Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cholangiocyte pathobiology

Abstract

Cholangiocytes, the epithelial cells lining the intrahepatic and extrahepatic bile ducts, are highly specialized cells residing in a complex anatomic niche where they participate in bile production and homeostasis. Cholangiocytes are damaged in a variety of human diseases termed cholangiopathies, often causing advanced liver failure. The regulation of cholangiocyte transport properties is increasingly understood, as is their anatomical and functional heterogeneity along the biliary tract. Furthermore, cholangiocytes are pivotal in liver regeneration, especially when hepatocyte regeneration is compromised. The role of cholangiocytes in innate and adaptive immune responses, a critical subject relevant to immune-mediated cholangiopathies, is also emerging. Finally, reactive ductular cells are present in many cholestatic and other liver diseases. In chronic disease states, this repair response contributes to liver inflammation, fibrosis and carcinogenesis and is a subject of intense investigation. This Review highlights advances in cholangiocyte research, especially their role in development and liver regeneration, their functional and biochemical heterogeneity, their activation and involvement in inflammation and fibrosis and their engagement with the immune system. We aim to focus further attention on cholangiocyte pathobiology and the search for new disease-modifying therapies targeting the cholangiopathies.

Key points

  • Cholangiocytes are epithelial cells lining the intrahepatic and extrahepatic bile ducts; they are heterogeneous in size and function and contribute to bile composition and flow by solute transport processes.

  • Cholangiocytes contribute to liver regeneration, especially when hepatocyte regeneration is compromised, as is often the case in human chronic liver diseases.

  • Cholangiocytes can become activated and participate in inflammation by secreting chemokines and cytokines and can also directly modulate the biology of myofibroblasts, the cell type responsible for collagen deposition within the liver.

  • Cholangiocytes can become senescent and participate in the senescence-associated secretory phenotype, a cell fate also characterized by cytokine generation and release.

  • Cholangiocytes participate in hepatic immunobiology, particularly by expressing Toll-like receptors (TLRs), contributing to immunoglobulin A (IgA) biology, and by cellular crosstalk with the innate and adaptive immune system.

  • Cholangiocytes are damaged in a variety of human liver diseases termed the cholangiopathies, which are in need of optimized therapies and represent a current unmet need in clinical medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ductal bile formation.
Fig. 2: Molecular mechanisms regulating biliary secretion and absorption.
Fig. 3: Potential sources of cholangiocytes in development and liver regeneration.
Fig. 4: Ductular reaction and ductular-reactive cells.
Fig. 5: Key aspects of cholangiocyte immunobiology.

Similar content being viewed by others

References

  1. Masyuk, A. I., M. T. & LaRusso, N. F. in Physiology of the Gastrointestinal Tract (ed. Ghishan, F. K.) 1003–1023 (Elsevier Inc., 2018).

  2. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Gaudio, E. et al. Cholangiocytes and blood supply. World J. Gastroenterol. 12, 3546–3552 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morell, C. M., Fabris, L. & Strazzabosco, M. Vascular biology of the biliary epithelium. J. Gastroenterol. Hepatol. 28 (Suppl. 1), 26–32 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alvaro, D. et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 132, 415–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Lazaridis, K. N., Strazzabosco, M. & Larusso, N. F. The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127, 1565–1577 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lazaridis, K. N. & LaRusso, N. F. Primary sclerosing cholangitis. N. Engl. J. Med. 375, 1161–1170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lemaigre, F. P. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 137, 62–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Raynaud, P., Carpentier, R., Antoniou, A. & Lemaigre, F. P. Biliary differentiation and bile duct morphogenesis in development and disease. Int. J. Biochem. Cell Biol. 43, 245–256 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Strazzabosco, M. & Fabris, L. Functional anatomy of normal bile ducts. Anat. Rec. 291, 653–660 (2008).

    Article  Google Scholar 

  11. Banales, J. M., Prieto, J. & Medina, J. F. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J. Gastroenterol. 12, 3496–3511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tabibian, J. H., Masyuk, A. I., Masyuk, T. V., O’Hara, S. P. & LaRusso, N. F. Physiology of cholangiocytes. Compr. Physiol. 3, 541–565 (2013).

    PubMed  Google Scholar 

  13. Han, Y. et al. Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Exp. Biol. Med. 238, 549–565 (2013).

    Article  CAS  Google Scholar 

  14. Alpini, G. et al. Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal bile secretion. Am. J. Physiol. 272, G1064–G1074 (1997).

    CAS  PubMed  Google Scholar 

  15. Alpini, G. et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 110, 1636–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Ishii, M., Vroman, B. & LaRusso, N. F. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology 97, 1236–1247 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Kanno, N., LeSage, G., Glaser, S., Alvaro, D. & Alpini, G. Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 31, 555–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ludwig, J., Ritman, E. L., LaRusso, N. F., Sheedy, P. F. & Zumpe, G. Anatomy of the human biliary system studied by quantitative computer-aided three-dimensional imaging techniques. Hepatology 27, 893–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Vroman, B. & LaRusso, N. F. Development and characterization of polarized primary cultures of rat intrahepatic bile duct epithelial cells. Lab. Invest. 74, 303–313 (1996).

    CAS  PubMed  Google Scholar 

  20. Huang, B. Q. et al. Isolation and characterization of cholangiocyte primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G500–G509 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. De La Iglesia, F. A. & Porta, E. A. Ciliated biliary epithelial cells in the livers of non-human primates. Experientia 23, 49–51 (1967).

    Article  Google Scholar 

  22. Boyer, J. L. in Physiology of Membrane Disorders (eds Andreoli, T. E., Hoffman, J. F., Fanestil, D. D. & Schultz, S.) 609–636 (Springer US, 1986).

  23. Banales, J. M. et al. Bicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger. Hepatology 43, 266–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lenzen, R., Alpini, G. & Tavoloni, N. Secretin stimulates bile ductular secretory activity through the cAMP system. Am. J. Physiol. 263, G527–G532 (1992).

    CAS  PubMed  Google Scholar 

  25. Alvaro, D., Mennone, A. & Boyer, J. L. Role of kinases and phosphatases in the regulation of fluid secretion and Cl/HCO3- exchange in cholangiocytes. Am. J. Physiol. 273, G303–G313 (1997).

    CAS  PubMed  Google Scholar 

  26. Tietz, P. S. et al. Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J. Biol. Chem. 278, 20413–20419 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hohenester, S. et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Tietz, P. S., Alpini, G., Pham, L. D. & Larusso, N. F. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am. J. Physiol. 269, G110–G118 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Kaminski, D. L. & Deshpande, Y. G. Effect of somatostatin and bombesin on secretin-stimulated ductular bile flow in dogs. Gastroenterology 85, 1239–1247 (1983).

    CAS  PubMed  Google Scholar 

  30. Glaser, S. S. et al. Gastrin inhibits secretin-induced ductal secretion by interaction with specific receptors on rat cholangiocytes. Am. J. Physiol. 273, G1061–G1070 (1997).

    CAS  PubMed  Google Scholar 

  31. Caligiuri, A. et al. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes. Am. J. Physiol. 275, G835–G846 (1998).

    CAS  PubMed  Google Scholar 

  32. Medina, J. F., Martinez, A., Vazquez, J. J. & Prieto, J. Decreased anion exchanger 2 immunoreactivity in the liver of patients with primary biliary cirrhosis. Hepatology 25, 12–17 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Melero, S. et al. Defective regulation of cholangiocyte Cl/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 35, 1513–1521 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Prieto, J. et al. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 117, 167–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Banales, J. M. et al. Up-regulation of microRNA 506 leads to decreased Cl/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 56, 687–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Erice, O. et al. MicroRNA-506 promotes primary biliary cholangitis-like features in cholangiocytes and immune activation. Hepatology 67, 1420–1440 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Salas, J. T. et al. Ae2a, b-deficient mice develop antimitochondrial antibodies and other features resembling primary biliary cirrhosis. Gastroenterology 134, 1482–1493 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Concepcion, A. R. et al. Anion exchanger 2 is critical for CD8(+) T cells to maintain pHi homeostasis and modulate immune responses. Eur. J. Immunol. 44, 1341–1351 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Concepcion, A. R. et al. CD8+T cells undergo activation and programmed death-1 repression in the liver of aged Ae2a, b−/− mice favoring autoimmune cholangitis. Oncotarget 6, 28588–28606 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Colombo, C., Battezzati, P. M., Strazzabosco, M. & Podda, M. Liver and biliary problems in cystic fibrosis. Semin. Liver Dis. 18, 227–235 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Nyberg, B., Einarsson, K. & Sonnenfeld, T. Evidence that vasoactive intestinal peptide induces ductular secretion of bile in humans. Gastroenterology 96, 920–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Hirata, K. & Nathanson, M. H. Bile duct epithelia regulate biliary bicarbonate excretion in normal rat liver. Gastroenterology 121, 396–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. LeSage, G. D. et al. Alpha-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca(2+)- and PKC-dependent stimulation of cAMP. Hepatology 40, 1116–1127 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Glaser, S. et al. Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-gamma expression and decrease of PKA activity. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G683–G694 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Kanno, N. et al. Stimulation of alpha2-adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology 35, 1329–1340 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Francis, H. et al. The alpha2-adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am. J. Physiol. Cell Physiol. 293, C1252–C1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Dutta, A. K. et al. Identification and functional characterization of TMEM16A, a Ca2+-activated Cl− channel activated by extracellular nucleotides, in biliary epithelium. J. Biol. Chem. 286, 766–776 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Roman, R. M., Feranchak, A. P., Salter, K. D., Wang, Y. & Fitz, J. G. Endogenous ATP release regulates Cl secretion in cultured human and rat biliary epithelial cells. Am. J. Physiol. 276, G1391–G1400 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Concepcion, A. R., Lopez, M., Ardura-Fabregat, A. & Medina, J. F. Role of AE2 for pHi regulation in biliary epithelial cells. Front. Physiol. 4, 413 (2013).

    PubMed  Google Scholar 

  50. Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

    Article  CAS  Google Scholar 

  51. Lamri, Y., Erlinger, S., Dumont, M., Roda, A. & Feldmann, G. Immunoperoxidase localization of ursodeoxycholic acid in rat biliary epithelial cells. Evidence for a cholehepatic circulation. Liver 12, 351–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Lazaridis, K. N. et al. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J. Clin. Invest. 100, 2714–2721 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lazaridis, K. N. et al. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc. Natl Acad. Sci. USA 97, 11092–11097 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kool, M. et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl Acad. Sci. USA 96, 6914–6919 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soroka, C. J., Lee, J. M., Azzaroli, F. & Boyer, J. L. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33, 783–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ballatori, N. et al. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42, 1270–1279 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Ballatori, N. et al. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front. Biosci. 14, 2829–2844 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  58. Benedetti, A. et al. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Am. J. Physiol. 272, G1416–G1424 (1997).

    CAS  PubMed  Google Scholar 

  59. Hirohashi, T., Suzuki, H., Takikawa, H. & Sugiyama, Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem. 275, 2905–2910 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Lazaridis, K. N., Pham, L., Vroman, B., de Groen, P. C. & LaRusso, N. F. Kinetic and molecular identification of sodium-dependent glucose transporter in normal rat cholangiocytes. Am. J. Physiol. 272, G1168–G1174 (1997).

    CAS  PubMed  Google Scholar 

  61. Ballatori, N., Jacob, R. & Boyer, J. L. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 261, 7860–7865 (1986).

    CAS  PubMed  Google Scholar 

  62. Ballatori, N., Jacob, R., Barrett, C. & Boyer, J. L. Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am. J. Physiol. 254, G1–G7 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Masyuk, A. I., Masyuk, T. V. & LaRusso, N. F. Cholangiocyte primary cilia in liver health and disease. Dev. Dyn. 237, 2007–2012 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Masyuk, A. I. et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131, 911–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Masyuk, A. I. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G725–G734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masyuk, A. I. et al. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1013–G1024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gradilone, S. A. et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc. Natl Acad. Sci. USA 104, 19138–19143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Masyuk, A. I. et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G990–G999 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ober, E. A. & Lemaigre, F. P. Development of the liver: Insights into organ and tissue morphogenesis. J. Hepatol. 68, 1049–1062 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Michalopoulos, G. K. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 65, 1384–1392 (2017).

    Article  PubMed  Google Scholar 

  71. Strazzabosco, M. & Fabris, L. Development of the bile ducts: essentials for the clinical hepatologist. J. Hepatol. 56, 1159–1170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lemaigre, F. P. Molecular mechanisms of biliary development. Prog. Mol. Biol. Transl Sci. 97, 103–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Tchorz, J. S. et al. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50, 871–879 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Decaens, T. et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47, 247–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Clotman, F. et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev. 19, 1849–1854 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yanai, M. et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev. Dyn. 237, 1268–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kamiya, A. & Gonzalez, F. J. TNF-alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology 40, 527–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Gordillo, M., Evans, T. & Gouon-Evans, V. Orchestrating liver development. Development 142, 2094–2108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shin, D. & Monga, S. P. Cellular and molecular basis of liver development. Compr. Physiol. 3, 799–815 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet. 16, 243–251 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Zong, Y. & Stanger, B. Z. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip. Rev. Dev. Biol. 1, 643–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Merino-Azpitarte, M. et al. SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. J. Hepatol. 67, 72–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Itoh, T. Stem/progenitor cells in liver regeneration. Hepatology 64, 663–668 (2016).

    Article  PubMed  Google Scholar 

  85. Duncan, A. W., Dorrell, C. & Grompe, M. Stem cells and liver regeneration. Gastroenterology 137, 466–481 (2009).

    Article  PubMed  Google Scholar 

  86. Stanger, B. Z. Cellular homeostasis and repair in the mammalian liver. Annu. Rev. Physiol. 77, 179–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Preziosi, M. E. & Monga, S. P. Update on the mechanisms of liver regeneration. Semin. Liver Dis. 37, 141–151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Michalopoulos, G. K. & DeFrances, M. C. Liver regeneration. Science 276, 60–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Itoh, T. & Miyajima, A. Liver regeneration by stem/progenitor cells. Hepatology 59, 1617–1626 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Lanzoni, G., Cardinale, V. & Carpino, G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology 64, 277–286 (2016).

    Article  PubMed  Google Scholar 

  91. Sato, K. et al. Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69, 420–430 (2018).

    Article  PubMed  Google Scholar 

  92. Alvaro, D., Gigliozzi, A. & Attili, A. F. Regulation and deregulation of cholangiocyte proliferation. J. Hepatol. 33, 333–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Svegliati-Baroni, G. et al. Estrogens maintain bile duct mass and reduce apoptosis after biliodigestive anastomosis in bile duct ligated rats. J. Hepatol. 44, 1158–1166 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Alvaro, D. et al. Estrogens and the pathophysiology of the biliary tree. World J. Gastroenterol. 12, 3537–3545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Glaser, S. et al. Progesterone stimulates the proliferation of female and male cholangiocytes via autocrine/paracrine mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G124–G136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, F. et al. Castration inhibits biliary proliferation induced by bile duct obstruction: novel role for the autocrine trophic effect of testosterone. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G981–G991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat. Med. 18, 572–579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Espanol-Suner, R. et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143, 1564–1575 (2012).

    Article  PubMed  Google Scholar 

  99. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Huch, M. et al. In vitro expansion of single Lgr5+liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kamimoto, K. et al. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 5, e15034 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lu, W. Y. et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 17, 971–983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Malato, Y. et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Invest. 121, 4850–4860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rodrigo-Torres, D. et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 60, 1367–1377 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Sackett, S. D. et al. Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49, 920–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Schaub, J. R., Malato, Y., Gormond, C. & Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 8, 933–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tarlow, B. D., Finegold, M. J. & Grompe, M. Clonal tracing of Sox9+liver progenitors in mouse oval cell injury. Hepatology 60, 278–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Overi, D. et al. Contribution of resident stem cells to liver and biliary tree regeneration in human diseases. Int. J. Mol. Sci. 19, 2917 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  110. Michalopoulos, G. K. & Khan, Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149, 876–882 (2015).

    Article  PubMed  Google Scholar 

  111. Choi, T. Y., Ninov, N., Stainier, D. Y. & Shin, D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. He, J., Lu, H., Zou, Q. & Luo, L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Raven, A. et al. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schaub, J. R. et al. De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation. Nature 557, 247–251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lemaigre, F. P. Determining the fate of hepatic cells by lineage tracing: facts and pitfalls. Hepatology 61, 2100–2103 (2015).

    Article  PubMed  Google Scholar 

  116. Kopp, J. L., Grompe, M. & Sander, M. Stem cells versus plasticity in liver and pancreas regeneration. Nat. Cell Biol. 18, 238–245 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. O’Hara, S. P., Karlsen, T. H. & LaRusso, N. F. Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut 66, 1873–1877 (2017).

    Article  PubMed  CAS  Google Scholar 

  118. O’Hara, S. P., Tabibian, J. H., Splinter, P. L. & LaRusso, N. F. The dynamic biliary epithelia: molecules, pathways, and disease. J. Hepatol. 58, 575–582 (2013).

    Article  PubMed  Google Scholar 

  119. Pinto, C., Giordano, D. M., Maroni, L. & Marzioni, M. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim. Biophys. Acta 1864, 1270–1278 (2018).

    Article  CAS  Google Scholar 

  120. Strazzabosco, M. et al. Pathophysiologic implications of innate immunity and autoinflammation in the biliary epithelium. Biochim. Biophys. Acta 1864, 1374–1379 (2018).

    Article  CAS  Google Scholar 

  121. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    Article  PubMed  CAS  Google Scholar 

  122. Blechacz, B. & Gores, G. J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 48, 308–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Adams, D. H. Biliary epithelial cells: innocent victims or active participants in immune-mediated liver disease? J. Lab. Clin. Med. 128, 528–530 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Zhu, C., Fuchs, C. D., Halilbasic, E. & Trauner, M. Bile acids in regulation of inflammation and immunity: friend or foe? Clin. Exp. Rheumatol 34, 25–31 (2016).

    PubMed  Google Scholar 

  125. Fabris, L., Spirli, C., Cadamuro, M., Fiorotto, R. & Strazzabosco, M. Emerging concepts in biliary repair and fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G102–G116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kaffe, E. et al. beta-Catenin and interleukin-1beta-dependent chemokine (C-X-C motif) ligand 10 production drives progression of disease in a mouse model of congenital hepatic fibrosis. Hepatology 67, 1903–1919 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fabris, L. et al. Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations. Am. J. Pathol. 156, 1599–1612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fabris, L. & Strazzabosco, M. Epithelial-mesenchymal interactions in biliary diseases. Semin. Liver Dis. 31, 11–32 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Fabris, L., Brivio, S., Cadamuro, M. & Strazzabosco, M. Revisiting epithelial-to-mesenchymal transition in liver fibrosis: clues for a better understanding of the “reactive” biliary epithelial phenotype. Stem Cells Int. 2016, 2953727 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Milani, S., Herbst, H., Schuppan, D., Stein, H. & Surrenti, C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am. J. Pathol. 139, 1221–1229 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kinnman, N. et al. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis. Lab. Invest. 83, 163–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Kruglov, E. A., Nathanson, R. A., Nguyen, T. & Dranoff, J. A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G765–G771 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Roskams, T. A., Libbrecht, L. & Desmet, V. J. Progenitor cells in diseased human liver. Semin. Liver Dis. 23, 385–396 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Roskams, T. A. et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39, 1739–1745 (2004).

    Article  PubMed  Google Scholar 

  138. Franchitto, A. et al. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Ann. Transl Med. 1, 27 (2013).

    PubMed  PubMed Central  Google Scholar 

  139. Francis, H. et al. cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. J. Hepatol. 41, 528–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Fabris, L. et al. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am. J. Pathol. 171, 641–653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Demetris, A. J., Seaberg, E. C., Wennerberg, A., Ionellie, J. & Michalopoulos, G. Ductular reaction after submassive necrosis in humans. Special emphasis on analysis of ductular hepatocytes. Am. J. Pathol. 149, 439–448 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Desmet, V. J. Histopathology of cholestasis. Verh. Dtsch. Ges. Pathol. 79, 233–240 (1995).

    CAS  PubMed  Google Scholar 

  143. Brivio, S., Cadamuro, M., Fabris, L. & Strazzabosco, M. Epithelial-to-mesenchymal transition and cancer invasiveness: what can we learn from cholangiocarcinoma? J. Clin. Med. 4, 2028–2041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sasaki, M. et al. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression. Am. J. Clin. Pathol. 133, 212–223 (2010).

    Article  PubMed  Google Scholar 

  145. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(−/−)) mice. Hepatology 67, 247–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Morell, C. M. et al. Notch signaling and progenitor/ductular reaction in steatohepatitis. PLOS ONE 12, e0187384 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Fiorotto, R. et al. Notch signaling regulates tubular morphogenesis during repair from biliary damage in mice. J. Hepatol. 59, 124–130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Geisler, F. & Strazzabosco, M. Emerging roles of Notch signaling in liver disease. Hepatology 61, 382–392 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Zanconato, F. et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat. Med. 24, 1599–1610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Harada, K. et al. Peptide antibiotic human beta-defensin-1 and -2 contribute to antimicrobial defense of the intrahepatic biliary tree. Hepatology 40, 925–932 (2004).

    CAS  PubMed  Google Scholar 

  153. Saito, K. & Nakanuma, Y. Lactoferrin and lysozyme in the intrahepatic bile duct of normal livers and hepatolithiasis. An immunohistochemical study. J. Hepatol. 15, 147–153 (1992).

    Article  CAS  PubMed  Google Scholar 

  154. Nagura, H., Smith, P. D., Nakane, P. K. & Brown, W. R. IGA in human bile and liver. J. Immunol. 126, 587–595 (1981).

    CAS  PubMed  Google Scholar 

  155. D’Aldebert, E. et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136, 1435–1443 (2009).

    Article  PubMed  CAS  Google Scholar 

  156. Sternlieb, I. Special article: functional implications of human portal and bile ductular ultrastructure. Gastroenterology 63, 321–327 (1972).

    Article  CAS  PubMed  Google Scholar 

  157. Brown, W. R. & Kloppel, T. M. The liver and IgA: immunological, cell biological and clinical implications. Hepatology 9, 763–784 (1989).

    Article  CAS  PubMed  Google Scholar 

  158. Farina, A. et al. A step further in the analysis of human bile proteome. J. Proteome Res. 10, 2047–2063 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Brandtzaeg, P. et al. Production and secretion of immunoglobulins in the gastrointestinal tract. Ann. Allergy 59, 21–39 (1987).

    CAS  PubMed  Google Scholar 

  160. Naldi, M., Baldassarre, M., Domenicali, M., Bartolini, M. & Caraceni, P. Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J. Pharm. Biomed. Anal. 144, 138–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Aagaard, B. D., Heyworth, M. F., Oesterle, A. L., Jones, A. L. & Way, L. W. Intestinal immunisation with Escherichia coli protects rats against Escherichia coli induced cholangitis. Gut 39, 136–140 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Harmatz, P. R., Kleinman, R. E., Bunnell, B. W., Bloch, K. J. & Walker, W. A. Hepatobiliary clearance of IgA immune complexes formed in the circulation. Hepatology 2, 328–333 (1982).

    Article  CAS  PubMed  Google Scholar 

  163. van de Wiel, A., Delacroix, D. L., van Hattum, J., Schuurman, H. J. & Kater, L. Characteristics of serum IgA and liver IgA deposits in alcoholic liver disease. Hepatology 7, 95–99 (1987).

    Article  PubMed  Google Scholar 

  164. Chen, X. M. et al. Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J. Immunol. 175, 7447–7456 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Harada, K. et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab. Invest. 83, 1657–1667 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Ninlawan, K. et al. Opisthorchis viverrini excretory/secretory products induce toll-like receptor 4 upregulation and production of interleukin 6 and 8 in cholangiocyte. Parasitol. Int. 59, 616–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ikeda, H. et al. Interaction of Toll-like receptors with bacterial components induces expression of CDX2 and MUC2 in rat biliary epithelium in vivo and in culture. Lab. Invest. 87, 559–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Oya, S. et al. Inhibition of Toll-like receptor 4 suppresses liver injury induced by biliary obstruction and subsequent intraportal lipopolysaccharide injection. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G244–G252 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Fiorotto, R. et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-kappaB-mediated inflammatory response in mice. Gastroenterology 141, 1498–1508 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Harada, K. et al. Innate immune response to double-stranded RNA in biliary epithelial cells is associated with the pathogenesis of biliary atresia. Hepatology 46, 1146–1154 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, A. P. et al. Hepatic expression of toll-like receptor 4 in primary biliary cirrhosis. J. Autoimmun 25, 85–91 (2005).

    Article  PubMed  CAS  Google Scholar 

  172. Moritoki, Y. et al. AMA production in primary biliary cirrhosis is promoted by the TLR9 ligand CpG and suppressed by potassium channel blockers. Hepatology 45, 314–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Matsushita, H. et al. TLR4, TLR9, and NLRP3 in biliary epithelial cells of primary sclerosing cholangitis: relationship with clinical characteristics. J. Gastroenterol. Hepatol. 30, 600–608 (2015).

    Article  CAS  PubMed  Google Scholar 

  174. Karlsen, T. H., Folseraas, T., Thorburn, D. & Vesterhus, M. Primary sclerosing cholangitis — a comprehensive review. J. Hepatol. 67, 1298–1323 (2017).

    Article  PubMed  Google Scholar 

  175. Hov, J. R. & Karlsen, T. H. The microbiome in primary sclerosing cholangitis: current evidence and potential concepts. Semin. Liver Dis. 37, 314–331 (2017).

    Article  PubMed  Google Scholar 

  176. Karrar, A. et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132, 1504–1514 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Mueller, T. et al. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int. 31, 1574–1588 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Maroni, L. et al. Nlrp3 activation induces Il-18 synthesis and affects the epithelial barrier function in reactive cholangiocytes. Am. J. Pathol. 187, 366–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Tian, J. et al. Galectin-3 regulates inflammasome activation in cholestatic liver injury. FASEB J. 30, 4202–4213 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Auth, M. K. et al. Establishment and immunological characterization of cultured human gallbladder epithelial cells. Hepatology 18, 546–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  181. Ayres, R. C., Neuberger, J. M., Shaw, J., Joplin, R. & Adams, D. H. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 34, 1245–1249 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Broome, U., Scheynius, A. & Hultcrantz, R. Induced expression of heat-shock protein on biliary epithelium in patients with primary sclerosing cholangitis and primary biliary cirrhosis. Hepatology 18, 298–303 (1993).

    CAS  PubMed  Google Scholar 

  183. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Jeffery, H. C. et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 64, 1118–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Schrumpf, E. et al. The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 62, 1249–1259 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Bottcher, K. et al. MAIT cells are chronically activated in patients with autoimmune liver disease and promote pro-fibrogenic hepatic stellate cell activation. Hepatology 68, 172–186 (2018).

    Article  PubMed  CAS  Google Scholar 

  187. Jiang, X. et al. The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. J. Autoimmun. 90, 64–75 (2018).

    Article  CAS  PubMed  Google Scholar 

  188. Kita, H. et al. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123, 1031–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Schrumpf, E. et al. The role of natural killer T cells in a mouse model with spontaneous bile duct inflammation. Physiol. Rep. 5, e13117 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Kamihira, T. et al. Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific diseases. Hepatology 41, 151–159 (2005).

    Article  PubMed  Google Scholar 

  192. Oo, Y. H. et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J. Hepatol. 57, 1044–1051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Afford, S. C. et al. Vascular cell adhesion molecule 1 expression by biliary epithelium promotes persistence of inflammation by inhibiting effector T cell apoptosis. Hepatology 59, 1932–1943 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Grant, A. J., Lalor, P. F., Salmi, M., Jalkanen, S. & Adams, D. H. Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359, 150–157 (2002).

    Article  PubMed  Google Scholar 

  195. Borchers, A. T., Shimoda, S., Bowlus, C., Keen, C. L. & Gershwin, M. E. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin. Immunopathol. 31, 309–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Adams, D. H. & Afford, S. C. The role of cholangiocytes in the development of chronic inflammatory liver disease. Front. Biosci. 7, e276–e285 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Locatelli, L. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Alabraba, E. B. et al. Coculture of human liver macrophages and cholangiocytes leads to CD40-dependent apoptosis and cytokine secretion. Hepatology 47, 552–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Marra, F. et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am. J. Pathol. 152, 423–430 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Vesterhus, M. et al. Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. J. Hepatol. 66, 1214–1222 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Cameron, R. G., Blendis, L. M. & Neuman, M. G. Accumulation of macrophages in primary sclerosing cholangitis. Clin. Biochem. 34, 195–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Zweers, S. J. et al. Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis. Liver Int. 36, 1370–1377 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Dong, R. & Zheng, S. Interleukin-8: a critical chemokine in biliary atresia. J. Gastroenterol. Hepatol. 30, 970–976 (2015).

    Article  CAS  PubMed  Google Scholar 

  204. Isse, K., Harada, K. & Nakanuma, Y. IL-8 expression by biliary epithelial cells is associated with neutrophilic infiltration and reactive bile ductules. Liver Int. 27, 672–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  205. Morland, C. M., Fear, J., Joplin, R. & Adams, D. H. Inflammatory cytokines stimulate human biliary epithelial cells to express interleukin-8 and monocyte chemotactic protein-1. Biochem. Soc. Trans. 25, 232S (1997).

    Article  CAS  PubMed  Google Scholar 

  206. Tabibian, J. H. et al. Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab. Invest. 94, 1126–1133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Reinhard, L. et al. S100A9 is a biliary protein marker of disease activity in primary sclerosing cholangitis. PLOS ONE 7, e29821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Johnson, C. et al. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest. Cancer 1, 58–70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Isomoto, H. et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 42, 1329–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  210. Kobayashi, S., Werneburg, N. W., Bronk, S. F., Kaufmann, S. H. & Gores, G. J. Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128, 2054–2065 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Andersson, E. R. et al. Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations. Gastroenterology 154, 1080–1095 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Vyas, D. et al. Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 67, 750–761 (2017).

    Article  CAS  Google Scholar 

  213. Li, B. et al. Adult mouse liver contains two distinct populations of cholangiocytes. Stem Cell Rep. 9, 478–489 (2017).

    Article  CAS  Google Scholar 

  214. Sampaziotis, F. et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat. Med. 23, 954–963 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Sampaziotis, F. et al. Directed differentiation of human induced pluripotent stem cells into functional cholangiocyte-like cells. Nat. Protoc. 12, 814–827 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Loarca, L. et al. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Lab. Invest. 97, 1385–1396 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cervantes-Alvarez, E. et al. Current strategies to generate mature human induced pluripotent stem cells derived cholangiocytes and future applications. Organogenesis 13, 1–15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. De Assuncao, T. M., Jalan-Sakrikar, N. & Huebert, R. C. Regenerative medicine and the biliary tree. Semin. Liver Dis. 37, 17–27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Dianat, N. et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60, 700–714 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. De Assuncao, T. M. et al. Development and characterization of human-induced pluripotent stem cell-derived cholangiocytes. Lab. Invest. 95, 684–696 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Ogawa, M. et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 853–861 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Takayama, K. et al. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 474, 91–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Johanson, C. E. Benzodiazepine self-administration in rhesus monkeys: estazolam, flurazepam and lorazepam. Pharmacol. Biochem. Behav. 26, 521–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  224. Alberts, R. et al. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut 67, 1517–1524 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.M.B. has received grant support from the Spanish Ministries of Economy and Competitiveness (FIS PI15/01132, FIS PI18/01075 and Miguel Servet Programme CON14/00129) co-financed by ‘Fondo Europeo de Desarrollo Regional’ (FEDER); ISCIII (CIBERehd), Spain; BIOEF (Basque Foundation for Innovation and Health Research); EiTB Maratoia BIO15/CA/016/BD; the Department of Health of the Basque Country (2017111010); and the Scientific Foundation of the Spanish Association Against Cancer (AECC). The authors also acknowledge the US National Institutes of Health grants DK63947 (G.J.G.); DK057993, DK084567 and DK24031 (N.F.L.); and DK100575 and DK113339 (R.C.H.). G.J.G., N.F.L. and R.C.H. further acknowledge support from the Carlos Family Foundation and the Mayo Clinic. M.S. has recieved support from the US National Institutes of Health Grants DK079005, DK096096 and DK34989, the Silvio O. Conte Digestive Diseases Research Core Centers and PSC Partners Seeking a Cure.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Gregory J. Gores.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banales, J.M., Huebert, R.C., Karlsen, T. et al. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 16, 269–281 (2019). https://doi.org/10.1038/s41575-019-0125-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-019-0125-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing