Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatic microcirculation and mechanisms of portal hypertension

Abstract

The liver microcirculatory milieu, mainly composed of liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs) and hepatic macrophages, has an essential role in liver homeostasis, including in preserving hepatocyte function, regulating the vascular tone and controlling inflammation. Liver microcirculatory dysfunction is one of the key mechanisms that promotes the progression of chronic liver disease (also termed cirrhosis) and the development of its major clinical complication, portal hypertension. In the present Review, we describe the current knowledge of liver microcirculatory dysfunction in cirrhotic portal hypertension and appraise the preclinical models used to study the liver circulation. We also provide a comprehensive summary of the promising therapeutic options to target the liver microvasculature in cirrhosis.

Key points

  • Portal hypertension is the most important non-neoplastic complication of chronic liver disease, leading to high morbidity and mortality.

  • A pathological increase in intrahepatic vascular resistance, which derives from profound deregulation in the phenotype of all hepatic cell types, is the primary factor in the development of portal hypertension.

  • Mechanisms leading to increased intrahepatic vascular resistance in cirrhosis are thought to include overactivation of vasoconstrictor pathways and downregulation of vasodilator signalling in the sinusoidal milieu.

  • Treatments targeting intrahepatic vascular resistance developed in preclinical models have exhibited very low success at the bedside, encouraging further research and the development of new models.

  • Current methods to understand the pathophysiology of portal hypertension and develop new therapeutics include preclinical animals models, conventional in vitro approaches and new in vitro methods that combine biological scaffolds with primary cells.

  • Improved characterization of portal hypertension pathophysiology and discovery of new therapeutic targets need to be done using preclinical models that mimic the clinical scenario and consider the current epidemiology of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The intrahepatic component of portal hypertension pathophysiology.
Fig. 2: The liver sinusoid.
Fig. 3: Advanced in vitro models mimicking the liver.

Similar content being viewed by others

References

  1. Bosch, J., Groszmann, R. J. & Shah, V. H. Evolution in the understanding of the pathophysiological basis of portal hypertension: how changes in paradigm are leading to successful new treatments. J. Hepatol. 62, S121–S130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bosch, J., Pizcueta, P., Feu, F., Fernández, M. & García-Pagán, J. C. Pathophysiology of portal hypertension. Gastroenterol. Clin. North Am. 21, 1–14 (1992).

    CAS  PubMed  Google Scholar 

  3. Garcia-Pagan, J. C., Gracia-Sancho, J. & Bosch, J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J. Hepatol. 57, 458–461 (2012).

    PubMed  Google Scholar 

  4. Fernández-Iglesias, A. & Gracia-Sancho, J. How to face chronic liver disease: the sinusoidal perspective. Front. Med. 4, 7 (2017).

    Google Scholar 

  5. Pinzani, M., Rosselli, M. & Zuckermann, M. Liver cirrhosis. Best Pract. Res. Clin. Gastroenterol. 25, 281–290 (2011).

    CAS  PubMed  Google Scholar 

  6. Rockey, D. C. Hepatic fibrosis, stellate cells, and portal hypertension. Clin. Liver Dis. 10, 459–479 (2006).

    PubMed  Google Scholar 

  7. Gupta, T. K., Toruner, M., Chung, M. K. & Groszmann, R. J. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology 28, 926–931 (1998).

    CAS  PubMed  Google Scholar 

  8. Gracia-Sancho, J. et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. Hepatol. 47, 220–227 (2007).

    CAS  PubMed  Google Scholar 

  9. Steib, C. J. et al. Kupffer cell activation in normal and fibrotic livers increases portal pressure via thromboxane A(2). J. Hepatol. 47, 228–238 (2007).

    CAS  PubMed  Google Scholar 

  10. Iwakiri, Y. & Groszmann, R. J. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43, S121–S131 (2006).

    CAS  PubMed  Google Scholar 

  11. Colle, I. O., De Vriese, A. S., Van Vlierberghe, H. R., Lameire, N. H. & De Vos, M. M. Vascular hyporesponsiveness in the mesenteric artery of anaesthetized rats with cirrhosis and portal hypertension: an in-vivo study. Eur. J. Gastroenterol. Hepatol. 16, 139–145 (2004).

    CAS  PubMed  Google Scholar 

  12. Angeli, P. et al. The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites. Liver Int. 25, 429–437 (2005).

    CAS  PubMed  Google Scholar 

  13. Fernández, M. et al. Angiogenesis in liver disease. J. Hepatol. 50, 604–620 (2009).

    PubMed  Google Scholar 

  14. Berzigotti, A. & Bosch, J. Pharmacologic management of portal hypertension. Clin. Liver Dis. 18, 303–317 (2014).

    PubMed  Google Scholar 

  15. Marrone, G. & Gracia-Sancho, J. Liver Failure: Etiologies, Neurological Complications and Emerging Therapies: Hepatic Microcirculation in Chronic Liver Disease (eds Peralta, C. & Fontana, L.) (Nova Science Publishers, 2013).

  16. Marrone, G., Shah, V. H. & Gracia-Sancho, J. Sinusoidal communication in liver fibrosis and regeneration. J. Hepatol. 65, 608–617 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Kawada, N., Tran-thi, T.-A., Klein, H. & Decker, K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Eur. J. Biochem. 213, 815–823 (1993).

    CAS  PubMed  Google Scholar 

  18. Gracia-Sancho, J. et al. Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis. Gastroenterology 133, 959–966 (2007).

    CAS  PubMed  Google Scholar 

  19. Gracia-Sancho, J. et al. Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47, 1248–1256 (2008).

    CAS  PubMed  Google Scholar 

  20. Rogoff, T. M. & Lipsky, P. E. Antigen presentation by isolated guinea pig Kupffer cells. J. Immunol. 124, 1740–1744 (1980).

    CAS  PubMed  Google Scholar 

  21. Knolle, P. A. & Limmer, A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol. 22, 432–437 (2001).

    CAS  PubMed  Google Scholar 

  22. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Google Scholar 

  23. Schildberg, F. A., Hegenbarth, S. I., Schumak, B., Limmer, A. & Knolle, P. A. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur. J. Immunol. 38, 957–967 (2008).

    CAS  PubMed  Google Scholar 

  24. Jarnagin, W. R., Rockey, D. C., Koteliansky, V. E., Wang, S. S. & Bissell, D. M. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J. Cell Biol. 127, 2037–2048 (1994).

    CAS  PubMed  Google Scholar 

  25. Canbay, A. et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38, 1188–1198 (2003).

    CAS  PubMed  Google Scholar 

  26. Jiang, J. X., Mikami, K., Venugopal, S., Li, Y. & Torok, N. J. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J. Hepatol. 51, 139–148 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Olsen, A. L. et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Liver Physiol. 301, G110–G118 (2011).

    CAS  Google Scholar 

  28. Iwakiri, Y. Nitric oxide in liver fibrosis: the role of inducible nitric oxide synthase. Clin. Mol. Hepatol. 21, 319–325 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Shah, V. et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology 117, 1222–1228 (1999).

    CAS  PubMed  Google Scholar 

  30. Sarela, A. I., Mihaimeed, F. M., Batten, J. J., Davidson, B. R. & Mathie, R. T. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut 44, 749–753 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gracia-Sancho, J. et al. Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60, 517–524 (2011).

    CAS  PubMed  Google Scholar 

  32. Morales-Ruiz, M. et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 125, 522–531 (2003).

    CAS  PubMed  Google Scholar 

  33. Matei, V. et al. The eNOS cofactor tetrahydrobiopterin improves endothelial dysfunction in livers of rats with CCl4 cirrhosis. Hepatology 44, 44–52 (2006).

    CAS  PubMed  Google Scholar 

  34. Liu, S., Premont, R. T., Singh, S. & Rockey, D. C. Caveolin 1 and G-protein–coupled receptor kinase-2 coregulate endothelial nitric oxide synthase activity in sinusoidal endothelial cells. Am. J. Pathol. 187, 896–907 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mookerjee, R. P. et al. Hepatic dimethylarginine-dimethylaminohydrolase1 is reduced in cirrhosis and is a target for therapy in portal hypertension. J. Hepatol. 62, 325–331 (2015).

    CAS  PubMed  Google Scholar 

  36. Vilaseca, M. et al. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver Int. 37, 1002–1012 (2017).

    CAS  PubMed  Google Scholar 

  37. Dekker, R. J. et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100, 1689–1698 (2002).

    CAS  PubMed  Google Scholar 

  38. Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  39. Jiang, W. et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am. J. Transl Res. 9, 2024–2037 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sacerdoti, D. et al. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins Other Lipid Mediat. 120, 80–90 (2015).

    CAS  PubMed  Google Scholar 

  41. Graupera, M. et al. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G763–G770 (2005).

    CAS  PubMed  Google Scholar 

  42. Titos, E. et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology 119, 794–805 (2000).

    CAS  PubMed  Google Scholar 

  43. Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771–784 (2004).

    PubMed  Google Scholar 

  44. Ibsen, M. S., Connor, M. & Glass, M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res. 2, 48–60 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Julien, B. et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology 128, 742–755 (2005).

    CAS  PubMed  Google Scholar 

  46. Tam, J. et al. Endocannabinoids in liver disease. Hepatology 53, 346–355 (2011).

    CAS  PubMed  Google Scholar 

  47. Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).

    Google Scholar 

  48. Martin, G. G. et al. Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. J. Lipid Res. 58, 2114–2126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mallat, A. & Lotersztajn, S. Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G9–G12 (2008).

    CAS  PubMed  Google Scholar 

  50. Zurier, R. B. & Burstein, S. H. Cannabinoids, inflammation, and fibrosis. FASEB J. 30, 3682–3689 (2016).

    CAS  PubMed  Google Scholar 

  51. Lotersztajn, S. et al. CB2 receptors as new therapeutic targets for liver diseases. Br. J. Pharmacol. 153, 286–289 (2008).

    CAS  PubMed  Google Scholar 

  52. Mai, P. et al. Endocannabinoid system contributes to liver injury and inflammation by activation of bone marrow–derived monocytes/macrophages in a CB1-dependent manner. J. Immunol. 195, 3390–3401 (2015).

    CAS  PubMed  Google Scholar 

  53. Caraceni, P. et al. Circulating and hepatic endocannabinoids and endocannabinoid-related molecules in patients with cirrhosis. Liver Int. 30, 816–825 (2010).

    CAS  PubMed  Google Scholar 

  54. Siegmund, S. V. & Schwabe, R. F. Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G357–G362 (2007).

    Google Scholar 

  55. Mun, J. et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. Pharmacology 324, 475–483 (2008).

    Google Scholar 

  56. Avraham, Y. et al. The direct profibrotic and indirect immune antifibrotic balance of blocking the cannabinoid 2 receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1364–G1372 (2012).

    CAS  PubMed  Google Scholar 

  57. Reichenbach, V. et al. Prevention of fibrosis progression in CCl4-treated rats: role of the hepatic endocannabinoid and apelin systems. J. Pharmacol. Exp. Ther. 340, 629–637 (2012).

    CAS  PubMed  Google Scholar 

  58. Mallat, A., Teixeira-Clerc, F. & Lotersztajn, S. Cannabinoid signaling and liver therapeutics. J. Hepatol. 59, 891–896 (2013).

    CAS  PubMed  Google Scholar 

  59. Louvet, A. et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54, 1217–1226 (2011).

    CAS  PubMed  Google Scholar 

  60. Hennenberg, M. et al. Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. Gastroenterology 130, 838–854 (2006).

    CAS  PubMed  Google Scholar 

  61. Zhou, Q. et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut 55, 1296–1305 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yee, H. F. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 28, 843–850 (1998).

    CAS  PubMed  Google Scholar 

  63. Klein, S. et al. HSC-specific inhibition of Rho-kinase reduces portal pressure in cirrhotic rats without major systemic effects. J. Hepatol. 57, 1220–1227 (2012).

    CAS  PubMed  Google Scholar 

  64. Yokomori, H. et al. Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab. Invest. 84, 857–864 (2004).

    CAS  PubMed  Google Scholar 

  65. Dach, K. et al. Bacterial toxins induce sustained mRNA expression of the silencing transcription factor klf2 via inactivation of RhoA and Rhophilin 1. Infect. Immun. 77, 5583–5592 (2009).

  66. Tripodi, A. et al. An imbalance of pro- versus anti-coagulation factors in plasma from patients with cirrhosis. Gastroenterology 137, 2105–2111 (2009).

    CAS  PubMed  Google Scholar 

  67. Bianchini, M., De Pietri, L. & Villa, E. Coagulopathy in liver diseases: complication or therapy? Dig. Dis. 32, 609–614 (2014).

    PubMed  Google Scholar 

  68. Grover, S. P. & Mackman, N. Tissue factor: an essential mediator of hemostasis and trigger of thrombosis. Arterioscler. Thromb. Vasc. Biol. 38, 709–725 (2018).

    CAS  PubMed  Google Scholar 

  69. Duplantier, J. G. et al. A role for thrombin in liver fibrosis. Gut 53, 1682–1687 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tripodi, A., Primignani, M., Mannucci, P. M. & Caldwell, S. H. Changing concepts of cirrhotic coagulopathy. Am. J. Gastroenterol. 112, 274–281 (2017).

    PubMed  Google Scholar 

  71. Leonardi, F., De Maria, N. & Villa, E. Anticoagulation in cirrhosis: a new paradigm? Clin. Mol. Hepatol. 23, 13–21 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Wanless, I. R. et al. Hepatic and portal vein thrombosis in cirrhosis: possible role in development of parenchymal extinction and portal hypertension. Hepatology 21, 1238–1247 (1995).

    CAS  PubMed  Google Scholar 

  73. Marra, F. et al. Expression of the thrombin receptor in human liver: up-regulation during acute and chronic injury. Hepatology 27, 462–471 (1998).

    CAS  PubMed  Google Scholar 

  74. Zimmerman, G. A., McIntyre, T. M. & Prescott, S. M. Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J. Clin. Invest. 76, 2235–2246 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Brien, P. J. et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275, 13502–13509 (2000).

    PubMed  Google Scholar 

  76. Li, C., Li, J., Weng, X., Lan, X. & Chi, X. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats. J. Am. Soc. Hypertens. 9, 507–516 (2015).

    PubMed  Google Scholar 

  77. He, X. et al. Upregulation of thrombomodulin expression by activation of farnesoid X receptor in vascular endothelial cells. Eur. J. Pharmacol. 718, 283–289 (2013).

    CAS  PubMed  Google Scholar 

  78. Verbeke, L. et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59, 2286–2298 (2014).

    CAS  PubMed  Google Scholar 

  79. Lutz, P. et al. A farnesoid X receptor polymorphism predisposes to spontaneous bacterial peritonitis. Dig. Liver Dis. 46, 1047–1050 (2014).

    CAS  PubMed  Google Scholar 

  80. Verbeke, L. et al. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci. Rep. 6, 33453 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lorenzo-Zúñiga, V. et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37, 551–557 (2003).

    PubMed  Google Scholar 

  82. Abraldes, J. G., Pasarin, M. & Garcia-Pagan, J. C. Animal models of portal hypertension. World J. Gastroenterol. 12, 6577–6584 (2006).

    PubMed  PubMed Central  Google Scholar 

  83. Geerts, A. M. et al. Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int. J. Exp. Pathol. 89, 251–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Klein, S., Schierwagen, R., Uschner, F. E. & Trebicka, J. Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension. Methods Mol. Biol. 1627, 91–116 2017.

    CAS  PubMed  Google Scholar 

  85. Dong, S. et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J. Toxicol. Sci. 41, 561–572 (2016).

    CAS  PubMed  Google Scholar 

  86. Marrone, G. et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 64, 1434–1443 (2014).

    PubMed  Google Scholar 

  87. Tripathi, D. M. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 155, 1564–1577 (2018).

    CAS  PubMed  Google Scholar 

  88. de Mesquita, F. C. et al. Liraglutide improves liver microvascular dysfunction in cirrhosis: evidence from translational studies. Sci. Rep. 7, 3255 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Abraldes, J. G. Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G980–G987 (2005).

    Google Scholar 

  90. Schwabl, P. et al. Pioglitazone decreases portosystemic shunting by modulating inflammation and angiogenesis in cirrhotic and non-cirrhotic portal hypertensive rats. J. Hepatol. 60, 1135–1142 (2014).

    CAS  PubMed  Google Scholar 

  91. Bosch, J. & Iwakiri, Y. The portal hypertension syndrome: etiology, classification, relevance, and animal models. Hepatol. Int. 12, 1–10 (2017).

    PubMed  Google Scholar 

  92. Scholten, D., Trebicka, J., Liedtke, C. & Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 49, 4–11 (2015).

    CAS  PubMed  Google Scholar 

  93. Bale, S. S., Geerts, S., Jindal, R. & Yarmush, M. L. Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci. Rep. 6, 25329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K. & McCuskey, R. S. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G757–G763 (2004).

    CAS  PubMed  Google Scholar 

  95. Meyer, J., Lacotte, S., Morel, P., Gonelle-Gispert, C. & Bühler, L. An optimized method for mouse liver sinusoidal endothelial cell isolation. Exp. Cell Res. 349, 291–301 (2016).

    CAS  PubMed  Google Scholar 

  96. Stradiot, L. et al. Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells. Biomaterials 139, 91–101 (2017).

    CAS  PubMed  Google Scholar 

  97. Pfeiffer, E. et al. Featured article: isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells. Exp. Biol. Med. 240, 645–656 (2015).

    CAS  Google Scholar 

  98. Zhang, Q. et al. Isolation and culture of single cell types from rat liver. Cells Tissues Organs 201, 253–267 (2016).

    PubMed  Google Scholar 

  99. Fernández-Iglesias, A., Ortega-Ribera, M., Guixé-Muntet, S. & Gracia-Sancho, J. 4 in 1: antibody-free protocol for isolating the main hepatic cells from healthy and cirrhotic single rat livers. J. Cell. Mol. Med. https://doi.org/10.1111/jcmm.13988 (2018).

  100. International Transporter Consortium. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9, 215–236 (2010).

    Google Scholar 

  101. Ortega-Ribera, M. et al. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol. Bioeng. 115, 2585–2594 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wisse, E., de Zanger, R. B., Charels, K., van der Smissen, P. & McCuskey, R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of disse. Hepatology 5, 683–692 (1985).

    CAS  PubMed  Google Scholar 

  103. March, S., Hui, E. E., Underhill, G. H., Khetani, S. & Bhatia, S. N. Microenvironmental regulation of the sinusoidal endothelial cell phenotype in vitro. Hepatology 50, 920–928 (2009).

    CAS  PubMed  Google Scholar 

  104. Poisson, J. et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66, 212–227 (2017).

    CAS  PubMed  Google Scholar 

  105. Marra, F. et al. Roles for chemokines in liver disease. Gastroenterology 147, 577–594 (2014).

    CAS  PubMed  Google Scholar 

  106. Ju, C. & Tacke, F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell. Mol. Immunol. 13, 316–327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rowe, C. et al. Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J. Proteome Res. 9, 2658–2668 (2010).

    CAS  PubMed  Google Scholar 

  108. Marrone, G. et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial-stellate cell deactivation induced by statins. J. Hepatol. 58, 98–103 (2013).

    CAS  PubMed  Google Scholar 

  109. Leite, S. B. et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78, 1–10 (2016).

    CAS  PubMed  Google Scholar 

  110. Badylak, S. F., Freytes, D. O. & Gilbert, T. W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    CAS  PubMed  Google Scholar 

  111. Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Baptista, P. M., Vyas, D., Moran, E., Wang, Z. & Soker, S. Human liver bioengineering using a whole liver decellularized bioscaffold. Methods Mol. Biol. 1001, 289–298 (2013).

    CAS  PubMed  Google Scholar 

  113. Baptista, P. M. et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011).

    CAS  PubMed  Google Scholar 

  114. Lovett, M., Lee, K., Edwards, A. & Kaplan, D. L. Vascularization strategies for tissue engineering. Tissue Eng. Part B Rev. 15, 353–370 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Mazza, G. et al. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci. Rep. 7, 5534 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Kojima, H. et al. Establishment of practical recellularized liver graft for blood perfusion using primary rat hepatocytes and liver sinusoidal endothelial cells. Am. J. Transplant. 18, 1351–1359 (2018).

    CAS  PubMed  Google Scholar 

  117. Illa, X. et al. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLOS ONE 9, e111864 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Banaeiyan, A. A. et al. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication 9, 015014 (2017).

    PubMed  Google Scholar 

  119. Du, Y. et al. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab. Chip 17, 782–794 (2017).

    CAS  PubMed  Google Scholar 

  120. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

    CAS  PubMed  Google Scholar 

  121. Zafra, C. et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 126, 749–755 (2004).

    CAS  PubMed  Google Scholar 

  122. Abraldes, J. G. et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J. Hepatol. 46, 1040–1046 (2007).

    CAS  PubMed  Google Scholar 

  123. Abraldes, J. G. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 136, 1651–1658 (2009).

    CAS  PubMed  Google Scholar 

  124. Huang, H. C. et al. Simvastatin effects on portal-systemic collaterals of portal hypertensive rats. J. Gastroenterol. Hepatol. 25, 1401–1409 (2010).

    CAS  PubMed  Google Scholar 

  125. Kumar, S., Grace, N. D. & Qamar, A. A. Statin use in patients with cirrhosis: a retrospective cohort study. Dig. Dis. Sci. 59, 1958–1965 (2014).

    CAS  PubMed  Google Scholar 

  126. Mohanty, A., Tate, J. P. & Garcia-Tsao, G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C–related compensated cirrhosis. Gastroenterology 150, 430–440 (2016).

    CAS  PubMed  Google Scholar 

  127. Trebicka, J. et al. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology 46, 242–253 (2007).

    CAS  PubMed  Google Scholar 

  128. Trebicka, J. et al. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells. J. Hepatol. 53, 702–712 (2010).

    CAS  PubMed  Google Scholar 

  129. Parmar, K. M. et al. Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J. Biol. Chem. 280, 26714–26719 (2005).

    CAS  PubMed  Google Scholar 

  130. Guixé-Muntet, S. et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J. Hepatol. 66, 86–94 (2017).

    PubMed  Google Scholar 

  131. Abraldes, J. G. et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology 150, 1160–1170 (2016).

    CAS  PubMed  Google Scholar 

  132. Simon, T. G., Bonilla, H., Yan, P., Chung, R. T. & Butt, A. A. Atorvastatin and fluvastatin are associated with dose-dependent reductions in cirrhosis and hepatocellular carcinoma, among patients with hepatitis C virus: results from ERCHIVES. Hepatology 64, 47–57 (2016).

    CAS  PubMed  Google Scholar 

  133. Laleman, W. et al. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology 132, 709–719 (2007).

    CAS  PubMed  Google Scholar 

  134. Graupera, M. et al. Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J. Hepatol. 39, 515–521 (2003).

    CAS  PubMed  Google Scholar 

  135. Rosado, E. et al. Terutroban, a TP-receptor antagonist, reduces portal pressure in cirrhotic rats. Hepatology 58, 1424–1435 (2013).

    CAS  PubMed  Google Scholar 

  136. Steib, C. J. et al. Treatment with the leukotriene inhibitor montelukast for 10 days attenuates portal hypertension in rat liver cirrhosis. Hepatology 51, 2086–2096 (2010).

    CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02802228 (2018).

  138. De Gottardi, A. et al. Postprandial effects of dark chocolate on portal hypertension in patients with cirrhosis: results of a phase 2, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 96, 584–590 (2012).

    PubMed  Google Scholar 

  139. García-Calderó, H. et al. Tempol administration, a superoxide dismutase mimetic, reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J. Hepatol. 54, 660–665 (2011).

    PubMed  Google Scholar 

  140. Guillaume, M. et al. Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rats. J. Hepatol. 58, 240–246 (2013).

    CAS  PubMed  Google Scholar 

  141. Di Pascoli, M. et al. Resveratrol improves intrahepatic endothelial dysfunction and reduces hepatic fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 58, 904–910 (2013).

    PubMed  Google Scholar 

  142. Yang, Y.-Y. et al. Asymmetric dimethylarginine (ADMA) determines the improvement of hepatic endothelial dysfunction by vitamin E in cirrhotic rats. Liver Int. 32, 48–57 (2012).

    PubMed  Google Scholar 

  143. Yang, Y.-Y. et al. Effects of N-acetylcysteine administration in hepatic microcirculation of rats with biliary cirrhosis. J. Hepatol. 49, 25–33 (2008).

    CAS  PubMed  Google Scholar 

  144. Hernandez-Guerra, M. et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology 43, 485–491 (2006).

    CAS  PubMed  Google Scholar 

  145. Cantoni, S. et al. Hemodynamic and anti-remodelling effect of the Rho kinase inhibitor Y-27632 in the monocrotaline pulmonary arterial hypertension rat model. Eur. Respir. J. 48, PA5100 (2016).

    Google Scholar 

  146. Fukumoto, Y. et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 77, 2619–2625 (2013).

    CAS  PubMed  Google Scholar 

  147. Kawada, N., Seki, S., Kuroki, T. & Kaneda, K. ROCK inhibitor Y-27632 attenuates stellate cell contraction and portal pressure increase induced by endothelin-1. Biochem. Biophys. Res. Commun. 266, 296–300 (1999).

    CAS  PubMed  Google Scholar 

  148. Iwamoto, H. et al. A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. J. Hepatol. 32, 762–770 (2000).

    CAS  PubMed  Google Scholar 

  149. Murata, T., Arii, S., Mori, A. & Imamura, M. Therapeutic significance of Y-27632, a Rho-kinase inhibitor, on the established liver fibrosis. J. Surg. Res. 114, 64–71 (2003).

    CAS  PubMed  Google Scholar 

  150. Wei, L. et al. Sodium ferulate lowers portal pressure in rats with secondary biliary cirrhosis through the RhoA/Rho-kinase signaling pathway: a preliminary study. Int. J. Mol. Med. 34, 1257–1267 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Anegawa, G. et al. Defective endothelial nitric oxide synthase signaling is mediated by rho-kinase activation in rats with secondary biliary cirrhosis. Hepatology 47, 966–977 (2008).

    CAS  PubMed  Google Scholar 

  152. Fukuda, T. et al. Effects of fasudil on the portal and systemic hemodynamics of patients with cirrhosis. J. Gastroenterol. Hepatol. 29, 325–329 (2014).

    CAS  PubMed  Google Scholar 

  153. Cerini, F. et al. Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats. J. Hepatol. 64, 834–842 (2016).

    CAS  PubMed  Google Scholar 

  154. Fortea, J. I. et al. Enoxaparin does not ameliorate liver fibrosis or portal hypertension in rats with advanced cirrhosis. Liver Int. 38, 102–112 (2018).

    CAS  PubMed  Google Scholar 

  155. Villa, E. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143, 1253–1260 (2012).

    CAS  PubMed  Google Scholar 

  156. Vilaseca, M. et al. The anticoagulant rivaroxaban lowers portal hypertension in cirrhotic rats mainly by deactivating hepatic stellate cells. Hepatology 65, 2031–2044 (2017).

    CAS  PubMed  Google Scholar 

  157. De Gottardi, A. et al. Antithrombotic treatment with direct-acting oral anticoagulants in patients with splanchnic vein thrombosis and cirrhosis. Liver Int. 37, 694–699 (2017).

    PubMed  Google Scholar 

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02643212 (2018).

  159. EU Clinical Trial Register. Prospective, multicenter, randomized study to assess the effect of rivaroxaban in the portal vein thrombosis recanalization and the survival in patients with cirrhosis and portal vein thrombosis. EU Clinical Trial Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-003240-37/ES (2016).

  160. Tripathi, D. M. et al. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats. Am. J. Physiol. Liver Physiol. 309, G301–G309 (2015).

    CAS  Google Scholar 

  161. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    CAS  PubMed  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03590626 (2018).

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03648554 (2018).

  164. Rodríguez-Vilarrupla, A. et al. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. J. Hepatol. 56, 1033–1039 (2012).

    PubMed  Google Scholar 

  165. Wettstein, G. et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 1, 524–537 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jensen, L., Kupcova, V., Arold, G., Pettersson, J. & Hjerpsted, J. B. Pharmacokinetics and tolerability of semaglutide in people with hepatic impairment. Diabetes Obes. Metab. 20, 998–1005 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Schwabl, P. et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. Hepatol. 66, 724–733 (2017).

    CAS  PubMed  Google Scholar 

  168. Schwabl, P. et al. The non-steroidal FXR agonist GS-9674 reduces liver fibrosis and ameliorates portal hypertension in a rat NASH model. J. Hepatol. 64, S165–S166 (2018).

    Google Scholar 

  169. Mookerjee, R. et al. Effects of the FXR agonist obeticholic acid on hepatic venous pressure gradient (HVPG) in alcoholic cirrhosis: a proof of concept phase 2A study. J. Hepatol. 60, S7–S8 (2018).

    Google Scholar 

  170. Khurana, S., Raufman, J. P. & Pallone, T. L. Bile acids regulate cardiovascular function. Clin. Transl Sci. 4, 210–218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Møller, S. & Henriksen, J. H. Cirrhotic cardiomyopathy. J. Hepatol. 53, 179–190 (2010).

    PubMed  Google Scholar 

  172. Guicciardi, M. E., Malhi, H., Mott, J. L. & Gores, G. J. Apoptosis and necrosis in the liver. Compr. Physiol. 3, 977–1010 (2013).

    PubMed  Google Scholar 

  173. Hoglen, N. C. et al. A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transpl. 13, 361–366 (2007).

    PubMed  Google Scholar 

  174. Canbay, A., Feldstein, A., Baskin-Bey, E., Bronk, S. F. & Gores, G. J. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308, 1191–1196 (2003).

    PubMed  Google Scholar 

  175. Witek, R. P. et al. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50, 1421–1430 (2009).

    CAS  PubMed  Google Scholar 

  176. Ueno, Y. et al. Orally-administered caspase inhibitor PF-03491390 is retained in the liver for prolonged periods with low systemic exposure, exerting a hepatoprotective effect against alpha-fas-induced liver injury in a mouse model. J. Pharmacol. Sci. 105, 201–205 (2007).

    CAS  PubMed  Google Scholar 

  177. Garcia-Tsao, G. et al. Emricasan (IDN-6556) Lowers Portal Pressure in Patients With Compensated Cirrhosis and Severe Portal Hypertension. Hepatology https://doi.org/10.1002/hep.30199 (2018).

    Google Scholar 

  178. Gracia-Sancho, J. et al. The pan caspase inhibitor Emricasan improves the hepatic microcirculatory dysfunction of CCl4-cirrhotic rats leading to portal hypertension amelioration and cirrhosis regression. Hepatology 64, 811–1050 (2016).

    Google Scholar 

  179. Bates, J. et al. Combination of ASK1 and ACC inhibitors increases efficacy in rodent models of NASH. Hepatology 66, 149–1185 (2017).

    Google Scholar 

  180. Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

    CAS  PubMed  Google Scholar 

  181. Bocca, C., Novo, E., Miglietta, A. & Parola, M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell. Mol. Gastroenterol. Hepatol. 1, 477–488 (2015).

    PubMed  PubMed Central  Google Scholar 

  182. Yang, L. et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology 146, 1339–1350 (2014).

    CAS  PubMed  Google Scholar 

  183. Buijs, N. et al. A new key player in VEGF-dependent angiogenesis in human hepatocellular carcinoma: dimethylarginine dimethylaminohydrolase 1. Angiogenesis 20, 557–565 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Taura, K. et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 135, 1729–1738 (2008).

    CAS  PubMed  Google Scholar 

  185. Coulon, S. et al. Angiogenesis in chronic liver disease and its complications. Liver Int. 31, 146–162 (2011).

    CAS  PubMed  Google Scholar 

  186. Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 61, 1406–1415 (2015).

    PubMed  Google Scholar 

  187. Borkham-Kamphorst, E. et al. Dominant-negative soluble PDGF-beta receptor inhibits hepatic stellate cell activation and attenuates liver fibrosis. Lab Invest. 84, 766–777 (2004).

    CAS  PubMed  Google Scholar 

  188. Reichenbach, V. et al. Adenoviral dominant-negative soluble PDGFRbeta improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J. Hepatol. 57, 967–973 (2012).

    CAS  PubMed  Google Scholar 

  189. Hennenberg, M. et al. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br. J. Pharmacol. 157, 258–270 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245–1256 (2009).

    CAS  PubMed  Google Scholar 

  191. D’Amico, M. et al. Effects of the combined administration of propranolol plus sorafenib on portal hypertension in cirrhotic rats. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1191–G1198 (2012).

    PubMed  Google Scholar 

  192. Tugues, S. et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 46, 1919–1926 (2007).

    CAS  PubMed  Google Scholar 

  193. Lin, H. C. et al. Beneficial effects of dual vascular endothelial growth factor receptor/fibroblast growth factor receptor inhibitor brivanib alaninate in cirrhotic portal hypertensive rats. J. Gastroenterol. Hepatol. 29, 1073–1082 (2014).

    CAS  PubMed  Google Scholar 

  194. Mejias, M. et al. Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut 64, 657–666 (2015).

    CAS  PubMed  Google Scholar 

  195. Coch, L. et al. Disruption of negative feedback loop between vasohibin-1 and vascular endothelial growth factor decreases portal pressure, angiogenesis, and fibrosis in cirrhotic rats. Hepatology 60, 633–647 (2014).

    CAS  PubMed  Google Scholar 

  196. Pinter, M. et al. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma—a pilot study. Aliment. Pharmacol. Ther. 35, 83–91 (2012).

    CAS  PubMed  Google Scholar 

  197. Parolini, O. et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26, 300–311 (2008).

    PubMed  Google Scholar 

  198. Evangelista, M., Soncini, M. & Parolini, O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology 58, 33–42 (2008).

    PubMed  PubMed Central  Google Scholar 

  199. Manuelpillai, U. et al. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLOS ONE 7, e38631 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Cargnoni, A. et al. Effect of human amniotic epithelial cells on pro-fibrogenic resident hepatic cells in a rat model of liver fibrosis. J. Cell. Mol. Med. 22, 1202–1213 (2017).

    PubMed  PubMed Central  Google Scholar 

  201. Hodge, A. et al. Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy 16, 1132–1144 (2014).

    CAS  PubMed  Google Scholar 

  202. Fernández-Iglesias, A. et al. Stem cells as a new therapeutic strategy for portal hypertension and cirrhosis. J. Hepatol. 68, S8–S9 (2018).

    Google Scholar 

  203. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  204. Yu, Y. et al. Hepatocyte-like cells differentiated from human induced pluripotent stem cells: relevance to cellular therapies. Stem Cell Res. 9, 196–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Terai, S. et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24, 2292–2298 (2006).

    CAS  PubMed  Google Scholar 

  206. Lyra, A. C. et al. Infusion of autologous bone marrow mononuclear cells through hepatic artery results in a short-term improvement of liver function in patients with chronic liver disease: a pilot randomized controlled study. Eur. J. Gastroenterol. Hepatol. 22, 33–42 (2010).

    PubMed  Google Scholar 

  207. Newsome, P. N. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet. Gastroenterol. Hepatol. 3, 25–36 (2018).

    PubMed  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01560845 (2012).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03209986 (2018).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01573923 (2015).

  211. Tandon, P. et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 18, 1209–1216 (2012).

    PubMed  Google Scholar 

  212. Berzigotti, A. et al. Obesity is an independent risk factor for clinical decompensation in patients with cirrhosis. Hepatology 54, 555–561 (2011).

    PubMed  Google Scholar 

  213. Maharshi, S., Sharma, B. C. & Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 30, 1507–1513 (2015).

    CAS  PubMed  Google Scholar 

  214. Berzigotti, A. et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology 65, 1293–1305 (2017).

    PubMed  Google Scholar 

  215. Otte, C. et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp. Clin. Endocrinol. Diabetes 112, 10–17 (2004).

    CAS  PubMed  Google Scholar 

  216. Delgado, M. G. et al. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G496–G502 (2013).

    CAS  PubMed  Google Scholar 

  217. Huxtable, R. J. Physiological actions of taurine. Physiol. Rev. 72, 101–163 (1992).

    CAS  PubMed  Google Scholar 

  218. Deng, X. et al. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis. World J. Gastroenterol. 16, 1916–1923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Liang, J., Deng, X., Lin, Z. X., Zhao, L. C. & Zhang, X. L. Attenuation of portal hypertension by natural taurine in rats with liver cirrhosis. World J. Gastroenterol. 15, 4529–4537 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Schwarzer, R. et al. Randomised clinical study: the effects of oral taurine 6 g/day versus placebo on portal hypertension. Aliment. Pharmacol. Ther. 47, 86–94 (2018).

    CAS  PubMed  Google Scholar 

  221. Sheedfar, F., Di Biase, S., Koonen, D. & Vinciguerra, M. Liver diseases and aging: friends or foes? Aging Cell 12, 950–954 (2013).

    CAS  PubMed  Google Scholar 

  222. Bruguera, M. Liver diseases in the elderly. Gastroenterol. Hepatol. 37, 535–543 (2014).

    PubMed  Google Scholar 

  223. O’Reilly, J. N., Cogger, V. C. & Le Couteur, D. G. Old age is associated with ultrastructural changes in isolated rat liver sinusoidal endothelial cells. J. Electron. Microsc. 59, 65–69 (2010).

    Google Scholar 

  224. Cogger, V. C. et al. Hepatic sinusoidal pseudocapillarization with aging in the non-human primate. Exp. Gerontol. 38, 1101–1107 (2003).

    PubMed  Google Scholar 

  225. Maeso-Díaz, R. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17, e12829 (2018).

    PubMed  PubMed Central  Google Scholar 

  226. Maeso-Diaz, R. et al. Hepatic microcirculatory phenotype in aging: mildly dysfunctional in health but markedly deteriorated in chronic liver injury. Hepatology 64, 811–1050 (2016).

    Google Scholar 

  227. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    PubMed  Google Scholar 

  228. Garcia-Tsao, G., Albillos, A., Barden, G. E. & West, A. B. Bacterial translocation in acute and chronic portal hypertension. Hepatology 17, 1081–1085 (1993).

    CAS  PubMed  Google Scholar 

  229. Gómez-Hurtado, I. et al. Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. Eur. J. Nutr. https://doi.org/10.1007/s00394-018-1709-y (2018).

    Article  PubMed  Google Scholar 

  230. Rashid, S. K. et al. Probiotics (VSL#3) prevent endothelial dysfunction in rats with portal hypertension: role of the angiotensin system. PLOS ONE 9, e97458 (2014).

    PubMed  PubMed Central  Google Scholar 

  231. Schimpl, G. et al. Allopurinol and glutamine attenuate bacterial translocation in chronic portal hypertensive and common bile duct ligated growing rats. Gut 39, 48–53 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chang, T.-T. et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 52, 886–893 (2010).

    CAS  PubMed  Google Scholar 

  233. Rockey, D. C. Liver fibrosis reversion after suppression of hepatitis B virus. Clin. Liver Dis. 20, 667–679 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Lens, S. et al. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology 153, 1273–1283 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.G.-S. has received funding from the Instituto de Salud Carlos III (currently, FIS PI17/00012), the Spanish Ministry of Science, Innovation and Universities, the Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), the European Union Funds FEDER “una manera de hacer Europa” and the Stiftung für Leberkrankheiten. A.F.-I. has a postdoctoral fellowship from the Instituto de Salud Carlos III (Sara Borrell programme CD15/00050).

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks S. Moeller and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. J.G.-S. and A.F.-I. discussed and decided content for the article. All authors edited the manuscript before submission.

Corresponding author

Correspondence to Jordi Gracia-Sancho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracia-Sancho, J., Marrone, G. & Fernández-Iglesias, A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol 16, 221–234 (2019). https://doi.org/10.1038/s41575-018-0097-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0097-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing