Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alcohol, liver disease and the gut microbiota

Abstract

Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut–brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut–liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut–liver–brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.

Key points

  • Alcohol affects many organ systems, but alcoholic liver disease develops in selected patients and ranges from simple steatosis to inflammation, cirrhosis and alcoholic hepatitis.

  • Gut microbiota composition and function, especially bile acid physiology, are affected throughout the spectrum of alcohol use disorder, and these changes can improve after alcohol cessation in patients without alcoholic liver disease.

  • In patients who have substantial liver fibrosis, gut microbial changes occur in parallel to liver injury, with an increase in endotoxin-producing and a reduction in autochthonous bacterial taxa, which continue through active drinking in cirrhosis until alcoholic hepatitis.

  • Functional microbial changes, in particular, hepatic bile acid production and bacterial biotransformation, are altered in parallel with the disease stages and differ between actively drinking patients with cirrhosis and those with alcoholic hepatitis.

  • Alcohol use disorder can also affect the gut–brain axis, which could potentiate further misuse and affective disorders and hasten the development of hepatic encephalopathy.

  • Strategies that address both alcohol cessation and microbiota alteration are needed for meaningful improvement in the natural history of this multifaceted disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum of ALD.
Fig. 2: Serum and faecal bile acid changes in ALD.
Fig. 3: Changes in the gut–liver axis before alcoholic hepatitis.
Fig. 4: Altered gut–brain axis in alcohol misuse.

Similar content being viewed by others

References

  1. Rehm, J., Samokhvalov, A. V. & Shield, K. D. Global burden of alcoholic liver diseases. J. Hepatol. 59, 160–168 (2013).

    PubMed  Google Scholar 

  2. World Health Organization. Global status on alcohol and health 2014. WHO http://www.who.int/substance_abuse/publications/global_alcohol_report/msb_gsr_2014_1.pdf (2014).

  3. Mathurin, P. & Bataller, R. Trends in the management and burden of alcoholic liver disease. J. Hepatol. 62, S38–S46 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Yoon, Y. & Chen, C. M. Surveillance report #105. NIAAA https://pubs.niaaa.nih.gov/publications/surveillance105/Cirr13.pdf (2016).

  5. Mills, S. J. & Harrison, S. A. Comparison of the natural history of alcoholic and nonalcoholic fatty liver disease. Curr. Gastroenterol. Rep. 7, 32–36 (2005).

    PubMed  Google Scholar 

  6. Singal, A. K., Bataller, R., Ahn, J., Kamath, P. S. & Shah, V. H. ACG clinical guideline: alcoholic liver disease. Am. J. Gastroenterol. 113, 175–194 (2018).

    PubMed  Google Scholar 

  7. National Institute on Alcohol Abuse and Alcoholism. Alcohol facts and statistics. NIAAA https://www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/alcohol-facts-and-statistics (2018).

  8. Zakhari, S. & Li, T. K. Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease. Hepatology 46, 2032–2039 (2007).

    CAS  PubMed  Google Scholar 

  9. Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G966–G978 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology 148, 30–36 (2015).

    CAS  PubMed  Google Scholar 

  11. Soyka, M. et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of substance use and related disorders, part 1: alcoholism. World J. Biol. Psychiatry 9, 6–23 (2008).

    PubMed  Google Scholar 

  12. Moos, R. H. & Moos, B. S. Rates and predictors of relapse after natural and treated remission from alcohol use disorders. Addiction 101, 212–222 (2006).

    PubMed  PubMed Central  Google Scholar 

  13. Rosa, H., Silverio, A. O., Perini, R. F. & Arruda, C. B. Bacterial infection in cirrhotic patients and its relationship with alcohol. Am. J. Gastroenterol. 95, 1290–1293 (2000).

    CAS  PubMed  Google Scholar 

  14. Ahluwalia, V. et al. The etiology of cirrhosis is a strong determinant of brain reserve: a multimodal magnetic resonance imaging study. Liver Transpl. 21, 1123–1132 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Martin, P., DiMartini, A., Feng, S., Brown, R. Jr & Fallon, M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 59, 1144–1165 (2014).

    PubMed  Google Scholar 

  16. Altamirano, J. et al. Alcohol abstinence in patients surviving an episode of alcoholic hepatitis: prediction and impact on long-term survival. Hepatology 66, 1842–1853 (2017).

    CAS  PubMed  Google Scholar 

  17. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  18. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Bajaj, J. S. et al. Fungal dysbiosis in cirrhosis. Gut 67, 1146–1154 (2018).

    CAS  PubMed  Google Scholar 

  20. Yang, A. M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Hooks, K. B. & O’Malley, M. A. Dysbiosis and its discontents. mBio 8, e01492–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Rodriguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

    PubMed  Google Scholar 

  23. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    CAS  PubMed  Google Scholar 

  24. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  25. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bajaj, J. S. et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology 68, 234–247 (2018).

    CAS  PubMed  Google Scholar 

  27. Iebba, V. et al. Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol. 39, 1–12 (2016).

    CAS  PubMed  Google Scholar 

  28. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hughes, H. K., Rose, D. & Ashwood, P. The gut microbiota and dysbiosis in autism spectrum disorders. Curr. Neurol. Neurosci. Rep. 18, 81 (2018).

    PubMed  Google Scholar 

  30. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Bajaj, J. S., Betrapally, N. S. & Gillevet, P. M. Decompensated cirrhosis and microbiome interpretation. Nature 525, E1–E2 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Young, V. B. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 356, j831 (2017).

    PubMed  Google Scholar 

  33. Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gillevet, P., Sikaroodi, M., Keshavarzian, A. & Mutlu, E. A. Quantitative assessment of the human gut microbiome using multitag pyrosequencing. Chem. Biodivers. 7, 1065–1075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  37. Segal, Z. V. et al. Antidepressant monotherapy versus sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression. Arch. Gen. Psychiatry 67, 1256–1264 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Vancamelbeke, M. & Vermeire, S. The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11, 821–834 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    CAS  PubMed  Google Scholar 

  40. Bajaj, J. S. & Hylemon, P. B. Gut-liver axis alterations in alcoholic liver disease: are bile acids the answer? Hepatology 67, 2074–2075 (2018).

    PubMed  Google Scholar 

  41. Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut-liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    CAS  PubMed  Google Scholar 

  42. Bala, S., Marcos, M., Gattu, A., Catalano, D. & Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLOS ONE 9, e96864 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Voigt, R. M. et al. Diurnal variations in intestinal barrier integrity and liver pathology in mice: implications for alcohol binge. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G131–G141 (2018).

    PubMed  Google Scholar 

  44. de Timary, P., Leclercq, S., Starkel, P. & Delzenne, N. A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes 6, 388–391 (2015).

    PubMed  Google Scholar 

  45. Bull-Otterson, L. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLOS ONE 8, e53028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y. et al. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. Am. J. Pathol. 179, 2866–2875 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, P. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214 (2015).

    CAS  PubMed  Google Scholar 

  48. Shao, T. et al. Intestinal HIF-1alpha deletion exacerbates alcoholic liver disease through inducing intestinal dysbiosis and barrier dysfunction. J. Hepatol. 69, 886–895 (2018).

    CAS  PubMed  Google Scholar 

  49. Forsyth, C. B. et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43, 163–172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nath, B. et al. Hepatocyte-specific hypoxia-inducible factor-1alpha is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53, 1526–1537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bajaj, J. S. et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver axis. Alcohol. Clin. Exp. Res. 41, 1857–1865 (2017).

    CAS  PubMed  Google Scholar 

  52. Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014).

    CAS  PubMed  Google Scholar 

  53. Kakiyama, G. et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G929–G937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, L. et al. Methods to determine intestinal permeability and bacterial translocation during liver disease. J. Immunol. Methods 421, 44–53 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grant, B. F., Dufour, M. C. & Harford, T. C. Epidemiology of alcoholic liver disease. Semin. Liver Dis. 8, 12–25 (1988).

    CAS  PubMed  Google Scholar 

  56. Forsyth, C. B., Voigt, R. M., Burgess, H. J., Swanson, G. R. & Keshavarzian, A. Circadian rhythms, alcohol and gut interactions. Alcohol 49, 389–398 (2015).

    CAS  PubMed  Google Scholar 

  57. Couch, R. D. et al. Alcohol induced alterations to the human fecal VOC metabolome. PLOS ONE 10, e0119362 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    CAS  PubMed  Google Scholar 

  59. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    CAS  PubMed  Google Scholar 

  60. Hartmann, P. et al. Modulation of the intestinal bile acid-FXR-FGF15 axis improves alcoholic liver disease in mice. Hepatology 67, 2150–2166 (2017).

    Google Scholar 

  61. Dubinkina, V. B. et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 5, 141 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    CAS  PubMed  Google Scholar 

  63. Bajaj, J. S. et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 62, 1260–1271 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Raghava, K. V., Shivananda, H., Mundinamane, D., Boloor, V. & Thomas, B. Evaluation of periodontal status in alcoholic liver cirrhosis patients: a comparative study. J. Contemp. Dent. Pract. 14, 179–182 (2013).

    PubMed  Google Scholar 

  65. Bajaj, J. S. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G168–G175 (2012).

    CAS  PubMed  Google Scholar 

  66. Han, S. H. et al. Effects of probiotics (cultured Lactobacillus subtilis/Streptococcus faecium) in the treatment of alcoholic hepatitis: randomized-controlled multicenter study. Eur. J. Gastroenterol. Hepatol. 27, 1300–1306 (2015).

    PubMed  Google Scholar 

  67. Dhiman, R. K. et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 147, 1327–1337 (2014).

    CAS  PubMed  Google Scholar 

  68. Tuomisto, S. et al. Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterol. 14, 40 (2014).

    PubMed  PubMed Central  Google Scholar 

  69. Llopis, M. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65, 830–839 (2016).

    CAS  PubMed  Google Scholar 

  70. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2018).

    PubMed  Google Scholar 

  71. Brandl, K. et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J. Hepatol. 69, 396–405 (2018).

    CAS  PubMed  Google Scholar 

  72. Ciocan, D. et al. Bile acid homeostasis and intestinal dysbiosis in alcoholic hepatitis. Aliment. Pharmacol. Ther. 48, 961–974 (2018).

    CAS  PubMed  Google Scholar 

  73. Puri, P. et al. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology 67, 1284–1302 (2018).

    CAS  PubMed  Google Scholar 

  74. Zhong, W. & Zhou, Z. Alterations of the gut microbiome and metabolome in alcoholic liver disease. World J. Gastrointest. Pathophysiol. 5, 514–522 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Harada, S. et al. Metabolomic profiling reveals novel biomarkers of alcohol intake and alcohol-induced liver injury in community-dwelling men. Environ. Health Prev. Med. 21, 18–26 (2016).

    CAS  PubMed  Google Scholar 

  76. Liang, Q., Wang, C., Li, B. & Zhang, A. Metabolomics of alcoholic liver disease: a clinical discovery study. RSC Adv. 5, 80381–80387 (2015).

    CAS  Google Scholar 

  77. Rachakonda, V. et al. Serum metabolomic profiling in acute alcoholic hepatitis identifies multiple dysregulated pathways. PLOS ONE 9, e113860 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Bajaj, J. S. et al. Prediction of fungal infection development and their impact on survival using the NACSELD cohort. Am. J. Gastroenterol. 113, 556–563 (2018).

    PubMed  Google Scholar 

  79. Gustot, T. et al. Invasive aspergillosis in patients with severe alcoholic hepatitis. J. Hepatol. 60, 267–274 (2014).

    PubMed  Google Scholar 

  80. Addolorato, G., Mirijello, A., Barrio, P. & Gual, A. Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol. 65, 618–630 (2016).

    PubMed  Google Scholar 

  81. Davis, B. C. & Bajaj, J. S. Effects of alcohol on the brain in cirrhosis: beyond hepatic encephalopathy. Alcohol. Clin. Exp. Res. 42, 660–667 (2018).

    PubMed  Google Scholar 

  82. Butterworth, R. F. Thiamine deficiency-related brain dysfunction in chronic liver failure. Metab. Brain Dis. 24, 189–196 (2009).

    CAS  PubMed  Google Scholar 

  83. Cenit, M. C., Sanz, Y. & Codoner-Franch, P. Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol. 23, 5486–5498 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Temko, J. E. et al. The microbiota, the gut and the brain in eating and alcohol use disorders: a ‘menage a trois’? Alcohol Alcohol. 52, 403–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Xiao, H. W. et al. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol. Lett. 287, 23–30 (2018).

    CAS  PubMed  Google Scholar 

  86. Volpe, G. E. et al. Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J. Stud. Alcohol Drugs 75, 347–357 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Butterworth, R. F. Pathogenesis of hepatic encephalopathy in cirrhosis: the concept of synergism revisited. Metab. Brain Dis. 31, 1211–1215 (2015).

    PubMed  Google Scholar 

  88. Bajaj, J. S. The role of microbiota in hepatic encephalopathy. Gut Microbes 5, 397–403 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Kang, D. J. et al. Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology 64, 1232–1248 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mathurin, P. et al. Early liver transplantation for severe alcoholic hepatitis. N. Engl. J. Med. 365, 1790–1800 (2011).

    CAS  PubMed  Google Scholar 

  91. Lee, B. P. et al. Outcomes of early liver transplantation for patients with severe alcoholic hepatitis. Gastroenterology 155, 422–430 (2018).

    PubMed  Google Scholar 

  92. Kirpich, I. A. et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42, 675–682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Stadlbauer, V. et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J. Hepatol. 48, 945–951 (2008).

    CAS  PubMed  Google Scholar 

  94. Kalambokis, G. N. et al. Rifaximin improves systemic hemodynamics and renal function in patients with alcohol-related cirrhosis and ascites. Clin. Gastroenterol. Hepatol. 10, 815–818 (2012).

    CAS  PubMed  Google Scholar 

  95. Vlachogiannakos, J. et al. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J. Gastroenterol. Hepatol. 28, 450–455 (2013).

    CAS  PubMed  Google Scholar 

  96. Kelly, C. R. et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149, 223–237 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Kao, D. et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 63, 339–340 (2016).

    PubMed  Google Scholar 

  98. Bajaj, J. S. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1727–1738 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012).

    CAS  PubMed  Google Scholar 

  100. Philips, C. A. et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin. Gastroenterol. Hepatol. 15, 600–602 (2017).

    PubMed  Google Scholar 

  101. Philips, C. A., Phadke, N., Ganesan, K., Ranade, S. & Augustine, P. Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J. Gastroenterol. 37, 215–225 (2018).

    PubMed  Google Scholar 

  102. Kang, D. J. et al. Gut microbial composition can differentially regulate bile acid synthesis in humanized mice. Hepatol. Commun. 1, 61–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, L. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19, 227–239 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, Y. et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54, 562–572 (2011).

    PubMed  Google Scholar 

  105. Kakiyama, G. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript was partly supported by VA Merit Review I0CX001076, NCATS R21TR002024 to J.S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmohan S. Bajaj.

Ethics declarations

Competing interests

J.S.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, J.S. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 16, 235–246 (2019). https://doi.org/10.1038/s41575-018-0099-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0099-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing