neumann, H. et al. Review article: In vivo imaging by endocytoscopy. Aliment. Pharmacol. Ther. 33, 1183–1193 (2011).

    CAS  PubMed  Google Scholar 

  170. 170.

    Tabatabaei, N. et al. Clinical translation of tethered confocal microscopy capsule for unsedated diagnosis of eosinophilic esophagitis. Sci. Rep. 8, 2631 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. 171.

    Zagaynova, E., Gladkova, N., Shakhova, N., Gelikonov, G. & Gelikonov, V. Endoscopic OCT with forward-looking probe: clinical studies in urology and gastroenterology. J. Biophotonics 1, 114–128 (2008).

    CAS  PubMed  Google Scholar 

  172. 172.

    Hatta, W. et al. Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma. Gastrointest. Endosc. 71, 899–906 (2010).

    PubMed  Google Scholar 

  173. 173.

    Isenberg, G. et al. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointest. Endosc. 62, 825–831 (2005).

    PubMed  Google Scholar 

  174. 174.

    Chauhan, S. S. et al. Confocal laser endomicroscopy. Gastrointest. Endosc. 80, 928–938 (2014).

    Google Scholar 

  175. 175.

    Carignan, C. S. & Yagi, Y. Optical endomicroscopy and the road to real-time, in vivo pathology: present and future. Diagn. Pathol. 7, 98 (2012).

    PubMed  PubMed Central  Google Scholar 

  176. 176.

    Adrain, A. L. et al. High-resolution endoluminal sonography is a sensitive modality for the identification of Barrett’s metaplasia. Gastrointest. Endosc. 46, 147–151 (1997).

    CAS  PubMed  Google Scholar 

  177. 177.

    Murata, Y. et al. Small ultrasonic probes for determination of the depth of superficial esophageal cancer. Gastrointest. Endosc. 44, 23–28 (1996).

    CAS  PubMed  Google Scholar 

  178. 178.

    Nguyen, N. Q. & Leong, R. W. L. Current application of confocal endomicroscopy in gastrointestinal disorders. J. Gastroenterol. Hepatol. 23, 1483–1491 (2008).

    PubMed  Google Scholar 

  179. 179.

    Thompson, A. J. et al. The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction. Nat. Rev. Gastroenterol. Hepatol. 14, 727–738 (2017).

    PubMed  Google Scholar 

  180. 180.

    Roy, H. K., Goldberg, M. J., Bajaj, S. & Backman, V. Colonoscopy and optical biopsy: bridging technological advances to clinical practice. Gastroenterology 140, 1863–1867 (2011).

    PubMed  PubMed Central  Google Scholar 

  181. 181.

    Than, T. D., Alici, G., Zhou, H. & Li, W. A review of localization systems for robotic endoscopic capsules. IEEE Trans. Biomed. Eng. 59, 2387–2399 (2012).

    PubMed  Google Scholar 

  182. 182.

    Mateen, H., Basar, R., Ahmed, A. U. & Ahmad, M. Y. Localization of wireless capsule endoscope: a systematic review. IEEE Sens. J. 17, 1197–1206 (2017).

    Google Scholar 

  183. 183.

    Ahmad, O. F. et al. Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. Lancet Gastroenterol. Hepatol. 4, 71–80 (2019).

    PubMed  Google Scholar 

  184. 184.

    Brandao, P. et al. Towards a computed-aided diagnosis system in colonoscopy: automatic polyp segmentation using convolution neural networks. J. Med. Robot. Res. 3, 1840002 (2018).

    Google Scholar 

  185. 185.

    Koulaouzidis, A. et al. Novel experimental and software methods for image reconstruction and localization in capsule endoscopy. Endosc. Int. Open 6, E205–E210 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. 186.

    Visentini-Scarzanella, M. et al. A structured light laser probe for gastrointestinal polyp size measurement: a preliminary comparative study. Endosc. Int. Open 6, E602–E609 (2018).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Dimas, G., Iakovidis, D. K., Karargyris, A., Ciuti, G. & Koulaouzidis, A. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy. Meas. Sci. Technol. 28, 094005 (2017).

    Google Scholar 

  188. 188.

    Fischer, D., Schreiber, R., Levi, D. & Eliakim, R. Capsule endoscopy: the localization system. Gastrointest. Endosc. Clin. N. Am. 14, 25–31 (2004).

    PubMed  Google Scholar 

  189. 189.

    Ciuti, G., Menciassi, A. & Dario, P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).

    PubMed  Google Scholar 

  190. 190.

    Hu, C. et al. A cubic 3-axis magnetic sensor array for wirelessly tracking magnet position and orientation. IEEE Sens. J. 10, 903–913 (2010).

    Google Scholar 

  191. 191.

    Taddese, A. Z. et al. Enhanced real-time pose estimation for closed loop robotic manipulation of magnetically actuated capsule endoscopes. Int. J. Rob. Res. 37, 890–911 (2018).

    PubMed  Google Scholar 

  192. 192.

    Levinthal, G. N., Burke, C. A. & Santisi, J. M. The accuracy of an endoscopy nurse in interpreting capsule endoscopy. Am. J. Gastroenterol. 98, 2669–2671 (2003).

    PubMed  Google Scholar 

  193. 193.

    Lai, L. H. et al. Inter-observer variations on interpretation of capsule endoscopies. Eur. J. Gastroenterol. Hepatol. 18, 283–286 (2006).

    PubMed  Google Scholar 

  194. 194.

    Riphaus, A., Richter, S., Vonderach, M. & Wehrmann, T. Capsule endoscopy interpretation by an endoscopy nurse - a comparative trial. Z. Gastroenterol. 47, 273–276 (2009).

    CAS  PubMed  Google Scholar 

  195. 195.

    Dokoutsidou, H. et al. A study comparing an endoscopy nurse and an endoscopy physician in capsule endoscopy interpretation. Eur. J. Gastroenterol. Hepatol. 23, 166–170 (2011).

    PubMed  Google Scholar 

  196. 196.

    Deeba, F., Islam, M., Bui, F. M. & Wahid, K. A. Performance assessment of a bleeding detection algorithm for endoscopic video based on classifier fusion method and exhaustive feature selection. Biomed. Signal Process. Control 40, 415–424 (2018).

    Google Scholar 

  197. 197.

    Hassan, A. R. & Haque, M. A. Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos. Comput. Methods Programs Biomed. 122, 341–353 (2015).

    PubMed  Google Scholar 

  198. 198.

    Sainju, S., Bui, F. M. & Wahid, K. A. Automated bleeding detection in capsule endoscopy videos using statistical features and region growing. J. Med. Syst. 38, 25 (2014).

    PubMed  Google Scholar 

  199. 199.

    Buscaglia, J. M. et al. Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6, 298–301 (2008).

    PubMed  Google Scholar 

  200. 200.

    Doi, K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31, 198–211 (2007).

    PubMed  PubMed Central  Google Scholar 

  201. 201.

    Liu, D. Y. et al. Identification of lesion images from gastrointestinal endoscope based on feature extraction of combinational methods with and without learning process. Med. Image Anal. 32, 281–294 (2016).

    PubMed  Google Scholar 

  202. 202.

    Iakovidis, D. K. & Koulaouzidis, A. in 2014 IEEE Int. Conf. Image Process. (ICIP) 2236–2240 (IEEE, 2014).

  203. 203.

    Gan, T., Wu, J. C., Rao, N. N., Chen, T. & Liu, B. A feasibility trial of computer-aided diagnosis for enteric lesions in capsule endoscopy. World J. Gastroenterol. 14, 6929–6935 (2008).

    PubMed  PubMed Central  Google Scholar 

  204. 204.

    Li, B. et al. in 2009 IEEE Int. Conf. Robot. Biomimet. (ROBIO) 2326–2331 (IEEE, 2009).

  205. 205.

    Eid, A., Charisis, V. S., Hadjileontiadis, L. J. & Sergiadis, G. D. in Proc. 26th IEEE Int. Symp. Comput. Med. Syst. 273–278 (IEEE, 2013).

  206. 206.

    Koshy, N. E. & Gopi, V. P. A. in 2015 2nd Int. Conf. Electron. Commun. Syst. (ICECS) 1725–1729 (IEEE, 2015).

  207. 207.

    Li, B. & Meng, M. Q. H. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection. IEEE Trans. Inf. Technol. Biomed. 16, 323–329 (2012).

    PubMed  Google Scholar 

  208. 208.

    Liu, G., Yan, G., Kuang, S. & Wang, Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput. Biol. Med. 70, 131–138 (2016).

    PubMed  Google Scholar 

  209. 209.

    Barbosa, D. C., Roupar, D. B., Ramos, J. C., Tavares, A. C. & Lima, C. S. Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images. Biomed. Eng. Online 11, 3 (2012).

    PubMed  PubMed Central  Google Scholar 

  210. 210.

    Barbosa, D. J. C., Ramos, J., Correia, J. H. & Lima, C. S. in 2009 Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 6683–6686 (IEEE, 2009).

  211. 211.

    Li, B., Meng, M. Q. H. & Lau, J. Y. W. Computer-aided small bowel tumor detection for capsule endoscopy. Artif. Intell. Med. 52, 11–16 (2011).

    PubMed  Google Scholar 

  212. 212.

    Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N. & Tsai, Y. R. Automated polyp detection in colon capsule endoscopy by automated polyp detection in colon capsule endoscopy. IEEE Trans. Med. Imaging 33, 1488–1502 (2014).

    PubMed  Google Scholar 

  213. 213.

    Fu, Y., Zhang, W., Mandal, M. & Meng, M. Q. H. Computer-aided bleeding detection in WCE video. IEEE J. Biomed. Health Inform. 18, 636–642 (2014).

    PubMed  Google Scholar 

  214. 214.

    Yeh, J.-Y., Wu, T.-H. & Tsai, W.-J. Bleeding and ulcer detection using wireless capsule endoscopy images. J. Softw. Eng. Appl. 07, 422–432 (2014).

    Google Scholar 

  215. 215.

    Liu, X., Gu, J., Xie, Y., Xiong, J. & Qin, W. in Proc. 2012 IEEE-EMBS Int. Conf. Biomed. Health Informatics 737–740 (IEEE, 2012).

  216. 216.

    Yuan, Y., Li, B. & Meng, M. Q. H. Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE J. Biomed. Health Inform. 20, 624–630 (2016).

    PubMed  Google Scholar 

  217. 217.

    Liedlgruber, M. & Uhl, A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev. Biomed. Eng. 4, 73–88 (2011).

    PubMed  Google Scholar 

  218. 218.

    Karargyris, A. & Bourbakis, N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans. Biomed. Eng. 58, 2777–2786 (2011).

    PubMed  Google Scholar 

  219. 219.

    Szczypin´ski, P., Klepaczko, A., Pazurek, M. & Daniel, P. Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Comput. Methods Programs Biomed. 113, 396–411 (2014).

    Google Scholar 

  220. 220.

    Garcia-Allende, P. B. et al. Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues. Biomed. Opt. Express 2, 2821 (2011).

    PubMed  PubMed Central  Google Scholar 

  221. 221.

    Ughi, G. J. et al. Automated segmentation and characterization of esophageal wall in vivo by tethered capsule optical coherence tomography endomicroscopy. Biomed. Opt. Express 7, 409 (2016).

    PubMed  PubMed Central  Google Scholar 

  222. 222.

    Tsai, T.-H., Leggett, C. L. & Trindade, A. J. Optical coherence tomography in gastroenterology: a review and future outlook. J. Biomed. Opt. 22, 1 (2017).

    PubMed  Google Scholar 

  223. 223.

    Inomata, H. et al. Efficacy of a novel auto-fluorescence imaging system with computer-assisted color analysis for assessment of colorectal lesions. World J. Gastroenterol. 19, 7146–7153 (2013).

    PubMed  PubMed Central  Google Scholar 

  224. 224.

    Kanesaka, T. et al. Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging. Gastrointest. Endosc. 87, 1339–1344 (2018).

    PubMed  Google Scholar 

  225. 225.

    Gadermayr, M. in 2016 IEEE 13th Int. Symp. Biomed. Imaging (ISBI) 355–359 (IEEE, 2016).

  226. 226.

    Takemura, Y. et al. Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest. Endosc. 75, 179–185 (2012).

    PubMed  Google Scholar 

  227. 227.

    Tamaki, T. et al. Computer-aided colorectal tumor classification in NBI endoscopy: using local features. Med. Image Anal. 17, 78–100 (2013).

    PubMed  Google Scholar 

  228. 228.

    Medtronic. Smartpill™ motility testing system: product portfolio. Medtronic http://www.medtronic.com/covidien/en-us/products/motility-testing/smartpill-motility-testing-system.html (2019).

  229. 229.

    Medtronic. BRAVO: product brochure. Medtronic https://www.medtronic.com/covidien/en-us/products/reflux-testing/bravo-reflux-testing-system.html (2015).

  230. 230.

    US Food and Drug Administration. FDA approval of Capsocam Plus. FDA https://www.accessdata.fda.gov/cdrh_docs/pdf16/K161773.pdf (2016).

  231. 231.

    Medtronic. Pillcam™ UGI system: product portfolio. Medtronic http://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-ugi-system.html (2019).

  232. 232.

    Medtronic. Pillcam™ SB 3 system: product portfolio. Medtronic http://www.medtronic.com/covidien/en-us/products/capsule-endoscopy/pillcam-sb-3-system.html (2019).

  233. 233.

    Olympus. Capsule Endoscopy: Endocapsule (MAJ-2027). medical.olympusamerica http://medical.olympusamerica.com/products/endocapsule-maj-2027 (2019).

  234. 234.

    CapsoVision. CapsoCam® Plus: product specifications. CapsoVision http://www.capsovision.com/physicians/product-specifications (2019).

  235. 235.

    Aquilant. OMOM 2: capsule specifications. Aquilant http://www.aquilantendoscopy.com/products/products_detail.asp?subp=products_by_all.asp&idProduct=12874 (2018).

  236. 236.

    Zhang, L. et al. Diagnostic value of OMOM capsule endoscopy for small bowel diseases in adults. Exp. Ther. Med. 15, 3467–3470 (2018).

    PubMed  PubMed Central  Google Scholar 

  237. 237.

    Pioche, M. et al. Prospective randomized comparison between axial- and lateral-viewing capsule endoscopy systems in patients with obscure digestive bleeding. Endoscopy 46, 479–484 (2014).

    PubMed  Google Scholar 

  238. 238.

    Tontini, G. E. et al. Extensive small-bowel Crohn’s disease detected by the newly introduced 360° panoramic viewing capsule endoscopy system. Endoscopy 46 (Suppl. 1), E353–E354 (2014).

    PubMed  Google Scholar 

  239. 239.

    Motilis Medica SA. GI motility monitoring: MTS2 capsule. Motilis http://www.motilis.com/V3/index.php?nav=4 (2009).

  240. 240.

    Worsøe, J. et al. Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system. BMC Gastroenterol. 11, 145 (2011).

    PubMed  Google Scholar 

  241. 241.

    Becker, D. et al. Novel orally swallowable IntelliCap® device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS PharmSciTech 15, 1490–1497 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. 242.

    Spada, C. et al. Colon capsule endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 44, 527–536 (2012).

    CAS  PubMed  Google Scholar 

  243. 243.

    Atkins, D. et al. Grading quality of evidence and strength of recommendations. BMJ 328, 1490 (2004).

    PubMed  Google Scholar 

  244. 244.

    Harbour, R. & Miller, J. A new system for grading recommendations in evidence based guidelines. BMJ 323, 334–336 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. 245.

    SynMed. Small bowel disorders - fast, accurate diagnosis with capsule endoscopy. SynMed http://www.synmed.co.uk/products_capsule_endoscopy.htm (2018).

  246. 246.

    IntroMedic. Product: MiroCam® (Capsule Endoscope). IntroMedic http://www.intromedic.com/eng/item/item_010100_view.asp?search_kind=&gotopage=1&no=3. (2017).

Download references

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council under the grant EP/K034537/1, entitled Sonopill, and by the European Commission within the framework of the “Endoscopic versatile robotic guidance, diagnosis and therapy of magnetic-driven soft-tethered endoluminal robots” Project-H2020-ICT-24-2015 (EU Project-G.A. number: 688592). The authors acknowledge the support of V. Mitrakos in reviewing this manuscript.

Author information

Affiliations

Authors

Contributions

G.Cu., B.F.C., G.Ci., T.A. and M.P.Y.D. wrote the article. All authors researched data and discussed content for the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Gerard Cummins.

Ethics declarations

Competing interests

A.K. has received material support for research from SynMedUK and travel support from Aquilant/Jinshan Technology. He was awarded a European Society of Gastrointestinal Endoscopy (ESGE)-Given Imaging grant in 2011 and is a co-founder of AJM Medicaps. J.N.P. sits on the advisory board of Dr Falk and has previously received research support from Fujifilm. S.C., M.P.Y.D., B.F.C. and G.Cu. were all members of the Sonopill project, which was funded by the Engineering and Physical Sciences Research Council. G.Ci. and A.K. are funded by the European Commission under the “Endoscopic versatile robotic guidance, diagnosis and therapy of magnetic-driven soft-tethered endoluminal robots” Project-H2020-ICT-24-2015 (EU Project-G.A. number: 688592).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Single-element transducers

Devices generally consisting of a piezoelectric material housed in a casing that can both transmit and receive ultrasound signals.

Photobleaching

The permanent loss of fluorescence in a fluorophore owing to photon-induced chemical damage.

Quantum yield

The number of times a specific event occurs per photon absorbed by the system in a radiation-induced process.

Volumetric imaging

A sequence of 2D images that are grouped together to form a 3D image of a volume of space.

Compton scattering

The scattering of a photon by a charge particle that results in a decrease in energy of the photon.

Potentiostatic circuits

Electronic circuits that enable the control of the voltage difference between electrodes in an electrochemical cell.

Cyclic voltammetry

A type of voltammetric experiment in which the potential is varied as a linear function of time. It is one of the most commonly used electrochemical techniques.

Pulsed voltammetry

A type of voltammetric experiment in which the varying potential consists of a series of increasing amplitude, with the potential returning to the initial value after each pulse.

Voltammograms

Plots of cell current versus the potential arising from a voltammetry experiment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cummins, G., Cox, B.F., Ciuti, G. et al. Gastrointestinal diagnosis using non-white light imaging capsule endoscopy. Nat Rev Gastroenterol Hepatol 16, 429–447 (2019). https://doi.org/10.1038/s41575-019-0140-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing