Review Article | Published:

Hepatic microcirculation and mechanisms of portal hypertension

Nature Reviews Gastroenterology & Hepatology (2018) | Download Citation

Abstract

The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.

Key points

  • Portal hypertension is the most important non-neoplastic complication of chronic liver disease, leading to high morbidity and mortality.

  • A pathological increase in intrahepatic vascular resistance, which derives from profound deregulation in the phenotype of all hepatic cell types, is the primary factor in the development of portal hypertension.

  • Mechanisms leading to increased intrahepatic vascular resistance in cirrhosis are thought to include overactivation of vasoconstrictor pathways and downregulation of vasodilator signalling in the sinusoidal milieu.

  • Treatments targeting intrahepatic vascular resistance developed in preclinical models have exhibited very low success at the bedside, encouraging further research and the development of new models.

  • Current methods to understand the pathophysiology of portal hypertension and develop new therapeutics include preclinical animals models, conventional in vitro approaches and new in vitro methods that combine biological scaffolds with primary cells.

  • Improved characterization of portal hypertension pathophysiology and discovery of new therapeutic targets need to be done using preclinical models that mimic the clinical scenario and consider the current epidemiology of the disease.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bosch, J., Groszmann, R. J. & Shah, V. H. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J. Hepatol. 62, S121–S130 (2015).

  2. 2.

    Bosch, J., Pizcueta, P., Feu, F., Fernández, M. & García-Pagán, J. C. Pathophysiology of portal hypertension. Gastroenterol. Clin. North Am. 21, 1–14 (1992).

  3. 3.

    Garcia-Pagan, J. C., Gracia-Sancho, J. & Bosch, J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J. Hepatol. 57, 458–461 (2012).

  4. 4.

    Fernández-Iglesias, A. & Gracia-Sancho, J. How to face chronic liver disease: the sinusoidal perspective. Front. Med. 4, 7 (2017).

  5. 5.

    Pinzani, M., Rosselli, M. & Zuckermann, M. Liver cirrhosis. Best Pract. Res. Clin. Gastroenterol. 25, 281–290 (2011).

  6. 6.

    Rockey, D. C. Hepatic fibrosis, stellate cells, and portal hypertension. Clin. Liver Dis. 10, 459–479 (2006).

  7. 7.

    Gupta, T. K., Toruner, M., Chung, M. K. & Groszmann, R. J. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 28, 926–931 (1998).

  8. 8.

    Gracia-Sancho, J. et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. Hepatol. 47, 220–227 (2007).

  9. 9.

    Steib, C. J. et al. Kupffer cell activation in normal and fibrotic livers increases portal pressure via thromboxane A(2). J. Hepatol. 47, 228–238 (2007).

  10. 10.

    Iwakiri, Y. & Groszmann, R. J. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43, S121–S131 (2006).

  11. 11.

    Colle, I. O., De Vriese, A. S., Van Vlierberghe, H. R., Lameire, N. H. & De Vos, M. M. Vascular hyporesponsiveness in the mesenteric artery of anaesthetized rats with cirrhosis and portal hypertension: an in-vivo study. Eur. J. Gastroenterol. Hepatol. 16, 139–145 (2004).

  12. 12.

    Angeli, P. et al. The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites. Liver Int. 25, 429–437 (2005).

  13. 13.

    Fernández, M. et al. Angiogenesis in liver disease. J. Hepatol. 50, 604–620 (2009).

  14. 14.

    Berzigotti, A. & Bosch, J. Pharmacologic management of portal hypertension. Clin. Liver Dis. 18, 303–317 (2014).

  15. 15.

    Marrone, G. & Gracia-Sancho, J. Liver Failure: Etiologies, Neurological Complications and Emerging Therapies: Hepatic Microcirculation in Chronic Liver Disease (eds Peralta, C. & Fontana, L.) (Nova Science Publishers, 2013).

  16. 16.

    Marrone, G., Shah, V. H. & Gracia-Sancho, J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol. 65, 608–617 (2016).

  17. 17.

    Kawada, N., Tran-thi, T.-A., Klein, H. & Decker, K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Eur. J. Biochem. 213, 815–823 (1993).

  18. 18.

    Gracia-Sancho, J. et al. Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis. Gastroenterology 133, 959–966 (2007).

  19. 19.

    Gracia-Sancho, J. et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47, 1248–1256 (2008).

  20. 20.

    Rogoff, T. M. & Lipsky, P. E. Antigen presentation by isolated guinea pig Kupffer cells. J. Immunol. 124, 1740–1744 (1980).

  21. 21.

    Knolle, P. A. & Limmer, A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol. 22, 432–437 (2001).

  22. 22.

    Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

  23. 23.

    Schildberg, F. A., Hegenbarth, S. I., Schumak, B., Limmer, A. & Knolle, P. A. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol. 38, 957–967 (2008).

  24. 24.

    Jarnagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S. S. & Bissell, D. M. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J. Cell Biol. 127, 2037–2048 (1994).

  25. 25.

    Canbay, A. et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38, 1188–1198 (2003).

  26. 26.

    Jiang, J. X., Mikami, K., Venugopal, S., Li, Y. & Torok, N. J. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J. Hepatol. 51, 139–148 (2009).

  27. 27.

    Olsen, A. L. et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Liver Physiol. 301, G110–G118 (2011).

  28. 28.

    Iwakiri, Y. Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin. Mol. Hepatol. 21, 319–325 (2015).

  29. 29.

    Shah, V. et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 117, 1222–1228 (1999).

  30. 30.

    Sarela, A. I., Mihaimeed, F. M., Batten, J. J., Davidson, B. R. & Mathie, R. T. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut 44, 749–753 (1999).

  31. 31.

    Gracia-Sancho, J. et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60, 517–524 (2011).

  32. 32.

    Morales-Ruiz, M. et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 125, 522–531 (2003).

  33. 33.

    Matei, V. et al. The eNOS cofactor tetrahydrobiopterin improves endothelial dysfunction in livers of rats with CCl4 cirrhosis. Hepatology 44, 44–52 (2006).

  34. 34.

    Liu, S., Premont, R. T., Singh, S. & Rockey, D. C. Caveolin 1 and G-protein–coupled receptor kinase-2 coregulate endothelial nitric oxide synthase activity in sinusoidal endothelial cells. Am. J. Pathol. 187, 896–907 (2017).

  35. 35.

    Mookerjee, R. P. et al. Hepatic dimethylarginine-dimethylaminohydrolase1 is reduced in cirrhosis and is a target for therapy in portal hypertension. J. Hepatol. 62, 325–331 (2015).

  36. 36.

    Vilaseca, M. et al. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver Int. 37, 1002–1012 (2017).

  37. 37.

    Dekker, R. J. et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100, 1689–1698 (2002).

  38. 38.

    Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).

  39. 39.

    Jiang, W. et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am. J. Transl Res. 9, 2024–2037 (2017).

  40. 40.

    Sacerdoti, D. et al. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins Other Lipid Mediat. 120, 80–90 (2015).

  41. 41.

    Graupera, M. et al. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G763–G770 (2005).

  42. 42.

    Titos, E. et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology 119, 794–805 (2000).

  43. 43.

    Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771–784 (2004).

  44. 44.

    Ibsen, M. S., Connor, M. & Glass, M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res. 2, 48–60 (2017).

  45. 45.

    Julien, B. et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128, 742–755 (2005).

  46. 46.

    Tam, J. et al. Endocannabinoids in liver disease. Hepatology 53, 346–355 (2011).

  47. 47.

    Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).

  48. 48.

    Martin, G. G. et al. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J. Lipid Res. 58, 2114–2126 (2017).

  49. 49.

    Mallat, A. & Lotersztajn, S. Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G9–G12 (2008).

  50. 50.

    Zurier, R. B. & Burstein, S. H. Cannabinoids, inflammation, and fibrosis. FASEB J. 30, 3682–3689 (2016).

  51. 51.

    Lotersztajn, S. et al. CB2 receptors as new therapeutic targets for liver diseases. Br. J. Pharmacol. 153, 286–289 (2008).

  52. 52.

    Mai, P. et al. Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow–derived monocytes/macrophages in a CB1-dependent manner. J. Immunol. 195, 3390–3401 (2015).

  53. 53.

    Caraceni, P. et al. Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis. Liver Int. 30, 816–825 (2010).

  54. 54.

    Siegmund, S. V. & Schwabe, R. F. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G357–G362 (2007).

  55. 55.

    Mun, J. et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. Pharmacology 324, 475–483 (2008).

  56. 56.

    Avraham, Y. et al. The direct profibrotic and indirect immune antifibrotic balance of blocking the cannabinoid 2 receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1364–G1372 (2012).

  57. 57.

    Reichenbach, V. et al. Prevention of fibrosis progression in CCl4-treated rats: role of the hepatic endocannabinoid and apelin systems. J. Pharmacol. Exp. Ther. 340, 629–637 (2012).

  58. 58.

    Mallat, A., Teixeira-Clerc, F. & Lotersztajn, S. Cannabinoid signaling and liver therapeutics. J. Hepatol. 59, 891–896 (2013).

  59. 59.

    Louvet, A. et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54, 1217–1226 (2011).

  60. 60.

    Hennenberg, M. et al. Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. Gastroenterology 130, 838–854 (2006).

  61. 61.

    Zhou, Q. et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut 55, 1296–1305 (2006).

  62. 62.

    Yee, H. F. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 28, 843–850 (1998).

  63. 63.

    Klein, S. et al. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J. Hepatol. 57, 1220–1227 (2012).

  64. 64.

    Yokomori, H. et al. Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab. Invest. 84, 857–864 (2004).

  65. 65.

    Dach, K. et al. Bacterial toxins induce sustained mRNA expression of the silencing transcription factor klf2 via inactivation of RhoA and Rhophilin 1. Infect. Immun. 77, 5583–5592 (2009).

  66. 66.

    Tripodi, A. et al. An imbalance of pro- versus anti-coagulation factors in plasma from patients with cirrhosis. Gastroenterology 137, 2105–2111 (2009).

  67. 67.

    Bianchini, M., De Pietri, L. & Villa, E. Coagulopathy in liver diseases: complication or therapy? Dig. Dis. 32, 609–614 (2014).

  68. 68.

    Grover, S. P. & Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 38, 709–725 (2018).

  69. 69.

    Duplantier, J. G. et al. A role for thrombin in liver fibrosis. Gut 53, 1682–1687 (2004).

  70. 70.

    Tripodi, A., Primignani, M., Mannucci, P. M. & Caldwell, S. H. Changing concepts of cirrhotic coagulopathy. Am. J. Gastroenterol. 112, 274–281 (2017).

  71. 71.

    Leonardi, F., De Maria, N. & Villa, E. Anticoagulation in cirrhosis: a new paradigm? Clin. Mol. Hepatol. 23, 13–21 (2017).

  72. 72.

    Wanless, I. R. et al. Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension. Hepatology 21, 1238–1247 (1995).

  73. 73.

    Marra, F. et al. Expression of the thrombin receptor in human liver: up-regulation during acute and chronic injury. Hepatology 27, 462–471 (1998).

  74. 74.

    Zimmerman, G. A., McIntyre, T. M. & Prescott, S. M. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J. Clin. Invest. 76, 2235–2246 (1985).

  75. 75.

    O’Brien, P. J. et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275, 13502–13509 (2000).

  76. 76.

    Li, C., Li, J., Weng, X., Lan, X. & Chi, X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J. Am. Soc. Hypertens. 9, 507–516 (2015).

  77. 77.

    He, X. et al. Upregulation of thrombomodulin expression by activation of farnesoid X receptor in vascular endothelial cells. Eur. J. Pharmacol. 718, 283–289 (2013).

  78. 78.

    Verbeke, L. et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59, 2286–2298 (2014).

  79. 79.

    Lutz, P. et al. A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis. Dig. Liver Dis. 46, 1047–1050 (2014).

  80. 80.

    Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

  81. 81.

    Lorenzo-Zúñiga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

  82. 82.

    Abraldes, J. G., Pasarin, M. & Garcia-Pagan, J. C. Animal models of portal hypertension. World J. Gastroenterol. 12, 6577–6584 (2006).

  83. 83.

    Geerts, A. M. et al. Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int. J. Exp. Pathol. 89, 251–263 (2008).

  84. 84.

    Klein, S., Schierwagen, R., Uschner, F. E. & Trebicka, J. Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension. Methods Mol. Biol. 1627, 91–116 2017.

  85. 85.

    Dong, S. et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41, 561–572 (2016).

  86. 86.

    Marrone, G. et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 64, 1434–1443 (2014).

  87. 87.

    Tripathi, D. M. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 155, 1564–1577 (2018).

  88. 88.

    de Mesquita, F. C. et al. Liraglutide improves liver microvascular dysfunction in cirrhosis: evidence from translational studies. Sci. Rep. 7, 3255 (2017).

  89. 89.

    Abraldes, J. G. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G980–G987 (2005).

  90. 90.

    Schwabl, P. et al. Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. J. Hepatol. 60, 1135–1142 (2014).

  91. 91.

    Bosch, J. & Iwakiri, Y. The portal hypertension syndrome: etiology, classification, relevance, and animal models. Hepatol. Int. 12, 1–10 (2017).

  92. 92.

    Scholten, D., Trebicka, J., Liedtke, C. & Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 49, 4–11 (2015).

  93. 93.

    Bale, S. S., Geerts, S., Jindal, R. & Yarmush, M. L. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci. Rep. 6, 25329 (2016).

  94. 94.

    DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K. & McCuskey, R. S. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G757–G763 (2004).

  95. 95.

    Meyer, J., Lacotte, S., Morel, P., Gonelle-Gispert, C. & Bühler, L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp. Cell Res. 349, 291–301 (2016).

  96. 96.

    Stradiot, L. et al. Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells. Biomaterials 139, 91–101 (2017).

  97. 97.

    Pfeiffer, E. et al. Featured article: isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp. Biol. Med. 240, 645–656 (2015).

  98. 98.

    Zhang, Q. et al. Isolation and culture of single cell types from rat liver. Cells Tissues Organs 201, 253–267 (2016).

  99. 99.

    Fernández-Iglesias, A., Ortega-Ribera, M., Guixé-Muntet, S. & Gracia-Sancho, J. 4 in 1: antibody-free protocol for isolating the main hepatic cells from healthy and cirrhotic single rat livers. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.13988 (2018).

  100. 100.

    International Transporter Consortium. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215–236 (2010).

  101. 101.

    Ortega-Ribera, M. et al. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol. Bioeng. 115, 2585–2594 (2018).

  102. 102.

    Wisse, E., de Zanger, R. B., Charels, K., van der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of disse. Hepatology 5, 683–692 (1985).

  103. 103.

    March, S., Hui, E. E., Underhill, G. H., Khetani, S. & Bhatia, S. N. Microenvironmental regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology 50, 920–928 (2009).

  104. 104.

    Poisson, J. et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017).

  105. 105.

    Marra, F. et al. Roles for chemokines in liver disease. Gastroenterology 147, 577–594 (2014).

  106. 106.

    Ju, C. & Tacke, F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell. Mol. Immunol. 13, 316–327 (2016).

  107. 107.

    Rowe, C. et al. Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J. Proteome Res. 9, 2658–2668 (2010).

  108. 108.

    Marrone, G. et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J. Hepatol. 58, 98–103 (2013).

  109. 109.

    Leite, S. B. et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78, 1–10 (2016).

  110. 110.

    Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

  111. 111.

    Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010).

  112. 112.

    Baptista, P. M., Vyas, D., Moran, E., Wang, Z. & Soker, S. Human liver bioengineering using a whole liver decellularized bioscaffold. Methods Mol. Biol. 1001, 289–298 (2013).

  113. 113.

    Baptista, P. M. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011).

  114. 114.

    Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

  115. 115.

    Mazza, G. et al. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci. Rep. 7, 5534 (2017).

  116. 116.

    Kojima, H. et al. Establishment of practical recellularized liver graft for blood perfusion using primary rat hepatocytes and liver sinusoidal endothelial cells. Am. J. Transplant. 18, 1351–1359 (2018).

  117. 117.

    Illa, X. et al. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLOS ONE 9, e111864 (2014).

  118. 118.

    Banaeiyan, A. A. et al. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication 9, 015014 (2017).

  119. 119.

    Du, Y. et al. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab. Chip 17, 782–794 (2017).

  120. 120.

    Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

  121. 121.

    Zafra, C. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 126, 749–755 (2004).

  122. 122.

    Abraldes, J. G. et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J. Hepatol. 46, 1040–1046 (2007).

  123. 123.

    Abraldes, J. G. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 136, 1651–1658 (2009).

  124. 124.

    Huang, H. C. et al. Simvastatin effects on portal-systemic collaterals of portal hypertensive rats. J. Gastroenterol. Hepatol. 25, 1401–1409 (2010).

  125. 125.

    Kumar, S., Grace, N. D. & Qamar, A. A. Statin use in patients with cirrhosis: a retrospective cohort study. Dig. Dis. Sci. 59, 1958–1965 (2014).

  126. 126.

    Mohanty, A., Tate, J. P. & Garcia-Tsao, G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C–related compensated cirrhosis. Gastroenterology 150, 430–440 (2016).

  127. 127.

    Trebicka, J. et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology 46, 242–253 (2007).

  128. 128.

    Trebicka, J. et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J. Hepatol. 53, 702–712 (2010).

  129. 129.

    Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280, 26714–26719 (2005).

  130. 130.

    Guixé-Muntet, S. et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J. Hepatol. 66, 86–94 (2017).

  131. 131.

    Abraldes, J. G. et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology 150, 1160–1170 (2016).

  132. 132.

    Simon, T. G., Bonilla, H., Yan, P., Chung, R. T. & Butt, A. A. Atorvastatin and fluvastatin are associated with dose-dependent reductions in cirrhosis and hepatocellular carcinoma, among patients with hepatitis C virus: results from ERCHIVES. Hepatology 64, 47–57 (2016).

  133. 133.

    Laleman, W. et al. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology 132, 709–719 (2007).

  134. 134.

    Graupera, M. et al. Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J. Hepatol. 39, 515–521 (2003).

  135. 135.

    Rosado, E. et al. Terutroban, a TP-receptor antagonist, reduces portal pressure in cirrhotic rats. Hepatology 58, 1424–1435 (2013).

  136. 136.

    Steib, C. J. et al. Treatment with the leukotriene inhibitor montelukast for 10 days attenuates portal hypertension in rat liver cirrhosis. Hepatology 51, 2086–2096 (2010).

  137. 137.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02802228 (2018).

  138. 138.

    De Gottardi, A. et al. Postprandial effects of dark chocolate on portal hypertension in patients with cirrhosis: results of a phase 2, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 96, 584–590 (2012).

  139. 139.

    García-Calderó, H. et al. Tempol administration, a superoxide dismutase mimetic, reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J. Hepatol. 54, 660–665 (2011).

  140. 140.

    Guillaume, M. et al. Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rats. J. Hepatol. 58, 240–246 (2013).

  141. 141.

    Di Pascoli, M. et al. Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 58, 904–910 (2013).

  142. 142.

    Yang, Y.-Y. et al. Asymmetric dimethylarginine (ADMA) determines the improvement of hepatic endothelial dysfunction by vitamin E in cirrhotic rats. Liver Int. 32, 48–57 (2012).

  143. 143.

    Yang, Y.-Y. et al. Effects of N-acetylcysteine administration in hepatic microcirculation of rats with biliary cirrhosis. J. Hepatol. 49, 25–33 (2008).

  144. 144.

    Hernandez-Guerra, M. et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology 43, 485–491 (2006).

  145. 145.

    Cantoni, S. et al. Hemodynamic and anti-remodelling effect of the Rho kinase inhibitor Y-27632 in the monocrotaline pulmonary arterial hypertension rat model. Eur. Respir. J. 48, PA5100 (2016).

  146. 146.

    Fukumoto, Y. et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 77, 2619–2625 (2013).

  147. 147.

    Kawada, N., Seki, S., Kuroki, T. & Kaneda, K. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1. Biochem. Biophys. Res. Commun. 266, 296–300 (1999).

  148. 148.

    Iwamoto, H. et al. A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J. Hepatol. 32, 762–770 (2000).

  149. 149.

    Murata, T., Arii, S., Mori, A. & Imamura, M. Therapeutic significance of Y-27632, a Rho-kinase inhibitor, on the established liver fibrosis. J. Surg. Res. 114, 64–71 (2003).

  150. 150.

    Wei, L. et al. Sodium ferulate lowers portal pressure in rats with secondary biliary cirrhosis through the RhoA/Rho-kinase signaling pathway: a preliminary study. Int. J. Mol. Med. 34, 1257–1267 (2014).

  151. 151.

    Anegawa, G. et al. Defective endothelial nitric oxide synthase signaling is mediated by rho-kinase activation in rats with secondary biliary cirrhosis. Hepatology 47, 966–977 (2008).

  152. 152.

    Fukuda, T. et al. Effects of fasudil on the portal and systemic hemodynamics of patients with cirrhosis. J. Gastroenterol. Hepatol. 29, 325–329 (2014).

  153. 153.

    Cerini, F. et al. Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J. Hepatol. 64, 834–842 (2016).

  154. 154.

    Fortea, J. I. et al. Enoxaparin does not ameliorate liver fibrosis or portal hypertension in rats with advanced cirrhosis. Liver Int. 38, 102–112 (2018).

  155. 155.

    Villa, E. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143, 1253–1260 (2012).

  156. 156.

    Vilaseca, M. et al. The anticoagulant rivaroxaban lowers portal hypertension in cirrhotic rats mainly by deactivating hepatic stellate cells. Hepatology 65, 2031–2044 (2017).

  157. 157.

    De Gottardi, A. et al. Antithrombotic treatment with direct-acting oral anticoagulants in patients with splanchnic vein thrombosis and cirrhosis. Liver Int. 37, 694–699 (2017).

  158. 158.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02643212 (2018).

  159. 159.

    EU Clinical Trial Register. Prospective, multicenter, randomized study to assess the effect of rivaroxaban in the portal vein thrombosis recanalization and the survival in patients with cirrhosis and portal vein thrombosis. EU Clinical Trial Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-003240-37/ES (2016).

  160. 160.

    Tripathi, D. M. et al. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats. Am. J. Physiol. Liver Physiol. 309, G301–G309 (2015).

  161. 161.

    Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

  162. 162.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03590626 (2018).

  163. 163.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03648554 (2018).

  164. 164.

    Rodríguez-Vilarrupla, A. et al. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 56, 1033–1039 (2012).

  165. 165.

    Wettstein, G. et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 1, 524–537 (2017).

  166. 166.

    Jensen, L., Kupcova, V., Arold, G., Pettersson, J. & Hjerpsted, J. B. Pharmacokinetics and tolerability of semaglutide in people with hepatic impairment. Diabetes Obes. Metab. 20, 998–1005 (2018).

  167. 167.

    Schwabl, P. et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. Hepatol. 66, 724–733 (2017).

  168. 168.

    Schwabl, P. et al. The non-steroidal FXR agonist GS-9674 reduces liver fibrosis and ameliorates portal hypertension in a rat NASH model. J. Hepatol. 64, S165–S166 (2018).

  169. 169.

    Mookerjee, R. et al. Effects of the FXR agonist obeticholic acid on hepatic venous pressure gradient (HVPG) in alcoholic cirrhosis: a proof of concept phase 2A study. J. Hepatol. 60, S7–S8 (2018).

  170. 170.

    Khurana, S., Raufman, J. P. & Pallone, T. L. Bile acids regulate cardiovascular function. Clin. Transl Sci. 4, 210–218 (2011).

  171. 171.

    Møller, S. & Henriksen, J. H. Cirrhotic cardiomyopathy. J. Hepatol. 53, 179–190 (2010).

  172. 172.

    Guicciardi, M. E., Malhi, H., Mott, J. L. & Gores, G. J. Apoptosis and necrosis in the liver. Compr. Physiol. 3, 977–1010 (2013).

  173. 173.

    Hoglen, N. C. et al. A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transpl. 13, 361–366 (2007).

  174. 174.

    Canbay, A., Feldstein, A., Baskin-Bey, E., Bronk, S. F. & Gores, G. J. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308, 1191–1196 (2003).

  175. 175.

    Witek, R. P. et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50, 1421–1430 (2009).

  176. 176.

    Ueno, Y. et al. Orally-administered caspase inhibitor PF-03491390 is retained in the liver for prolonged periods with low systemic exposure, exerting a hepatoprotective effect against alpha-fas-induced liver injury in a mouse model. J. Pharmacol. Sci. 105, 201–205 (2007).

  177. 177.

    Garcia-Tsao, G. et al. Emricasan (IDN-6556) Lowers Portal Pressure in Patients With Compensated Cirrhosis and Severe Portal Hypertension. Hepatology https://doi.org/10.1002/hep.30199 (2018).

  178. 178.

    Gracia-Sancho, J. et al. The pan caspase inhibitor Emricasan improves the hepatic microcirculatory dysfunction of CCl4-cirrhotic rats leading to portal hypertension amelioration and cirrhosis regression. Hepatology 64, 811–1050 (2016).

  179. 179.

    Bates, J. et al. Combination of ASK1 and ACC inhibitors increases efficacy in rodent models of NASH. Hepatology 66, 149–1185 (2017).

  180. 180.

    Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

  181. 181.

    Bocca, C., Novo, E., Miglietta, A. & Parola, M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell. Mol. Gastroenterol. Hepatol. 1, 477–488 (2015).

  182. 182.

    Yang, L. et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 146, 1339–1350 (2014).

  183. 183.

    Buijs, N. et al. A new key player in VEGF-dependent angiogenesis in human hepatocellular carcinoma: dimethylarginine dimethylaminohydrolase 1. Angiogenesis 20, 557–565 (2017).

  184. 184.

    Taura, K. et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135, 1729–1738 (2008).

  185. 185.

    Coulon, S. et al. Angiogenesis in chronic liver disease and its complications. Liver Int. 31, 146–162 (2011).

  186. 186.

    Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 61, 1406–1415 (2015).

  187. 187.

    Borkham-Kamphorst, E. et al. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest. 84, 766–777 (2004).

  188. 188.

    Reichenbach, V. et al. Adenoviral dominant-negative soluble PDGFRbeta improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J. Hepatol. 57, 967–973 (2012).

  189. 189.

    Hennenberg, M. et al. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br. J. Pharmacol. 157, 258–270 (2009).

  190. 190.

    Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245–1256 (2009).

  191. 191.

    D’Amico, M. et al. Effects of the combined administration of propranolol plus sorafenib on portal hypertension in cirrhotic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1191–G1198 (2012).

  192. 192.

    Tugues, S. et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46, 1919–1926 (2007).

  193. 193.

    Lin, H. C. et al. Beneficial effects of dual vascular endothelial growth factor receptor/fibroblast growth factor receptor inhibitor brivanib alaninate in cirrhotic portal hypertensive rats. J. Gastroenterol. Hepatol. 29, 1073–1082 (2014).

  194. 194.

    Mejias, M. et al. Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut 64, 657–666 (2015).

  195. 195.

    Coch, L. et al. Disruption of negative feedback loop between vasohibin-1 and vascular endothelial growth factor decreases portal pressure, angiogenesis, and fibrosis in cirrhotic rats. Hepatology 60, 633–647 (2014).

  196. 196.

    Pinter, M. et al. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma—a pilot study. Aliment. Pharmacol. Ther. 35, 83–91 (2012).

  197. 197.

    Parolini, O. et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26, 300–311 (2008).

  198. 198.

    Evangelista, M., Soncini, M. & Parolini, O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology 58, 33–42 (2008).

  199. 199.

    Manuelpillai, U. et al. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLOS ONE 7, e38631 (2012).

  200. 200.

    Cargnoni, A. et al. Effect of human amniotic epithelial cells on pro-fibrogenic resident hepatic cells in a rat model of liver fibrosis. J. Cell. Mol. Med. 22, 1202–1213 (2017).

  201. 201.

    Hodge, A. et al. Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy 16, 1132–1144 (2014).

  202. 202.

    Fernández-Iglesias, A. et al. Stem cells as a new therapeutic strategy for portal hypertension and cirrhosis. J. Hepatol. 68, S8–S9 (2018).

  203. 203.

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

  204. 204.

    Yu, Y. et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. Stem Cell Res. 9, 196–207 (2012).

  205. 205.

    Terai, S. et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24, 2292–2298 (2006).

  206. 206.

    Lyra, A. C. et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur. J. Gastroenterol. Hepatol. 22, 33–42 (2010).

  207. 207.

    Newsome, P. N. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet. Gastroenterol. Hepatol. 3, 25–36 (2018).

  208. 208.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01560845 (2012).

  209. 209.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03209986 (2018).

  210. 210.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01573923 (2015).

  211. 211.

    Tandon, P. et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 18, 1209–1216 (2012).

  212. 212.

    Berzigotti, A. et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology 54, 555–561 (2011).

  213. 213.

    Maharshi, S., Sharma, B. C. & Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 30, 1507–1513 (2015).

  214. 214.

    Berzigotti, A. et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology 65, 1293–1305 (2017).

  215. 215.

    Otte, C. et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp. Clin. Endocrinol. Diabetes 112, 10–17 (2004).

  216. 216.

    Delgado, M. G. et al. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G496–G502 (2013).

  217. 217.

    Huxtable, R. J. Physiological actions of taurine. Physiol. Rev. 72, 101–163 (1992).

  218. 218.

    Deng, X. et al. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis. World J. Gastroenterol. 16, 1916–1923 (2010).

  219. 219.

    Liang, J., Deng, X., Lin, Z. X., Zhao, L. C. & Zhang, X. L. Attenuation of portal hypertension by natural taurine in rats with liver cirrhosis. World J. Gastroenterol. 15, 4529–4537 (2009).

  220. 220.

    Schwarzer, R. et al. Randomised clinical study: the effects of oral taurine 6 g/day versus placebo on portal hypertension. Aliment. Pharmacol. Ther. 47, 86–94 (2018).

  221. 221.

    Sheedfar, F., Di Biase, S., Koonen, D. & Vinciguerra, M. Liver diseases and aging: friends or foes? Aging Cell 12, 950–954 (2013).

  222. 222.

    Bruguera, M. Liver diseases in the elderly. Gastroenterol. Hepatol. 37, 535–543 (2014).

  223. 223.

    O’Reilly, J. N., Cogger, V. C. & Le Couteur, D. G. Old age is associated with ultrastructural changes in isolated rat liver sinusoidal endothelial cells. J. Electron. Microsc. 59, 65–69 (2010).

  224. 224.

    Cogger, V. C. et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp. Gerontol. 38, 1101–1107 (2003).

  225. 225.

    Maeso-Díaz, R. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17, e12829 (2018).

  226. 226.

    Maeso-Diaz, R. et al. Hepatic microcirculatory phenotype in aging: mildly dysfunctional in health but markedly deteriorated in chronic liver injury. Hepatology 64, 811–1050 (2016).

  227. 227.

    Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

  228. 228.

    Garcia-Tsao, G., Albillos, A., Barden, G. E. & West, A. B. Bacterial translocation in acute and chronic portal hypertension. Hepatology 17, 1081–1085 (1993).

  229. 229.

    Gómez-Hurtado, I. et al. Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. Eur. J. Nutr. https://doi.org/10.1007/s00394-018-1709-y (2018).

  230. 230.

    Rashid, S. K. et al. Probiotics (VSL#3) prevent endothelial dysfunction in rats with portal hypertension: role of the angiotensin system. PLOS ONE 9, e97458 (2014).

  231. 231.

    Schimpl, G. et al. Allopurinol and glutamine attenuate bacterial translocation in chronic portal hypertensive and common bile duct ligated growing rats. Gut 39, 48–53 (1996).

  232. 232.

    Chang, T.-T. et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 52, 886–893 (2010).

  233. 233.

    Rockey, D. C. Liver fibrosis reversion after suppression of hepatitis B virus. Clin. Liver Dis. 20, 667–679 (2016).

  234. 234.

    Lens, S. et al. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology 153, 1273–1283 (2017).

Download references

Acknowledgements

J.G.-S. has received funding from the Instituto de Salud Carlos III (currently, FIS PI17/00012), the Spanish Ministry of Science, Innovation and Universities, the Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), the European Union Funds FEDER “una manera de hacer Europa” and the Stiftung für Leberkrankheiten. A.F.-I. has a postdoctoral fellowship from the Instituto de Salud Carlos III (Sara Borrell programme CD15/00050).

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks S. Moeller and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain

    • Jordi Gracia-Sancho
    • , Giusi Marrone
    •  & Anabel Fernández-Iglesias
  2. Hepatology, Department of Biomedical Research, Inselspital, Bern University, Bern, Switzerland

    • Jordi Gracia-Sancho

Authors

  1. Search for Jordi Gracia-Sancho in:

  2. Search for Giusi Marrone in:

  3. Search for Anabel Fernández-Iglesias in:

Contributions

All authors researched data for the article. J.G.-S. and A.F.-I. discussed and decided content for the article. All authors edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jordi Gracia-Sancho.

Supplementary information

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41575-018-0097-3