Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators

Abstract

Alterations of hepatic metabolism are critical to the development of liver disease. The peroxisome proliferator-activated receptor-γ coactivators (PGC1s) are able to orchestrate, on a transcriptional level, different aspects of liver metabolism, such as mitochondrial oxidative phosphorylation, gluconeogenesis and fatty acid synthesis. As modifications affecting both mitochondrial and lipid metabolism contribute to the initiation and/or progression of liver steatosis, nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), a link between disrupted PGC1 pathways and onset of these pathological conditions has been postulated. However, despite the large quantity of studies, the scenario is still not completely understood, and some issues remain controversial. Here, we discuss the roles of PGC1s in healthy liver and explore their contribution to the pathogenesis and future therapy of NASH and HCC.

Key points

  • Peroxisome proliferator-activated receptor-γ coactivators (PGC1s) have a key role in liver metabolism and contribute to energy homeostasis.

  • PGC1α and PGC1β exert divergent functions on liver metabolism and regulate different pathways.

  • Although the hepatic expression of both PGC1α and PGC1β negatively correlates with nonalcoholic fatty liver disease (NAFLD) severity, hepatocellular carcinoma (HCC) development is inhibited by PGC1α and promoted by PGC1β.

  • Although direct coactivator targeting is problematic, pharmacological modulation of transcriptional and post-transcriptional activators of PGC1s is an appealing therapeutic avenue.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiological roles of PGC1α and PGC1β in the liver.
Fig. 2: Common pathways regulated by PGC1α and PGC1β in the liver.
Fig. 3: Principal metabolic alterations characterizing NAFLD and HCC.
Fig. 4: PGC1α and PGC1β in HCC.

Similar content being viewed by others

References

  1. Miller, L. L., Bly, C. G., Watson, M. L. & Bale, W. F. The dominant role of the liver in plasma protein synthesis; a direct study of the isolated perfused rat liver with the aid of lysine-epsilon-C14. J. Exp. Med. 94, 431–453 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klaassen, C. D. & Aleksunes, L. M. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol. Rev. 62, 1–96 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andreyev, A. Y., Kushnareva, Y. E. & Starkov, A. A. Mitochondrial metabolism of reactive oxygen species. Biochemistry 70, 200–214 (2005).

    CAS  PubMed  Google Scholar 

  5. Pieczenik, S. R. & Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 83, 84–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Baffy, G., Brunt, E. M. & Caldwell, S. H. Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J. Hepatol. 56, 1384–1391 (2012).

    Article  PubMed  Google Scholar 

  8. Ertle, J. et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int. J. Cancer 128, 2436–2443 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Stickel, F. & Hellerbrand, C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut 59, 1303–1307 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. McKenna, N. J. & O’Malley, B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108, 465–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Puigserver, P. et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286, 1368–1371 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Spiegelman, B. M. & Heinrich, R. Biological control through regulated transcriptional coactivators. Cell 119, 157–167 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Kressler, D., Schreiber, S. N., Knutti, D. & Kralli, A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J. Biol. Chem. 277, 13918–13925 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Andersson, U. & Scarpulla, R. C. PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol. Cell. Biol. 21, 3738–3749 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Meirhaeghe, A. et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem. J. 373, 155–165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Lin, J. et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Gleyzer, N. & Scarpulla, R. C. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 286, 39715–39725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herzig, R. P., Scacco, S. & Scarpulla, R. C. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J. Biol. Chem. 275, 13134–13141 (2000).

    Article  CAS  Google Scholar 

  25. Vercauteren, K., Gleyzer, N. & Scarpulla, R. C. Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria. J. Biol. Chem. 284, 2307–2319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finck, B. N. & Kelly, D. P. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116, 615–622 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119, 121–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Leone, T. C. et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLOS Biol. 3, e101 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179–183 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, J. et al. PGC-1beta in the regulation of hepatic glucose and energy metabolism. J. Biol. Chem. 278, 30843–30848 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Schreiber, S. N. et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc. Natl Acad. Sci. USA 101, 6472–6477 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Scarpulla, R. C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann. NY Acad. Sci. 1147, 321–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Scarpulla, R. C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim.  Biophys. Acta 1576, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Scarpulla, R. C. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wolfrum, C. & Stoffel, M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 3, 99–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Morris, E. M. et al. PGC-1alpha overexpression results in increased hepatic fatty acid oxidation with reduced triacylglycerol accumulation and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G979–G992 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burgess, S. C. et al. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-deficient mice. J. Biol. Chem. 281, 19000–19008 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. St-Pierre, J. et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J. Biol. Chem. 278, 26597–26603 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120, 261–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Bellafante, E. et al. Hepatic-specific activation of peroxisome proliferator-activated receptor gamma coactivator-1beta protects against steatohepatitis. Hepatology 57, 1343–1356 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bernal-Mizrachi, C. et al. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat. Med. 9, 1069–1075 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Finck, B. N. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 4, 199–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Knutti, D., Kaul, A. & Kralli, A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 20, 2411–2422 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Psarra, A. M. & Sekeris, C. E. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim. Biophys. Acta 1813, 1814–1821 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Menconi, M. J. et al. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1beta in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E533–E543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adeva-Andany, M. M., Carneiro-Freire, N., Seco-Filgueira, M., Fernandez-Fernandez, C. & Mourino-Bayolo, D. Mitochondrial beta-oxidation of saturated fatty acids in humans. Mitochondrion (2018).

  49. Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530–534 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Lelliott, C. J. et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLOS Biol. 4, e369 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sonoda, J., Mehl, I. R., Chong, L. W., Nofsinger, R. R. & Evans, R. M. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl Acad. Sci. USA 104, 5223–5228 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423, 550–555 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rhee, J. et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl Acad. Sci. USA 100, 4012–4017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771–776 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Schindler, J. et al. The corepressor NCoR1 antagonizes PGC-1alpha and estrogen-related receptor alpha in the regulation of skeletal muscle function and oxidative metabolism. Mol. Cell. Biol. 32, 4913–4924 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lustig, Y. et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1α through S6 kinase. Genes Dev. 25, 1232–1244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, X., Monks, B., Ge, Q. & Birnbaum, M. J. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447, 1012–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Y., Castellani, L. W., Sinal, C. J., Gonzalez, F. J. & Edwards, P. A. Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev. 18, 157–169 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamamoto, T. et al. SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J. Biol. Chem. 279, 12027–12035 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hernandez, C., Molusky, M., Li, Y., Li, S. & Lin, J. D. Regulation of hepatic ApoC3 expression by PGC-1beta mediates hypolipidemic effect of nicotinic acid. Cell Metab. 12, 411–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dowman, J. K., Tomlinson, J. W. & Newsome, P. N. Pathogenesis of non-alcoholic fatty liver disease. QJM 103, 71–83 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005–2023 (2012).

    Article  PubMed  Google Scholar 

  65. Marrero, J. A. et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States. Hepatology 36, 1349–1354 (2002).

    Article  PubMed  Google Scholar 

  66. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paradis, V. et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 49, 851–859 (2009).

    Article  PubMed  Google Scholar 

  68. Day, C. P. & James, O. F. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Birkenfeld, A. L. & Shulman, G. I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59, 713–723 (2014).

    Article  PubMed  Google Scholar 

  70. Peverill, W., Powell, L. W. & Skoien, R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int. J. Mol. Sci. 15, 8591–8638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65, 1038–1048 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. George, J. & Liddle, C. Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets. Mol. Pharm. 5, 49–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, X. Q., Xu, C. F., Yu, C. H., Chen, W. X. & Li, Y. M. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol. 20, 1768–1776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Begriche, K., Massart, J., Robin, M. A., Bonnet, F. & Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 58, 1497–1507 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Kern, P. A. et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 95, 2111–2119 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fernandez-Real, J. M. et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J. Clin. Endocrinol. Metab. 86, 1154–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139, 323–334 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Nobili, V. et al. Hepatic progenitor cells activation, fibrosis, and adipokines production in pediatric nonalcoholic fatty liver disease. Hepatology 56, 2142–2153 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Katz, N. & Jungermann, K. Autoregulatory shift from fructolysis to lactate gluconeogenisis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma. Hoppe Seylers Z. Physiol. Chem. 357, 359–375 (1976).

    Article  CAS  PubMed  Google Scholar 

  83. Jungermann, K. Metabolic zonation of liver parenchyma. Semin. Liver Dis. 8, 329–341 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Jungermann, K. & Kietzmann, T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 31, 255–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lamers, W. H. et al. Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology 10, 72–76 (1989).

    Article  CAS  PubMed  Google Scholar 

  87. Gebhardt, R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53, 275–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Hall, Z. et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 65, 1165–1180 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Brunt, E. M. Pathology of fatty liver disease. Mod. Pathol. 20, S40–S48 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Chalasani, N. et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J. Hepatol. 48, 829–834 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Carter-Kent, C. et al. Relations of steatosis type, grade, and zonality to histological features in pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 52, 190–197 (2011).

    Article  PubMed  Google Scholar 

  92. Koliaki, C. et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 21, 739–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Collins, P., Jones, C., Choudhury, S., Damelin, L. & Hodgson, H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 25, 880–887 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Serviddio, G. et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut 57, 957–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Chavin, K. D. et al. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. J. Biol. Chem. 274, 5692–5700 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Satapati, S. et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J. Clin. Invest. 126, 1605 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Perez-Carreras, M. et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 38, 999–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, L. et al. ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology 61, 486–496 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Gual, P. & Postic, C. Therapeutic potential of nicotinamide adenine dinucleotide for nonalcoholic fatty liver disease. Hepatology 63, 1074–1077 (2016).

    Article  PubMed  Google Scholar 

  100. Gariani, K. et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190–1204 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell 6, 77–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Schwarz, J. M., Linfoot, P., Dare, D. & Aghajanian, K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am. J. Clin. Nutr. 77, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ducheix, S. et al. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1beta. Cell. Mol. Life Sci. 73, 3809–3822 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Li, Z. Z., Berk, M., McIntyre, T. M. & Feldstein, A. E. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. J. Biol. Chem. 284, 5637–5644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chambers, K. T. et al. PGC-1beta and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner. Mol. Metab. 2, 194–204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oropeza, D. et al. PGC-1 coactivators in beta-cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Mol. Metab. 4, 811–822 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rehnmark, S., Giometti, C. S., Slavin, B. G., Doolittle, M. H. & Reue, K. The fatty liver dystrophy mutant mouse: microvesicular steatosis associated with altered expression levels of peroxisome proliferator-regulated proteins. J. Lipid Res. 39, 2209–2217 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Estall, J. L. et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58, 1499–1508 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sanchez-Ramos, C. et al. PGC-1alpha downregulation in steatotic liver enhances ischemia-reperfusion injury and impairs ischemic preconditioning. Antioxid. Redox. Signal. 27, 1332–1346 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Aharoni-Simon, M., Hann-Obercyger, M., Pen, S., Madar, Z. & Tirosh, O. Fatty liver is associated with impaired activity of PPARgamma-coactivator 1alpha (PGC1alpha) and mitochondrial biogenesis in mice. Lab Invest. 91, 1018–1028 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, M. Y. et al. Peroxisome proliferator-activated receptor delta agonist attenuates hepatic steatosis by anti-inflammatory mechanism. Exp. Mol. Med. 44, 578–585 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Barroso, W. A. et al. High-fat diet inhibits PGC-1alpha suppressive effect on NFkappaB signaling in hepatocytes. Eur. J. Nutr. 57, 1891–1900 (2017).

    Article  PubMed  CAS  Google Scholar 

  114. Buler, M. et al. Energy-sensing factors coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha) and AMP-activated protein kinase control expression of inflammatory mediators in liver: induction of interleukin 1 receptor antagonist. J. Biol. Chem. 287, 1847–1860 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Eisele, P. S., Salatino, S., Sobek, J., Hottiger, M. O. & Handschin, C. The peroxisome proliferator-activated receptor gamma coactivator 1alpha/beta (PGC-1) coactivators repress the transcriptional activity of NF-kappaB in skeletal muscle cells. J. Biol. Chem. 288, 2246–2260 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Eisele, P. S., Furrer, R., Beer, M. & Handschin, C. The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo. Biochem. Biophys. Res. Commun. 464, 692–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sica, A., Invernizzi, P. & Mantovani, A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 59, 2034–2042 (2014).

    Article  PubMed  Google Scholar 

  118. Tan, H. Y. et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longev. 2016, 2795090 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Tacke, F. & Zimmermann, H. W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 60, 1090–1096 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yoneda, M. et al. Association between PPARGC1A polymorphisms and the occurrence of nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol. 8, 27 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lin, Y. C., Chang, P. F., Chang, M. H. & Ni, Y. H. A common variant in the peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene is associated with nonalcoholic fatty liver disease in obese children. Am. J. Clin. Nutr. 97, 326–331 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Hirschey, M. D. et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Crunkhorn, S. et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J. Biol. Chem. 282, 15439–15450 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Besse-Patin, A. et al. Estrogen signals through peroxisome proliferator-activated receptor-gamma coactivator 1alpha to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology 152, 243–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Lonardo, A., Carani, C., Carulli, N. & Loria, P. ‘Endocrine NAFLD’ a hormonocentric perspective of nonalcoholic fatty liver disease pathogenesis. J. Hepatol. 44, 1196–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Ballestri, S. et al. NAFLD as a sexual dimorphic disease: role of gender and reproductive status in the development and progression of nonalcoholic fatty liver disease and inherent cardiovascular risk. Adv. Ther. 34, 1291–1326 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Das, K. et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 51, 1593–1602 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Singh, S. P. et al. Nonalcoholic fatty liver disease (NAFLD) without insulin resistance: is it different? Clin. Res. Hepatol. Gastroenterol. 39, 482–488 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Petersen, K. F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kim, J. A., Wei, Y. & Sowers, J. R. Role of mitochondrial dysfunction in insulin resistance. Circ. Res. 102, 401–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Turner, N. & Heilbronn, L. K. Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol. Metab. 19, 324–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Nagai, Y. et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 9, 252–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Vianna, C. R. et al. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 4, 453–464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oberkofler, H. et al. Aberrant hepatic TRIB3 gene expression in insulin-resistant obese humans. Diabetologia 53, 1971–1975 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Degasperi, E. & Colombo, M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Lancet Gastroenterol. Hepatol. 1, 156–164 (2016).

    Article  PubMed  Google Scholar 

  138. Forner, A., Llovet, J. M. & Bruix, J. Hepatocellular carcinoma. Lancet 379, 1245–1255 (2012).

    Article  PubMed  Google Scholar 

  139. Kawada, N. et al. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J. Gastroenterol. 44, 1190–1194 (2009).

    Article  PubMed  Google Scholar 

  140. Huang, Q. et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 73, 4992–5002 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Rysman, E. et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70, 8117–8126 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria and cancer. Mol. Cell 61, 667–676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vivekanandan, P., Daniel, H., Yeh, M. M. & Torbenson, M. Mitochondrial mutations in hepatocellular carcinomas and fibrolamellar carcinomas. Mod. Pathol. 23, 790–798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zheng, J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation. Oncol. Lett. 4, 1151–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Smolkova, K. et al. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int. J. Biochem. Cell Biol. 43, 950–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Pavlides, S. et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Wallace, D. C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Luo, C., Widlund, H. R. & Puigserver, P. PGC-1 coactivators: shepherding the mitochondrial biogenesis of tumors. Trends Cancer 2, 619–631 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Viollet, B. et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol. 196, 81–98 (2009).

    Article  CAS  Google Scholar 

  153. Wilson, G. K., Tennant, D. A. & McKeating, J. A. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J. Hepatol. 61, 1397–1406 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, B., Hsu, S. H., Frankel, W., Ghoshal, K. & Jacob, S. T. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 56, 186–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Martinez-Jimenez, C. P., Gomez-Lechon, M. J., Castell, J. V. & Jover, R. Underexpressed coactivators PGC1alpha and SRC1 impair hepatocyte nuclear factor 4 alpha function and promote dedifferentiation in human hepatoma cells. J. Biol. Chem. 281, 29840–29849 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Spath, G. F. & Weiss, M. C. Hepatocyte nuclear factor 4 expression overcomes repression of the hepatic phenotype in dedifferentiated hepatoma cells. Mol. Cell. Biol. 17, 1913–1922 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, J., Ning, G. & Duncan, S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4alpha. Genes Dev. 14, 464–474 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xu, X. R. et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl Acad. Sci. USA 98, 15089–15094 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, P. et al. Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl Acad. Sci. USA 111, 10684–10689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470, 359–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dominy, J. E. Jr et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 48, 900–913 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sen, N., Satija, Y. K. & Das, S. PGC-1alpha, a key modulator of p53, promotes cell survival upon metabolic stress. Mol. Cell 44, 621–634 (2011).

    Article  CAS  PubMed  Google Scholar 

  163. Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Okoshi, R. et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem. 283, 3979–3987 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Knutti, D., Kressler, D. & Kralli, A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. Proc. Natl Acad. Sci. USA 98, 9713–9718 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chaube, B. et al. AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1alpha-mediated mitochondrial biogenesis. Cell Death. Discov. 1, 15063 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Currie, E., Schulze, A., Zechner, R., Walther, T. C. & Farese, R. V. Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153–161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bhalla, K. et al. PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res. 71, 6888–6898 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Piccinin, E. et al. Hepatic peroxisome proliferator-activated receptor gamma coactivator 1beta drives mitochondrial and anabolic signatures that contribute to hepatocellular carcinoma progression in mice. Hepatology 67, 884–898 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Huang, D. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep. 8, 1930–1942 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Anastasiou, D. & Cantley, L. C. Breathless cancer cells get fat on glutamine. Cell Res. 22, 443–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Seo, K. & Shin, S. M. Induction of lipin1 by ROS-dependent SREBP-2 activation. Toxicol. Res. 33, 219–224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. LeBleu, V. S. et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li, Y. et al. SIRT1 facilitates hepatocellular carcinoma metastasis by promoting PGC-1alpha-mediated mitochondrial biogenesis. Oncotarget 7, 29255–29274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Cheong, H., Lu, C., Lindsten, T. & Thompson, C. B. Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 30, 671–678 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Lonard, D. M. & O’Malley, B. W. Nuclear receptor coregulators: modulators of pathology and therapeutic targets. Nat. Rev. Endocrinol. 8, 598–604 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hofer, A. et al. Defining the action spectrum of potential PGC-1alpha activators on a mitochondrial and cellular level in vivo. Hum. Mol. Genet. 23, 2400–2415 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Aatsinki, S. M. et al. Metformin induces PGC-1alpha expression and selectively affects hepatic PGC-1alpha functions. Br. J. Pharmacol. 171, 2351–2363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kim, Y. D. et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 306–314 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Yamagata, K., Yoshimochi, K., Daitoku, H., Hirota, K. & Fukamizu, A. Bile acid represses the peroxisome proliferator-activated receptor-gamma coactivator-1 promoter activity in a small heterodimer partner-dependent manner. Int. J. Mol. Med. 19, 751–756 (2007).

    CAS  PubMed  Google Scholar 

  185. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Woo, S. L. et al. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLOS ONE 9, e91111 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Mazza, A. et al. The role of metformin in the management of NAFLD. Exp. Diabetes Res. 2012, 716404 (2012).

    Article  PubMed  CAS  Google Scholar 

  188. Coste, A. et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc. Natl Acad. Sci. USA 105, 17187–17192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kelly, T. J., Lerin, C., Haas, W., Gygi, S. P. & Puigserver, P. GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation. J. Biol. Chem. 284, 19945–19952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Price, N. L. et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675–690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Smith, J. J. et al. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst. Biol. 3, 31 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y. & Holz, M. K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis. Oncol. 1, 35 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Sharabi, K. et al. Selective chemical inhibition of PGC-1alpha gluconeogenic activity ameliorates type 2 diabetes. Cell 169, 148–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M. is funded by the Italian Association for Cancer Research (AIRC, IG 18987), NR-NET FP7 Marie Curie ITN, FATMAL (HDHL-INTIMIC Joint Call) and the Italian Ministry of Health (Young Researchers Grant GR-2010-2314703).

Referee information

Nature Reviews Gastroenterology & Hepatology thanks J. Hakkola and the other anonymous reviewers for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Antonio Moschetta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccinin, E., Villani, G. & Moschetta, A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol 16, 160–174 (2019). https://doi.org/10.1038/s41575-018-0089-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0089-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing