Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control and dysregulation of redox signalling in the gastrointestinal tract

Abstract

Redox signalling in the gastrointestinal mucosa is held in an intricate balance. Potent microbicidal mechanisms can be used by infiltrating immune cells, such as neutrophils, to protect compromised mucosae from microbial infection through the generation of reactive oxygen species. Unchecked, collateral damage to the surrounding tissue from neutrophil-derived reactive oxygen species can be detrimental; thus, maintenance and restitution of a breached intestinal mucosal barrier are paramount to host survival. Redox reactions and redox signalling have been studied for decades with a primary focus on contributions to disease processes. Within the past decade, an upsurge of exciting findings have implicated subtoxic levels of oxidative stress in processes such as maintenance of mucosal homeostasis, the control of protective inflammation and even regulation of tissue wound healing. Resident gut microbial communities have been shown to trigger redox signalling within the mucosa, which expresses similar but distinct enzymes to phagocytes. At the fulcrum of this delicate balance is the colonic mucosal epithelium, and emerging evidence suggests that precise control of redox signalling by these barrier-forming cells may dictate the outcome of an inflammatory event. This Review will address both the spectrum and intensity of redox activity pertaining to host–immune and host–microbiota crosstalk during homeostasis and disease processes in the gastrointestinal tract.

Key points

  • Immune cells, microorganisms and the epithelium all generate and respond to redox signals in the colonic mucosa during homeostasis and in disease.

  • Redox signals, particularly H2O2, are generated by the host and the gut microbiota to impede overgrowth of opportunistic pathogens; similarly, certain pathogens utilize these systems to subvert host defences.

  • Host responses to reactive oxygen species (ROS) produced in situ and hypoxia act in concert and opposition to regulate homeostasis in the gut.

  • Host–immune and host–microbiota crosstalk can both contribute to excessive ROS production, participating in collateral damage at the tissue level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Host–microbial redox signalling during hypoxia.
Fig. 2: Host redox–hypoxia crosstalk in the gastrointestinal mucosa.
Fig. 3: ROS collateral damage and gastrointestinal disease.

Similar content being viewed by others

References

  1. Luissint, A. C., Parkos, C. A. & Nusrat, A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151, 616–632 (2016).

    CAS  PubMed  Google Scholar 

  2. Crosnier, C., Stamataki, D. & Lewis, J. Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat. Rev. Genet. 7, 349–359 (2006).

    CAS  PubMed  Google Scholar 

  3. Clevers, H. C. & Bevins, C. L. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75, 289–311 (2013).

    CAS  PubMed  Google Scholar 

  4. Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Taylor, C. T. & Colgan, S. P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17, 774–785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Colgan, S. P., Dzus, A. L. & Parkos, C. A. Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J. Exp. Med. 184, 1003–1015 (1996).

    CAS  PubMed  Google Scholar 

  8. Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40, 66–77 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chang, S. Y., Ko, H. J. & Kweon, M. N. Mucosal dendritic cells shape mucosal immunity. Exp. Mol. Med. 46, e84 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, M., He, C., Cong, Y. & Liu, Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol. 8, 969–978 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365, 537–547 (2011).

    CAS  PubMed  Google Scholar 

  13. Semenza, G. L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71 (2014).

    CAS  PubMed  Google Scholar 

  14. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  15. Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Murray, L. W. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295, 858–861 (2002).

    CAS  PubMed  Google Scholar 

  17. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. McCracken, V. J. & Lorenz, R. G. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell. Microbiol. 3, 1–11 (2001).

    CAS  PubMed  Google Scholar 

  19. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).

    CAS  PubMed  Google Scholar 

  21. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2013).

    PubMed  Google Scholar 

  22. Eeckhaut, V. et al. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62, 1745–1752 (2013).

    CAS  PubMed  Google Scholar 

  23. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    CAS  PubMed  Google Scholar 

  24. Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    CAS  PubMed  Google Scholar 

  25. Jones, R. M. & Neish, A. S. Redox signaling mediated by the gut microbiota. Free Radic. Biol. Med. 105, 41–47 (2017).

    CAS  PubMed  Google Scholar 

  26. Halliwell, B. & Gutteridge, J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85 (1990).

    CAS  PubMed  Google Scholar 

  27. Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid. Redox Signal 9, 1717–1730 (2007).

    CAS  PubMed  Google Scholar 

  28. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    CAS  PubMed  Google Scholar 

  29. Biasi, F., Leonarduzzi, G., Oteiza, P. I. & Poli, G. Inflammatory bowel disease: mechanisms, redox considerations, and therapeutic targets. Antioxid. Redox Signal. 19, 1711–1747 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bals, R. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1, 141–150 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schroeder, B. O. et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature 469, 419–423 (2011).

    CAS  PubMed  Google Scholar 

  32. Raschig, J. et al. Ubiquitously expressed human β defensin 1 (hBD1) forms bacteria-entrapping nets in a redox dependent mode of action. PLOS Pathog. 13, e1006261 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Palmer, R. M., Ferrige, A. G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987).

    CAS  PubMed  Google Scholar 

  34. Palmer, R. M., Ashton, D. S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666 (1988).

    CAS  PubMed  Google Scholar 

  35. Stark, M. E., Bauer, A. J., Sarr, M. G. & Szurszewski, J. H. Nitric oxide mediates inhibitory nerve input in human and canine jejunum. Gastroenterology 104, 398–409 (1993).

    CAS  PubMed  Google Scholar 

  36. Stark, M. E. & Szurszewski, J. H. Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103, 1928–1949 (1992).

    CAS  PubMed  Google Scholar 

  37. Sessa, W. C. et al. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J. Biol. Chem. 267, 15274–15276 (1992).

    CAS  PubMed  Google Scholar 

  38. Xie, Q. W. et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256, 225–228 (1992).

    CAS  PubMed  Google Scholar 

  39. Bredt, D. S. et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351, 714–718 (1991).

    CAS  PubMed  Google Scholar 

  40. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. & Freeman, B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl Acad. Sci. USA 87, 1620–1624 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Beckman, J. S. & Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271, C1424–1437 (1996).

    CAS  PubMed  Google Scholar 

  42. Poyton, R. O., Castello, P. R., Ball, K. A., Woo, D. K. & Pan, N. Mitochondria and hypoxic signaling: a new view. Ann. NY Acad. Sci. 1177, 48–56 (2009).

    CAS  PubMed  Google Scholar 

  43. Riley, P. A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994).

    CAS  PubMed  Google Scholar 

  44. Conklin, K. A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Ther. 3, 294–300 (2004).

    CAS  PubMed  Google Scholar 

  45. Church, D. F. & Pryor, W. A. Free-radical chemistry of cigarette smoke and its toxicological implications. Environ. Health Perspect. 64, 111–126 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson, J. C. et al. Smokers as a high-risk group: data from a screening population. J. Clin. Gastroenterol. 43, 747–752 (2009).

    PubMed  Google Scholar 

  47. van der Heide, F. et al. Differences in genetic background between active smokers, passive smokers, and non-smokers with Crohn’s disease. Am. J. Gastroenterol. 105, 1165–1172 (2010).

    PubMed  Google Scholar 

  48. Loftus, E. V. Jr Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126, 1504–1517 (2004).

    PubMed  Google Scholar 

  49. Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Ischemia/Reperfusion. Compr. Physiol. 7, 113–170 (2016).

    Google Scholar 

  50. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).

    CAS  PubMed  Google Scholar 

  51. West, A. P., Shadel, G. S. & Ghosh, S. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Genova, M. L. et al. The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 505, 364–368 (2001).

    CAS  PubMed  Google Scholar 

  53. Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer 14, 709–721 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163–1176 (2015).

    CAS  PubMed  Google Scholar 

  55. Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

    CAS  PubMed  Google Scholar 

  56. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuven. Res. 8, 3–5 (2005).

    CAS  Google Scholar 

  58. Gatliff, J. & Campanella, M. TSPO is a REDOX regulator of cell mitophagy. Biochem. Soc. Trans. 43, 543–552 (2015).

    CAS  PubMed  Google Scholar 

  59. Ostuni, M. A. et al. Overexpression of translocator protein in inflammatory bowel disease: potential diagnostic and treatment value. Inflamm. Bowel Dis. 16, 1476–1487 (2010).

    PubMed  Google Scholar 

  60. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).

    CAS  PubMed  Google Scholar 

  61. Stone, J. R. & Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal 8, 243–270 (2006).

    CAS  PubMed  Google Scholar 

  62. Davies, M. J. Protein oxidation and peroxidation. Biochem. J. 473, 805–825 (2016).

    CAS  PubMed  Google Scholar 

  63. Vazquez-Torres, A. & Baumler, A. J. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr. Opin. Microbiol. 29, 1–8 (2016).

    CAS  PubMed  Google Scholar 

  64. Zelko, I. N., Mariani, T. J. & Folz, R. J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33, 337–349 (2002).

    CAS  PubMed  Google Scholar 

  65. Klinowski, E., Broide, E., Varsano, R., Eshchar, J. & Scapa, E. Superoxide dismutase activity in duodenal ulcer patients. Eur. J. Gastroenterol. Hepatol. 8, 1151–1155 (1996).

    CAS  PubMed  Google Scholar 

  66. Naito, Y. et al. Changes in superoxide dismutase activity in the gastric mucosa of peptic ulcer patients. J. Clin. Gastroenterol. 14 (Suppl. 1), S131–S134 (1992).

    PubMed  Google Scholar 

  67. Toppo, S., Vanin, S., Bosello, V. & Tosatto, S. C. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid. Redox Signal 10, 1501–1514 (2008).

    CAS  PubMed  Google Scholar 

  68. Chu, F. F., Doroshow, J. H. & Esworthy, R. S. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase. GSHPx-GI. J. Biol. Chem. 268, 2571–2576 (1993).

    CAS  PubMed  Google Scholar 

  69. Wingler, K., Muller, C., Schmehl, K., Florian, S. & Brigelius-Flohe, R. Gastrointestinal glutathione peroxidase prevents transport of lipid hydroperoxides in CaCo-2 cells. Gastroenterology 119, 420–430 (2000).

    CAS  PubMed  Google Scholar 

  70. Esworthy, R. S. et al. Mice with combined disruption of Gpx1 and Gpx2 genes have colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G848–G855 (2001).

    CAS  PubMed  Google Scholar 

  71. Schrader, M. & Fahimi, H. D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta 1763, 1755–1766 (2006).

    CAS  PubMed  Google Scholar 

  72. Knoops, B., Argyropoulou, V., Becker, S., Ferte, L. & Kuznetsova, O. Multiple roles of peroxiredoxins in inflammation. Mol. Cells 39, 60–64 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hampton, M. B. & O’Connor, K. M. Peroxiredoxins and the regulation of cell death. Mol. Cells. 39, 72–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Won, H. Y. et al. Ablation of peroxiredoxin II attenuates experimental colitis by increasing FoxO1-induced Foxp3+ regulatory T cells. J. Immunol. 191, 4029–4037 (2013).

    CAS  PubMed  Google Scholar 

  75. Melhem, H. et al. Prdx6 deficiency ameliorates DSS colitis: relevance of compensatory antioxidant mechanisms. J. Crohns Colitis 11, 871–884 (2017).

    PubMed  Google Scholar 

  76. Suzuki, T. & Yamamoto, M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J. Biol. Chem. 292, 16817–16824 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gabig, T. G., Bearman, S. I. & Babior, B. M. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53, 1133–1139 (1979).

    CAS  PubMed  Google Scholar 

  78. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    CAS  PubMed  Google Scholar 

  79. Campbell, E. L. & Colgan, S. P. Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. J. Leukoc. Biol. 98, 517–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Geiszt, M. NADPH oxidases: new kids on the block. Cardiovascular Res. 71, 289–299 (2006).

    CAS  Google Scholar 

  81. Rada, B. & Leto, T. L. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib. Microbiol. 15, 164–187 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Corcionivoschi, N. et al. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 12, 47–59 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McPhail, L. C., Henson, P. M. & Johnston, R. B. Jr. Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation. J. Clin. Invest. 67, 710–716 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327, 717–720 (1987).

    CAS  PubMed  Google Scholar 

  85. Werlin, S. L., Chusid, M. J., Caya, J. & Oechler, H. W. Colitis in chronic granulomatous disease. Gastroenterology 82, 328–331 (1982).

    CAS  PubMed  Google Scholar 

  86. Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

    CAS  PubMed  Google Scholar 

  87. Hume, D. A. The many alternative faces of macrophage activation. Front. Immunol. 6, 370 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. MacMicking, J., Xie, Q. W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    CAS  PubMed  Google Scholar 

  89. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression by L-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    CAS  PubMed  Google Scholar 

  90. Efimova, O., Szankasi, P. & Kelley, T. W. Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLOS ONE 6, e16013 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kraaij, M. D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl Acad. Sci. USA 107, 17686–17691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lambeth, J. D. & Neish, A. S. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu. Rev. Pathol. 9, 119–145 (2014).

    CAS  PubMed  Google Scholar 

  94. Jones, R. M. et al. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 32, 3017–3028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jones, R. M. et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 Ppathway. Cell Rep. 12, 1217–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Alam, A. et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 7, 645–655 (2014).

    CAS  PubMed  Google Scholar 

  97. Babbin, B. A. et al. Formyl peptide receptor-1 activation enhances intestinal epithelial cell restitution through phosphatidylinositol 3-kinase-dependent activation of Rac1 and Cdc42. J. Immunol. 179, 8112–8121 (2007).

    CAS  PubMed  Google Scholar 

  98. Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2013).

    CAS  PubMed  Google Scholar 

  99. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    CAS  PubMed  Google Scholar 

  100. Alam, A. et al. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat. Microbiol. 1, 15021 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Crump, J. A., Sjolund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 28, 901–937 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infection Immun. 76, 907–915 (2008).

    CAS  Google Scholar 

  103. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl Acad. Sci. USA 108, 17480–17485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang, S. et al. Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic. Biol. Med. 65, 38–46 (2013).

    CAS  PubMed  Google Scholar 

  107. Grasberger, H., El-Zaatari, M., Dang, D. T. & Merchant, J. L. Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. Gastroenterology 145, 1045–1054 (2013).

    CAS  PubMed  Google Scholar 

  108. Pircalabioru, G. et al. Defensive mutualism rescues NADPH oxidase inactivation in gut infection. Cell Host Microbe 19, 651–663 (2016).

    CAS  PubMed  Google Scholar 

  109. Walter, J., Britton, R. A. & Roos, S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl Acad. Sci. USA 108, 4645–4652 (2011).

    CAS  PubMed  Google Scholar 

  110. Alvarez, L. A. et al. NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA. Proc. Natl Acad. Sci. USA 113, 10406–10411 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Fujii, N. & Saito, T. Homochirality and life. Chem. Rec. 4, 267–278 (2004).

    CAS  PubMed  Google Scholar 

  112. Cava, F., de Pedro, M. A., Lam, H., Davis, B. M. & Waldor, M. K. Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. EMBO J. 30, 3442–3453 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sasabe, J. et al. Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nat. Microbiol. 1, 16125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chandel, N. S. & Schumacker, P. T. Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 88, 1880–1889 (1985).

    Google Scholar 

  115. Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003).

    CAS  PubMed  Google Scholar 

  116. Schaible, B., Schaffer, K. & Taylor, C. T. Hypoxia, innate immunity and infection in the lung. Respir. Physiol. Neurobiol. 174, 235–243 (2010).

    CAS  PubMed  Google Scholar 

  117. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 17, 662–671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Glover, L. E., Lee, J. S. & Colgan, S. P. Oxygen metabolism and barrier regulation in the intestinal mucosa. J. Clin. Invest. 126, 3680–3688 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Latz, E. NOX-free inflammasome activation. Blood 116, 1393–1394 (2010).

    CAS  PubMed  Google Scholar 

  120. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Arteel, G. E., Thurman, R. G. & Raleigh, J. A. Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur. J. Biochem. 253, 743–750 (1998).

    CAS  PubMed  Google Scholar 

  122. Arteel, G. E., Thurman, R. G., Yates, J. M. & Raleigh, J. A. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889–895 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Goethals, L. et al. Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int. J. Radiat. Oncol. Biol. Phys. 65, 246–254 (2006).

    CAS  PubMed  Google Scholar 

  124. Hindryckx, P. et al. Intrarectal administration of oxygenated perfluorodecalin promotes healing of murine colitis by targeting inflammatory hypoxia. Lab Invest. 91, 1266–1276 (2011).

    CAS  PubMed  Google Scholar 

  125. Sang, N., Fang, J., Srinivas, V., Leshchinsky, I. & Caro, J. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1α is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol. Cell. Biol. 22, 2984–2992 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Niecknig, H. et al. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic. Res. 46, 705–717 (2012).

    CAS  PubMed  Google Scholar 

  127. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    CAS  PubMed  Google Scholar 

  129. Han, I. O., Kim, H. S., Kim, H. C., Joe, E. H. & Kim, W. K. Synergistic expression of inducible nitric oxide synthase by phorbol ester and interferon-γ is mediated through NF-κB and ERK in microglial cells. J. Neurosci. Res. 73, 659–669 (2003).

    CAS  PubMed  Google Scholar 

  130. Morote-Garcia, J. C., Rosenberger, P., Nivillac, N. M., Coe, I. R. & Eltzschig, H. K. Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136, 607–618 (2009).

    CAS  PubMed  Google Scholar 

  131. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    CAS  PubMed  Google Scholar 

  132. Shah, Y. M. et al. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology 134, 2036–2048 (2008).

    PubMed  Google Scholar 

  133. Giatromanolaki, A. et al. Hypoxia inducible factor 1α and 2α overexpression in inflammatory bowel disease. J. Clin. Pathol. 56, 209–213 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mariani, F. et al. Cyclooxygenase-2 and hypoxia-inducible factor-1α protein expression is related to inflammation, and up-regulated since the early steps of colorectal carcinogenesis. Cancer Lett. 279, 221–229 (2009).

    CAS  PubMed  Google Scholar 

  135. Matthijsen, R. A. et al. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation. PLOS ONE 4, e7045 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Colgan, S. P. & Taylor, C. T. Hypoxia: an alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 7, 281–287 (2010).

    PubMed  PubMed Central  Google Scholar 

  137. Holden, V. I., Breen, P., Houle, S., Dozois, C. M. & Bachman, M. A. Klebsiella pneumoniae Siderophores induce inflammation, bacterial dissemination, and HIF-α stabilization during pneumonia. mBio 7, e01397–16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kirienko, N. V. et al. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13, 406–416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Donohoe, D. R., Wali, A., Brylawski, B. P. & Bultman, S. J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLOS ONE 7, e46589 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rivera-Chavez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19, 443–454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Zambetti, L. P. & Mortellaro, A. NLRPs, microbiota, and gut homeostasis: unravelling the connection. J. Pathol. 233, 321–330 (2014).

    CAS  PubMed  Google Scholar 

  143. Wen, H., Miao, E. A. & Ting, J. P. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39, 432–441 (2013).

    CAS  PubMed  Google Scholar 

  144. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  145. Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17 A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209, 1595–1609 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Neudecker, V. et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J. Exp. Med. 214, 1737–1752 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    CAS  PubMed  Google Scholar 

  149. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. van de Veerdonk, F. L. et al. Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl Acad. Sci. USA 107, 3030–3033 (2010).

    PubMed  PubMed Central  Google Scholar 

  152. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. & Sheu, S. S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 287, C817–C833 (2004).

    CAS  PubMed  Google Scholar 

  153. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  154. Birchenough, G. M., Johansson, M. E., Gustafsson, J. K., Bergstrom, J. H. & Hansson, G. C. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen, G. Y. & Stappenbeck, T. S. Mucus, it is not just a static barrier. Sci. Signal. 7, pe11 (2014).

    PubMed  Google Scholar 

  156. Johansson, M. E. & Hansson, G. C. Is the intestinal goblet cell a major immune cell? Cell Host Microbe 15, 251–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Patel, K. K. et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 32, 3130–3144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Sankey, E. A. et al. Early mucosal changes in Crohn’s disease. Gut 34, 375–381 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  166. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. Munoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).

    CAS  PubMed  Google Scholar 

  168. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    CAS  PubMed  Google Scholar 

  169. Guan, Y., Worrell, R. T., Pritts, T. A. & Montrose, M. H. Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G187–196 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang, D., Mann, J. R. & DuBois, R. N. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 128, 1445–1461 (2005).

    CAS  PubMed  Google Scholar 

  171. Vane, J. R., Bakhle, Y. S. & Botting, R. M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38, 97–120 (1998).

    CAS  PubMed  Google Scholar 

  172. Moses, T., Wagner, L. & Fleming, S. D. TLR4-mediated Cox-2 expression increases intestinal ischemia/reperfusion-induced damage. J. Leukoc. Biol. 86, 971–980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Blikslager, A. T., Roberts, M. C., Rhoads, J. M. & Argenzio, R. A. Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J. Clin. Invest. 100, 1928–1933 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Samuelsson, B. & Hammarstrom, S. Leukotrienes: a novel group of biologically active compounds. Vitam. Horm. 39, 1–30 (1982).

    CAS  PubMed  Google Scholar 

  175. Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Collard, C. D. et al. Reoxygenation of hypoxic human umbilical vein endothelial cells (HUVEC’s) activates the classical complement pathway. Circulation 96, 326–333 (1997).

    CAS  PubMed  Google Scholar 

  177. Otamiri, T. Oxygen radicals, lipid peroxidation, and neutrophil infiltration after small-intestinal ischemia and reperfusion. Surgery 105, 593–597 (1989).

    CAS  PubMed  Google Scholar 

  178. Eltzschig, H. K., Bratton, D. L. & Colgan, S. P. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 13, 852–869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Katada, K., Takagi, T., Uchiyama, K. & Naito, Y. Therapeutic roles of carbon monoxide in intestinal ischemia-reperfusion injury. J. Gastroenterol. Hepatol. 30, 46–52 (2015).

    CAS  PubMed  Google Scholar 

  180. Younes, M. et al. Oxidative tissue damage following regional intestinal ischemia and reperfusion in the cat. Res. Exp. Med. 184, 259–264 (1984).

    CAS  Google Scholar 

  181. Parks, D. A., Williams, T. K. & Beckman, J. S. Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. Am. J. Physiol. 254, G768–G774 (1988).

    CAS  PubMed  Google Scholar 

  182. Harrison, R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic. Biol. Med. 33, 774–797 (2002).

    CAS  PubMed  Google Scholar 

  183. Eisen, A. et al. Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172, 201–210 (2004).

    CAS  PubMed  Google Scholar 

  184. Alchera, E., Dal Ponte, C., Imarisio, C., Albano, E. & Carini, R. Molecular mechanisms of liver preconditioning. World J. Gastroenterol. 16, 6058–6067 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Khoury, J., Ibla, J. C., Neish, A. S. & Colgan, S. P. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J. Clin. Invest. 117, 703–711 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Hatakeyama, S. et al. Ubiquitin-dependent degradation of IκBα is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc. Natl Acad. Sci. USA 96, 3859–3863 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Boh, B. K., Smith, P. G. & Hagen, T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J. Mol. Biol. 409, 136–145 (2011).

    CAS  PubMed  Google Scholar 

  188. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    CAS  PubMed  Google Scholar 

  189. Ehrentraut, S. F. et al. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. J. Immunol. 190, 392–400 (2013).

    CAS  PubMed  Google Scholar 

  190. Colgan, S. P. & Eltzschig, H. K. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. 74, 153–175 (2012).

    CAS  PubMed  Google Scholar 

  191. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med. 202, 1493–1505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Eltzschig, H. K. Adenosine: an old drug newly discovered. Anesthesiology 111, 904–915 (2009).

    CAS  PubMed  Google Scholar 

  194. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Frick, J. S. et al. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J. Immunol. 182, 4957–4964 (2009).

    CAS  PubMed  Google Scholar 

  196. Aherne, C. M. et al. Epithelial-specific A2B adenosine receptor signaling protects the colonic epithelial barrier during acute colitis. Mucosal Immunol. 8, 1324–1338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Hart, M. L. et al. Hypoxia-inducible factor-1α-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J. Immunol. 182, 4957–4964 (2011).

    Google Scholar 

  198. Hart, M. L., Jacobi, B., Schittenhelm, J., Henn, M. & Eltzschig, H. K. Cutting Edge: A2B Adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J. Immunol. 186, 4367–4374 (2009).

    Google Scholar 

  199. Eltzschig, H. K. et al. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104, 3986–3992 (2004).

    CAS  PubMed  Google Scholar 

  200. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Eltzschig, H. K. et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ. Res. 99, 1100–1108 (2006).

    CAS  PubMed  Google Scholar 

  202. Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Weissmuller, T. et al. PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J. Clin. Invest. 118, 3682–3692 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Madara, J. L. et al. 5′-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J. Clin. Invest. 91, 2320–2325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Huang, C. et al. Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm. Bowel Dis. 22, 2794–2801 (2016).

    PubMed  Google Scholar 

  206. Bao, S., Carr, E. D., Xu, Y. H. & Hunt, N. H. Gp91(phox) contributes to the development of experimental inflammatory bowel disease. Immunol. Cell Biol. 89, 853–860 (2011).

    CAS  PubMed  Google Scholar 

  207. Strober, W., Fuss, I. J. & Blumberg, R. S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    CAS  PubMed  Google Scholar 

  208. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Eng. J. Med. 361, 2066–2076 (2009).

    CAS  Google Scholar 

  209. Fournier, B. M. & Parkos, C. A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5, 354–366 (2012).

    CAS  PubMed  Google Scholar 

  210. Schulzke, J. D. et al. Epithelial tight junctions in intestinal inflammation. Ann. NY Acad. Sci. 1165, 294–300 (2009).

    PubMed  Google Scholar 

  211. Butto, L. F. & Haller, D. Dysbiosis in intestinal inflammation: cause or consequence. Int. J. Med. Microbiol. 306, 302–309 (2016).

    PubMed  Google Scholar 

  212. Simpson, R. et al. Neutrophil and nonneutrophil-mediated injury in intestinal ischemia-reperfusion. Ann. Surg. 218, 444–453 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kuhl, A. A. et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133, 1882–1892 (2007).

    PubMed  Google Scholar 

  214. Wan, P. et al. Extracellular ATP mediates inflammatory responses in colitis via P2 × 7 receptor signaling. Sci. Rep. 6, 19108 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Wright, H. L., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618–1631 (2010).

    CAS  PubMed  Google Scholar 

  216. Tian, T., Wang, Z. & Zhang, J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 1–18 (2017).

    Google Scholar 

  217. Hebuterne, X., Filippi, J. & Schneider, S. M. Nutrition in adult patients with inflammatory bowel disease. Curr. Drug Targets 15, 1030–1038 (2014).

    CAS  PubMed  Google Scholar 

  218. Tso, P., Lee, T. & Demichele, S. J. Lymphatic absorption of structured triglycerides versus physical mix in a rat model of fat malabsorption. Am. J. Physiol. 277, G333–G340 (1999).

    CAS  PubMed  Google Scholar 

  219. Hering, N. A., Fromm, M. & Schulzke, J. D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 590, 1035–1044 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Capaldo, C. T. & Nusrat, A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta 1788, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  221. Capaldo, C. T. & Nusrat, A. Claudin switching: Physiological plasticity of the Tight Junction. Semin. Cell Dev. Biol. 42, 22–29 (2015).

    CAS  PubMed  Google Scholar 

  222. Tolstanova, G. et al. Early endothelial damage and increased colonic vascular permeability in the development of experimental ulcerative colitis in rats and mice. Lab Invest. 92, 9–21 (2012).

    CAS  PubMed  Google Scholar 

  223. Brown, I. A., McClain, J. L., Watson, R. E., Patel, B. A. & Gulbransen, B. D. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell. Mol. Gastroenterol. Hepatol. 2, 77–91 (2016).

    PubMed  Google Scholar 

  224. Scirocco, A. et al. Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J. Cell. Physiol. 223, 442–450 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.L.C. is supported by NIH grant DK103639, and S.P.C. is supported by NIH grants DK50189, DK104713, DK095491, DK103712 and a Merit Award from the Veterans Administration.

Review criteria

PubMed was searched from 1999 to 2017 for articles using the terms: “reactive oxygen species”, “hydrogen peroxide”, “hypoxia”, “microbiota”, “mucosa” and “epithelium” alone or in combination. Articles in English were considered on the basis of their relevance to this article’s topic. The reference lists of articles were crosschecked for additional references.

Author information

Authors and Affiliations

Authors

Contributions

E.L.C. researched data for the article. E.L.C. and S.P.C. made substantial contributions to discussion of content, wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Eric L. Campbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, E.L., Colgan, S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 16, 106–120 (2019). https://doi.org/10.1038/s41575-018-0079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0079-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing