Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms

Abstract

Obesity increases the risk of multiple gastrointestinal cancers and worsens disease outcomes. Conversely, strong inverse associations have emerged between physical activity and colon cancer and possibly other gastrointestinal malignancies. The effect of weight loss interventions — such as modifications of diet and/or physical activity or bariatric surgery — remains unclear in patients who are obese and have gastrointestinal cancer, although large clinical trials are underway. Human intervention studies have already shed light on potential mechanisms underlying the energy balance–cancer relationship, with preclinical models supporting emerging pathway effects. Central to interventions that reduce obesity or increase physical activity are pluripotent cancer-preventive effects (including reduced systemic and adipose tissue inflammation and angiogenesis, altered adipokine levels and improved insulin resistance) that directly interface with the hallmarks of cancer. Other mechanisms, such as DNA repair, oxidative stress and telomere length, immune function, effects on cancer stem cells and the microbiome, could also contribute to energy balance effects on gastrointestinal cancers. Although some mechanisms are well understood (for instance, systemic effects on inflammation and insulin signalling), other areas remain unclear. The current state of knowledge supports the need to better integrate mechanistic approaches with preclinical and human studies to develop effective, personalized diet and exercise interventions to reduce the burden of obesity on gastrointestinal cancer.

Key points

  • Energy balance interventions, such as physical activity and caloric restriction, can reduce individual cancer risk and prevent gastrointestinal carcinogenesis.

  • Intervention trials are instrumental in fully understanding the effects of energy balance on cancer risk, clinical outcomes and underlying biological mechanisms.

  • The main mechanistic pathways underlying the obesity–gastrointestinal cancer link include systemic inflammation, metabolic reprogramming and adipose tissue-dependent effects.

  • Additional pathways that might have a role are oxidative stress and DNA repair, proliferation, apoptosis and angiogenesis, the gut microbiome and immune function.

  • Preclinical studies using both diet-induced and genetically induced obesity models provide supporting evidence to clinical findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms underlying the association between energy balance and obesity-related gastrointestinal cancers.
Fig. 2: Adipokines and cytokines secreted by adipose tissue and their effects on cancer-related processes.
Fig. 3: The insulin–insulin-like growth factor axis and adipose tissue-derived adipokine signalling in cancer.

Similar content being viewed by others

References

  1. Demark-Wahnefried, W. et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol. Biomarkers Prev. 21, 1244–1259 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Romieu, I. et al. Energy balance and obesity: what are the main drivers? Cancer Causes Control 28, 247–258 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. National Center for Health Statistics. Health, United States, 2016: With Chartbook on Long-term Trends in Health (National Center for Health Statistics, Hyattsville, MD, 2017).

    Google Scholar 

  4. Lauby-Secretan, B. et al. Body fatness and cancer —viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).

    PubMed  PubMed Central  Google Scholar 

  5. World Cancer Research Fund (WCRF)/American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. (AICR, Washington DC, 2018).

    Google Scholar 

  6. Wolin, K. Y., Yan, Y., Colditz, G. A. & Lee, I. M. Physical activity and colon cancer prevention: a meta-analysis. Br. J. Cancer 100, 611–616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Donnelly, J. E. et al. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 41, 459–471 (2009).

    PubMed  Google Scholar 

  8. Centers for Disease Control & Prevention. Facts about Physical Activity. Centers for Disease Control & Prevention https://www.cdc.gov/physicalactivity/data/facts.htm (2016).

  9. Reis, R. S. et al. Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet 388, 1337–1348 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Murphy, N., Jenab, M. & Gunter, M. J. Adiposity and gastrointestinal cancers: epidemiology, mechanisms and future directions. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-018-0038-1 (2018).

    Article  PubMed  Google Scholar 

  11. Emmons, K. M. & Colditz, G. A. Realizing the potential of cancer prevention - the role of implementation science. N. Engl. J. Med. 376, 986–990 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Thomson, C. A. et al. Cancer incidence and mortality during the intervention and postintervention periods of the Women’s Health Initiative dietary modification trial. Cancer Epidemiol. Biomarkers Prev. 23, 2924–2935 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Howard, B. V. et al. Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative dietary modification trial. JAMA 295, 39–49 (2006).

    CAS  PubMed  Google Scholar 

  14. Jiao, L. et al. Low-fat dietary pattern and pancreatic cancer risk in the Women’s Health Initiative dietary modification randomized controlled trial. J. Natl Cancer Inst. 110, djx117 (2018).

    Google Scholar 

  15. Spechler, S. J. & Goyal, R. K. Barrett’s esophagus. N. Engl. J. Med. 315, 362–371 (1986).

    CAS  PubMed  Google Scholar 

  16. Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat. Rev. Cancer 10, 87–101 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Winzer, B. M., Paratz, J. D., Reeves, M. M. & Whiteman, D. C. Exercise and the Prevention of Oesophageal Cancer (EPOC) study protocol: a randomized controlled trial of exercise versus stretching in males with Barrett’s oesophagus. BMC Cancer 10, 292 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. Winzer, B. M., Paratz, J. D., Whitehead, J. P., Whiteman, D. C. & Reeves, M. M. The feasibility of an exercise intervention in males at risk of oesophageal adenocarcinoma: a randomized controlled trial. PLOS One 10, e0117922 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Anderson, A. S. et al. The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial. BMJ 348, g1823 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Buchwald, H. The evolution of metabolic/bariatric surgery. Obes. Surg. 24, 1126–1135 (2014).

    PubMed  Google Scholar 

  21. Adams, T. D. et al. Cancer incidence and mortality after gastric bypass surgery. Obesity 17, 796–802 (2009).

    PubMed  Google Scholar 

  22. Derogar, M. et al. Increased risk of colorectal cancer after obesity surgery. Ann. Surg. 258, 983–988 (2013).

    PubMed  Google Scholar 

  23. Tao, W. et al. Colorectal cancer prognosis following obesity surgery in a population-based cohort study. Obes. Surg. 27, 1233–1239 (2017).

    PubMed  Google Scholar 

  24. Tse, W. H. W., Kroon, H. M. & van Lanschot, J. J. B. Clinical challenges in upper gastrointestinal malignancies after bariatric surgery. Dig. Surg. 35, 183–186 (2018).

    PubMed  Google Scholar 

  25. Abrahamson, P. E. et al. No effect of exercise on colon mucosal prostaglandin concentrations: a 12-month randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 16, 2351–2356 (2007).

    CAS  PubMed  Google Scholar 

  26. Campbell, K. L. et al. Effect of a 12-month exercise intervention on the apoptotic regulating proteins bax and bcl-2 in colon crypts: a randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 16, 1767–1774 (2007).

    CAS  PubMed  Google Scholar 

  27. McTiernan, A. et al. Effect of a 12-month exercise intervention on patterns of cellular proliferation in colonic crypts: A randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 15, 1–10 (2006).

    Google Scholar 

  28. Morey, M. C. et al. Effects of home-based diet and exercise on functional outcomes among older, overweight long-term cancer survivors: RENEW: a randomized controlled trial. JAMA 301, 1883–1891 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, Y. J. et al. A walk-and-eat intervention improves outcomes for patients with esophageal cancer undergoing neoadjuvant chemoradiotherapy. Oncologist 20, 1216–1222 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Yeo, T. P. et al. A progressive postresection walking program significantly improves fatigue and health-related quality of life in pancreas and periampullary cancer patients. J. Am. Coll. Surg. 214, 463–477 (2012).

    PubMed  Google Scholar 

  31. Meyerhardt, J. A. et al. Physical activity and survival after colorectal cancer diagnosis. J. Clin. Oncol. 24, 3527–3534 (2006).

    PubMed  Google Scholar 

  32. Strasser, B., Steindorf, K., Wiskemann, J. & Ulrich, C. M. Impact of resistance training in cancer survivors: a meta-analysis. Med. Sci. Sports Exerc. 45, 2080–2090 (2013).

    PubMed  Google Scholar 

  33. Friedenreich, C. M., Neilson, H. K., Farris, M. S. & Courneya, K. S. Physical activity and cancer outcomes: a precision medicine approach. Clin. Cancer Res. 22, 4766–4775 (2016).

    CAS  PubMed  Google Scholar 

  34. Cho, H. et al. Matched pair analysis to examine the effects of a planned preoperative exercise program in early gastric cancer patients with metabolic syndrome to reduce operative risk: the Adjuvant Exercise for General Elective Surgery (AEGES) study group. Ann. Surg. Oncol. 21, 2044–2050 (2014).

    PubMed  Google Scholar 

  35. Van Blarigan, E. L. & Meyerhardt, J. A. Role of physical activity and diet after colorectal cancer diagnosis. J. Clin. Oncol. 33, 1825–1834 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Je, Y., Jeon, J. Y., Giovannucci, E. L. & Meyerhardt, J. A. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int. J. Cancer 133, 1905–1913 (2013).

    CAS  PubMed  Google Scholar 

  37. Courneya, K. S. et al. The Colon Health and Life-Long Exercise Change trial: a randomized trial of the National Cancer Institute of Canada Clinical Trials Group. Curr. Oncol. 15, 279–285 (2008).

    CAS  PubMed  Google Scholar 

  38. van der Schaaf, M. K. et al. The influence of preoperative weight loss on the postoperative course after esophageal cancer resection. J. Thorac Cardiovasc. Surg. 147, 490–495 (2014).

    PubMed  Google Scholar 

  39. Aoyama, T. et al. Postoperative weight loss leads to poor survival through poor S-1 efficacy in patients with stage II/III gastric cancer. Int. J. Clin. Oncol. 22, 476–483 (2017).

    PubMed  Google Scholar 

  40. van Rooijen, S. J. et al. Systematic review of exercise training in colorectal cancer patients during treatment. Scand. J. Med. Sci. Sports 28, 360–370 (2018).

    PubMed  Google Scholar 

  41. van Vulpen, J. K. et al. Physical ExeRcise Following Esophageal Cancer Treatment (PERFECT) study: design of a randomized controlled trial. BMC Cancer 17, 552 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Ahn, K. Y. et al. The effects of inpatient exercise therapy on the length of hospital stay in stages I-III colon cancer patients: randomized controlled trial. Int. J. Colorectal Dis. 28, 643–651 (2013).

    PubMed  Google Scholar 

  43. Courneya, K. S. et al. Effects of a structured exercise program on physical activity and fitness in colon cancer survivors: one year feasibility results from the CHALLENGE trial. Cancer Epidemiol. Biomarkers Prev. 25, 969–977 (2016).

    PubMed  Google Scholar 

  44. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  45. Foster-Schubert, K. E. et al. Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women. Obesity 20, 1628–1638 (2012).

    CAS  PubMed  Google Scholar 

  46. van Gemert, W. A. et al. Design of the SHAPE-2 study: the effect of physical activity, in addition to weight loss, on biomarkers of postmenopausal breast cancer risk. BMC Cancer 13, 395 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Teicher, B. A. Tumor Models in Cancer Research (Springer, 2011).

  48. Bijlsma, M. F., Sadanandam, A., Tan, P. & Vermeulen, L. Molecular subtypes in cancers of the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 14, 333–342 (2017).

    CAS  PubMed  Google Scholar 

  49. Sawayama, H. et al. Clinical impact of the Warburg effect in gastrointestinal cancer (review). Int. J. Oncol. 45, 1345–1354 (2014).

    CAS  PubMed  Google Scholar 

  50. Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanyuda, A. et al. Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. Eur. J. Epidemiol. 32, 393–407 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Berriel Diaz, M., Herzig, S. & Schafmeier, T. Biological mechanisms for the effect of obesity on cancer risk: experimental evidence. Recent Results Cancer Res. 208, 219–242 (2016).

    CAS  PubMed  Google Scholar 

  53. Westbrook, A. M., Szakmary, A. & Schiestl, R. H. Mouse models of intestinal inflammation and cancer. Arch. Toxicol. 90, 2109–2130 (2016).

    CAS  PubMed  Google Scholar 

  54. Crusz, S. M. & Balkwill, F. R. Inflammation and cancer: advances and new agents. Nat. Rev. Clin. Oncol. 12, 584–596 (2015).

    CAS  PubMed  Google Scholar 

  55. Lashinger, L. M., Ford, N. A. & Hursting, S. D. Interacting inflammatory and growth factor signals underlie the obesity-cancer link. J. Nutr. 144, 109–113 (2014).

    CAS  PubMed  Google Scholar 

  56. Campbell, K. L. et al. No reduction in C-reactive protein following a 12-month randomized controlled trial of exercise in men and women. Cancer Epidemiol. Biomarkers Prev. 17, 1714–1718 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Campbell, P. T. et al. A yearlong exercise intervention decreases CRP among obese postmenopausal women. Med. Sci. Sports Exerc. 41, 1533–1539 (2009).

    PubMed  Google Scholar 

  58. Le, T. et al. Effects of diet composition and insulin resistance status on plasma lipid levels in a weight loss intervention in women. J. Am. Heart Assoc. 5, e002771 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Imayama, I. et al. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial. Cancer Res. 72, 2314–2326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedenreich, C. M. et al. Inflammatory marker changes in postmenopausal women after a year-long exercise intervention comparing high versus moderate volumes. Cancer Prev. Res. 9, 196–203 (2016).

    CAS  Google Scholar 

  61. Lin, P. C., Lin, Y. J., Lee, C. T., Liu, H. S. & Lee, J. C. Cyclooxygenase-2 expression in the tumor environment is associated with poor prognosis in colorectal cancer patients. Oncol. Lett. 6, 733–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maihofner, C. et al. Expression of cyclooxygenase-2 parallels expression of interleukin-1beta, interleukin-6 and NF-kappaB in human colorectal cancer. Carcinogenesis 24, 665–671 (2003).

    PubMed  Google Scholar 

  63. van Gemert, W. A. et al. Effect of weight loss with or without exercise on inflammatory markers and adipokines in postmenopausal women: the SHAPE-2 trial, a randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 25, 799–806 (2016).

    PubMed  Google Scholar 

  64. de Maat, M. F. et al. Epigenetic silencing of cyclooxygenase-2 affects clinical outcome in gastric cancer. J. Clin. Oncol. 25, 4887–4894 (2007).

    PubMed  Google Scholar 

  65. Peng, L., Zhou, Y., Wang, Y., Mou, H. & Zhao, Q. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: a meta-analysis of the literature. PLOS One 8, e58891 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Forsythe, L. K., Wallace, J. M. & Livingstone, M. B. Obesity and inflammation: the effects of weight loss. Nutr. Res. Rev. 21, 117–133 (2008).

    CAS  PubMed  Google Scholar 

  67. Santos, J. et al. Effect of bariatric surgery on weight loss, inflammation, iron metabolism, and lipid profile. Scand. J. Surg. 103, 21–25 (2014).

    CAS  PubMed  Google Scholar 

  68. Lasselin, J. et al. Adipose inflammation in obesity: relationship with circulating levels of inflammatory markers and association with surgery-induced weight loss. J. Clin. Endocrinol. Metab. 99, E53–E61 (2014).

    PubMed  Google Scholar 

  69. Kelly, A. S. et al. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity. Int. J. Obes. 40, 275–280 (2016).

    CAS  Google Scholar 

  70. Mazur-Bialy, A. I. et al. Beneficial effect of voluntary exercise on experimental colitis in mice fed a high-fat diet: the role of irisin, adiponectin and proinflammatory biomarkers. Nutrients 9, E410 (2017).

    PubMed  Google Scholar 

  71. Wang, Q. et al. Differential effect of weight loss with low-fat diet or high-fat diet restriction on inflammation in the liver and adipose tissue of mice with diet-induced obesity. Atherosclerosis 219, 100–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, F. et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015).

    PubMed  PubMed Central  Google Scholar 

  73. Perez-Hernandez, A. I., Catalan, V., Gomez-Ambrosi, J., Rodriguez, A. & Fruhbeck, G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front. Endocrinol. 5, 65 (2014).

    Google Scholar 

  74. Himbert, C. et al. Signals from the adipose microenvironment and the obesity-cancer link-a systematic review. Cancer Prev. Res. 10, 494–506 (2017).

    CAS  Google Scholar 

  75. Campbell, K. L., Landells, C. E., Fan, J. & Brenner, D. R. A. Systematic review of the effect of lifestyle interventions on adipose tissue gene expression: implications for carcinogenesis. Obesity 25 (Suppl. 2), S40–S51 (2017).

    PubMed  Google Scholar 

  76. Koerner, A., Kratzsch, J. & Kiess, W. Adipocytokines: leptin — the classical, resistin—the controversical, adiponectin — the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19, 525–546 (2005).

    CAS  PubMed  Google Scholar 

  77. Schubel, R. et al. The effects of intermittent calorie restriction on metabolic health: Rationale and study design of the HELENA Trial. Contemp. Clin. Trials 51, 28–33 (2016).

    PubMed  Google Scholar 

  78. Nakhuda, A. et al. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am. J. Clin. Nutr. 104, 557–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brown, J. C. et al. Dose-response effects of aerobic exercise on body composition among colon cancer survivors: a randomised controlled trial. Br. J. Cancer 117, 1614–1620 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Nuri, R., Moghaddasi, M., Darvishi, H. & Izadpanah, A. Effect of aerobic exercise on leptin and ghrelin in patients with colorectal cancer. J. Cancer Res. Ther. 12, 169–174 (2016).

    CAS  PubMed  Google Scholar 

  81. Lee, M. K. et al. Effect of home-based exercise intervention on fasting insulin and adipocytokines in colorectal cancer survivors: a randomized controlled trial. Metabolism 76, 23–31 (2017).

    CAS  PubMed  Google Scholar 

  82. Wallace, A. M., Sattar, N. & McMillan, D. C. Effect of weight loss and the inflammatory response on leptin concentrations in gastrointestinal cancer patients. Clin. Cancer Res. 4, 2977–2979 (1998).

    CAS  PubMed  Google Scholar 

  83. Riondino, S. et al. Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J. Gastroenterol. 20, 5177–5190 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55–63 (2011).

    CAS  PubMed  Google Scholar 

  85. Park, J., Morley, T. S., Kim, M., Clegg, D. J. & Scherer, P. E. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Abbenhardt, C. et al. Effects of individual and combined dietary weight loss and exercise interventions in postmenopausal women on adiponectin and leptin levels. J. Intern. Med. 274, 163–175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Rokling-Andersen, M. H. et al. Effects of long-term exercise and diet intervention on plasma adipokine concentrations. Am. J. Clin. Nutr. 86, 1293–1301 (2007).

    CAS  PubMed  Google Scholar 

  88. Friedenreich, C. M. et al. Changes in insulin resistance indicators, IGFs, and adipokines in a year-long trial of aerobic exercise in postmenopausal women. Endocr. Relat. Cancer 18, 357–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kelly, K. R. et al. Lifestyle-induced decrease in fat mass improves adiponectin secretion in obese adults. Med. Sci. Sports Exerc. 46, 920–926 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Thompson, H. J. et al. Impact of weight loss on plasma leptin and adiponectin in overweight-to-obese post menopausal breast cancer survivors. Nutrients 7, 5156–5176 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mason, C. et al. The effects of separate and combined dietary weight loss and exercise on fasting ghrelin concentrations in overweight and obese women: a randomized controlled trial. Clin. Endocrinol. 82, 369–376 (2015).

    CAS  Google Scholar 

  92. Wang, X., You, T., Murphy, K., Lyles, M. F. & Nicklas, B. J. Addition of exercise increases plasma adiponectin and release from adipose tissue. Med. Sci. Sports Exerc. 47, 2450–2455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Christiansen, T., Paulsen, S. K., Bruun, J. M., Pedersen, S. B. & Richelsen, B. Exercise training versus diet-induced weight-loss on metabolic risk factors and inflammatory markers in obese subjects: a 12-week randomized intervention study. Am. J. Physiol. Endocrinol. Metab. 298, E824–E831 (2010).

    CAS  PubMed  Google Scholar 

  94. Campbell, K. L. et al. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev. Res. 6, 217–231 (2013).

    CAS  Google Scholar 

  95. Vaittinen, M., Kolehmainen, M., Schwab, U., Uusitupa, M. & Pulkkinen, L. Microfibrillar-associated protein 5 is linked with markers of obesity-related extracellular matrix remodeling and inflammation. Nutr. Diabetes 1, e15 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Walhin, J. P., Richardson, J. D., Betts, J. A. & Thompson, D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J. Physiol. 591, 6231–6243 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sjogren, P. et al. Functional changes in adipose tissue in a randomised controlled trial of physical activity. Lipids Health Dis. 11, 80 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Phillips, M. D. et al. Resistance training reduces subclinical inflammation in obese, postmenopausal women. Med. Sci. Sports Exerc. 44, 2099–2110 (2012).

    CAS  PubMed  Google Scholar 

  99. Sjostrom, L. et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10, 653–662 (2009).

    PubMed  Google Scholar 

  100. Herder, C. et al. Adiponectin and bariatric surgery: associations with diabetes and cardiovascular disease in the Swedish Obese Subjects study. Diabetes Care 37, 1401–1409 (2014).

    CAS  PubMed  Google Scholar 

  101. Serra, A. et al. The effect of bariatric surgery on adipocytokines, renal parameters and other cardiovascular risk factors in severe and very severe obesity: 1-year follow-up. Clin. Nutr. 25, 400–408 (2006).

    CAS  PubMed  Google Scholar 

  102. Frikke-Schmidt, H., O’Rourke, R. W., Lumeng, C. N., Sandoval, D. A. & Seeley, R. J. Does bariatric surgery improve adipose tissue function? Obes. Rev. 17, 795–809 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hagman, D. K. et al. The short-term and long-term effects of bariatric/metabolic surgery on subcutaneous adipose tissue inflammation in humans. Metabolism 70, 12–22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sams, V. G. et al. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg. Endosc. 30, 3499–3504 (2016).

    PubMed  Google Scholar 

  105. Fruhbeck, G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat. Rev. Endocrinol. 11, 465–477 (2015).

    PubMed  Google Scholar 

  106. Falk, R. T. et al. Estrogen metabolites are not associated with colorectal cancer risk in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 24, 1419–1422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rudolph, A. et al. Colorectal cancer risk associated with hormone use varies by expression of estrogen receptor-beta. Cancer Res. 73, 3306–3315 (2013).

    CAS  PubMed  Google Scholar 

  108. Murphy, N. et al. A prospective evaluation of endogenous sex hormone levels and colorectal cancer risk in postmenopausal women. J. Natl Cancer Inst. 107, djv210 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Limsui, D. et al. Postmenopausal hormone therapy and colorectal cancer risk by molecularly defined subtypes among older women. Gut 61, 1299–1305 (2012).

    CAS  PubMed  Google Scholar 

  110. Prentice, R. L. et al. Colorectal cancer in relation to postmenopausal estrogen and estrogen plus progestin in the Women’s Health Initiative clinical trial and observational study. Cancer Epidemiol. Biomarkers Prev. 18, 1531–1537 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Camargo, M. C. et al. Sex hormones, hormonal interventions, and gastric cancer risk: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 20–38 (2012).

    CAS  PubMed  Google Scholar 

  112. Sukocheva, O. A., Li, B., Due, S. L., Hussey, D. J. & Watson, D. I. Androgens and esophageal cancer: what do we know? World J. Gastroenterol. 21, 6146–6156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Petrick, J. L. et al. Association between circulating levels of sex steroid hormones and esophageal adenocarcinoma in the FINBAR Study. PLOS One 13, e0190325 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Andren-Sandberg, A. & Johansson, J. Influence of sex hormones on pancreatic cancer. Int. J. Pancreatol. 7, 167–176 (1990).

    CAS  PubMed  Google Scholar 

  115. Lukanova, A. et al. Prediagnostic plasma testosterone, sex hormone-binding globulin, IGF-I and hepatocellular carcinoma: etiological factors or risk markers? Int. J. Cancer 134, 164–173 (2014).

    PubMed  Google Scholar 

  116. Campbell, K. L. et al. Reduced-calorie dietary weight loss, exercise, and sex hormones in postmenopausal women: randomized controlled trial. J. Clin. Oncol. 30, 2314–2326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McTiernan, A. et al. Effect of exercise on serum androgens in postmenopausal women: a 12-month randomized clinical trial. Cancer Epidemiol. Biomarkers Prev. 13, 1099–1105 (2004).

    CAS  PubMed  Google Scholar 

  118. McTiernan, A. et al. Effect of exercise on serum estrogens in postmenopausal women: a 12-month randomized clinical trial. Cancer Res. 64, 2923–2928 (2004).

    CAS  PubMed  Google Scholar 

  119. Kim, C. et al. Racial/ethnic differences in sex hormone levels among postmenopausal women in the diabetes prevention program. J. Clin. Endocrinol. Metab. 97, 4051–4060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hawkins, V. N. et al. Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. Med. Sci. Sports Exerc. 40, 223–233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Friedenreich, C. M. et al. Effects of exercise dose on endogenous estrogens in postmenopausal women: a randomized trial. Endocr. Relat. Cancer 22, 863–876 (2015).

    CAS  PubMed  Google Scholar 

  122. Longnecker, D. S. Hormones and pancreatic cancer. Int. J. Pancreatol. 9, 81–86 (1991).

    CAS  PubMed  Google Scholar 

  123. Armstrong, C. M., Allred, K. F., Weeks, B. R., Chapkin, R. S. & Allred, C. D. Estradiol has differential effects on acute colonic inflammation in the presence and absence of estrogen receptor beta expression. Dig. Dis. Sci. 62, 1977–1984 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Roshan, M. H., Tambo, A. & Pace, N. P. The role of testosterone in colorectal carcinoma: pathomechanisms and open questions. EPMA J. 7, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Wilde, L. et al. Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin. Oncol. 44, 198–203 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fu, Y. et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 8, 57813–57825 (2017).

    PubMed  PubMed Central  Google Scholar 

  127. Faupel-Badger, J. M., Berrigan, D., Ballard-Barbash, R. & Potischman, N. Anthropometric correlates of insulin-like growth factor 1 (IGF-1) and IGF binding protein-3 (IGFBP-3) levels by race/ethnicity and gender. Ann. Epidemiol. 19, 841–849 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Smith, A. T., Clemmons, D. R., Underwood, L. E., Ben-Ezra, V. & McMurray, R. The effect of exercise on plasma somatomedin-C/insulinlike growth factor I concentrations. Metabolism 36, 533–537 (1987).

    CAS  PubMed  Google Scholar 

  129. Nemet, D. et al. Negative energy balance plays a major role in the IGF-I response to exercise training. J. Appl. Physiol. (1985) 96, 276–282 (1985) (2004).

    CAS  Google Scholar 

  130. Frank, L. L. et al. Effects of exercise on metabolic risk variables in overweight postmenopausal women: a randomized clinical trial. Obes. Res. 13, 615–625 (2005).

    PubMed  Google Scholar 

  131. Wang, Y. et al. The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. J. Nutr. 134, 1032–1038 (2004).

    CAS  PubMed  Google Scholar 

  132. Claycombe, K. J. et al. Insulin increases fatty acid synthase gene transcription in human adipocytes. Am. J. Physiol. 274, R1253–R1259 (1998).

    CAS  PubMed  Google Scholar 

  133. Ortega, F. J. et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity 18, 13–20 (2010).

    CAS  PubMed  Google Scholar 

  134. Mason, C. et al. Effects of dietary weight loss and exercise on insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in postmenopausal women: a randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 22, 1457–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Margolis, L. M. et al. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats. Nutrients 8, E571 (2016).

    PubMed  Google Scholar 

  136. Moore, T. et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev. Res. 1, 65–76 (2008).

    CAS  Google Scholar 

  137. Bae, J. Y. et al. Exercise and dietary change ameliorate high fat diet induced obesity and insulin resistance via mTOR signaling pathway. J. Exerc. Nutr. Biochem. 20, 28–33 (2016).

    Google Scholar 

  138. Harvey, A. E. et al. Calorie restriction decreases murine and human pancreatic tumor cell growth, nuclear factor-kappaB activation, and inflammation-related gene expression in an insulin-like growth factor-1-dependent manner. PLOS One 9, e94151 (2014).

    PubMed  PubMed Central  Google Scholar 

  139. Piguet, A. C. et al. Regular exercise decreases liver tumors development in hepatocyte-specific PTEN-deficient mice independently of steatosis. J. Hepatol. 62, 1296–1303 (2015).

    CAS  PubMed  Google Scholar 

  140. Weiss, E. P., Reeds, D. N., Ezekiel, U. R., Albert, S. G. & Villareal, D. T. Circulating cytokines as determinants of weight loss-induced improvements in insulin sensitivity. Endocrine 55, 153–164 (2017).

    CAS  PubMed  Google Scholar 

  141. Mason, C. et al. Dietary weight loss and exercise effects on insulin resistance in postmenopausal women. Am. J. Prev. Med. 41, 366–375 (2011).

    PubMed  PubMed Central  Google Scholar 

  142. Rock, C. L. et al. Effects of diet composition on weight loss, metabolic factors and biomarkers in a 1-year weight loss intervention in obese women examined by baseline insulin resistance status. Metabolism 65, 1605–1613 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hanyuda, A. et al. Survival benefit of exercise differs by tumor IRS1 expression status in colorectal cancer. Ann. Surg. Oncol. 23, 908–917 (2016).

    PubMed  Google Scholar 

  144. Brown, J. C. et al. Dose-response effects of aerobic exercise among colon cancer survivors: a randomized phase II trial. Clin. Colorectal Cancer 17, 32–40 (2018).

    PubMed  Google Scholar 

  145. Sainsbury, A. et al. Increased colorectal epithelial cell proliferation and crypt fission associated with obesity and roux-en-Y gastric bypass. Cancer Epidemiol. Biomarkers Prev. 17, 1401–1410 (2008).

    CAS  PubMed  Google Scholar 

  146. Zhu, Z., Jiang, W. & Thompson, H. J. Effect of energy restriction on tissue size regulation during chemically induced mammary carcinogenesis. Carcinogenesis 20, 1721–1726 (1999).

    CAS  PubMed  Google Scholar 

  147. Olivo-Marston, S. E. et al. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLOS One 9, e94765 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Bruss, M. D., Thompson, A. C., Aggarwal, I., Khambatta, C. F. & Hellerstein, M. K. The effects of physiological adaptations to calorie restriction on global cell proliferation rates. Am. J. Physiol. Endocrinol. Metab. 300, E735–E745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kant, P. et al. Mucosal biomarkers of colorectal cancer risk do not increase at 6 months following sleeve gastrectomy, unlike gastric bypass. Obesity 22, 202–210 (2014).

    CAS  PubMed  Google Scholar 

  150. Kant, P. et al. Rectal epithelial cell mitosis and expression of macrophage migration inhibitory factor are increased 3 years after Roux-en-Y gastric bypass (RYGB) for morbid obesity: implications for long-term neoplastic risk following RYGB. Gut 60, 893–901 (2011).

    PubMed  Google Scholar 

  151. Appleton, G. V., Wheeler, E. E., Al-Mufti, R., Challacombe, D. N. & Williamson, R. C. Rectal hyperplasia after jejunoileal bypass for morbid obesity. Gut 29, 1544–1548 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Thompson, H. J., Zhu, Z. & Jiang, W. Identification of the apoptosis activation cascade induced in mammary carcinomas by energy restriction. Cancer Res. 64, 1541–1545 (2004).

    CAS  PubMed  Google Scholar 

  153. Bouis, D., Kusumanto, Y., Meijer, C., Mulder, N. H. & Hospers, G. A. A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol. Res. 53, 89–103 (2006).

    CAS  PubMed  Google Scholar 

  154. Duggan, C., Tapsoba, J. D., Wang, C. Y., Foster-Schubert, K. E. & McTiernan, A. Long-term effects of weight loss & exercise on biomarkers associated with angiogenesis. Cancer Epidemiol. Biomarkers Prev. 26, 1788–1794 (2017).

    CAS  Google Scholar 

  155. Duggan, C., Xiao, L., Wang, C. Y. & McTiernan, A. Effect of a 12-month exercise intervention on serum biomarkers of angiogenesis in postmenopausal women: a randomized controlled trial. Cancer Epidemiol. Biomarkers Prev. 23, 648–657 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Duggan, C., Tapsoba Jde, D., Wang, C. Y. & McTiernan, A. Dietary weight loss and exercise effects on serum biomarkers of angiogenesis in overweight postmenopausal women: a randomized controlled trial. Cancer Res. 76, 4226–4235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Cullberg, K. B. et al. Effect of weight loss and exercise on angiogenic factors in the circulation and in adipose tissue in obese subjects. Obesity 21, 454–460 (2013).

    CAS  PubMed  Google Scholar 

  158. Sabater, M. et al. Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss. J. Clin. Endocrinol. Metab. 95, 4720–4728 (2010).

    CAS  PubMed  Google Scholar 

  159. Kurki, E., Shi, J., Martonen, E., Finckenberg, P. & Mervaala, E. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice. Nutr. Metab. 9, 64 (2012).

    CAS  Google Scholar 

  160. Mukherjee, P., Abate, L. E. & Seyfried, T. N. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin. Cancer Res. 10, 5622–5629 (2004).

    CAS  PubMed  Google Scholar 

  161. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Marseglia, L. et al. Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci. 16, 378–400 (2015).

    Google Scholar 

  163. Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Meijer, E. P., Goris, A. H., van Dongen, J. L., Bast, A. & Westerterp, K. R. Exercise-induced oxidative stress in older adults as a function of habitual activity level. J. Am. Geriatr. Soc. 50, 349–353 (2002).

    PubMed  Google Scholar 

  165. Campbell, P. T. et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med. Sci. Sports Exerc. 42, 1448–1453 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Duggan, C. et al. Dietary weight loss, exercise, and oxidative stress in postmenopausal women: a randomized controlled trial. Cancer Prev. Res. 9, 835–843 (2016).

    Google Scholar 

  167. Buchowski, M. S. et al. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLOS One 7, e47079 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Gutierrez-Lopez, L. et al. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients. Obes. Facts 5, 12–22 (2012).

    CAS  PubMed  Google Scholar 

  169. Chae, J. S. et al. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr. Res. 33, 195–203 (2013).

    CAS  PubMed  Google Scholar 

  170. Meydani, M., Das, S., Band, M., Epstein, S. & Roberts, S. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the CALERIE Trial of Human Caloric Restriction. J. Nutr. Health Aging 15, 456–460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Friedenreich, C. M. et al. Effects of exercise on markers of oxidative stress: an ancillary analysis of the Alberta Physical Activity and Breast Cancer Prevention Trial. BMJ Open Sport Exerc. Med. 2, e000171 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Repka, C. P. & Hayward, R. Oxidative stress and fitness changes in cancer patients after exercise training. Med. Sci. Sports Exerc. 48, 607–614 (2016).

    CAS  PubMed  Google Scholar 

  173. Shimizu, I., Yoshida, Y., Suda, M. & Minamino, T. DNA damage response and metabolic disease. Cell Metab. 20, 967–977 (2014).

    CAS  PubMed  Google Scholar 

  174. Habermann, N. et al. No effect of caloric restriction or exercise on radiation repair capacity. Med. Sci. Sports Exerc. 47, 896–904 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Mundstock, E. et al. Effect of obesity on telomere length: systematic review and meta-analysis. Obesity 23, 2165–2174 (2015).

    PubMed  Google Scholar 

  176. Mason, C. et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity 21, E549–E554 (2013).

    PubMed  Google Scholar 

  177. Garcia-Calzon, S. et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLOS One 9, e89828 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Werner, C. et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120, 2438–2447 (2009).

    PubMed  Google Scholar 

  179. Turnbaugh, P. J. & Gordon, J. I. The core gut microbiome, energy balance and obesity. J. Physiol. 587, 4153–4158 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Aguirre, M., Bussolo de Souza, C. & Venema, K. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLOS One 11, e0159236 (2016).

    PubMed  PubMed Central  Google Scholar 

  181. Jakobsdottir, G., Xu, J., Molin, G., Ahrne, S. & Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLOS One 8, e80476 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    PubMed  Google Scholar 

  183. Cani, P. D., Delzenne, N. M., Amar, J. & Burcelin, R. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding. Pathol. Biol. 56, 305–309 (2008).

    CAS  PubMed  Google Scholar 

  184. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    CAS  PubMed  Google Scholar 

  185. Roager, H. M. et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial. Gut https://doi.org/10.1136/gutjnl-2017-314786 (2017).

  186. Djuric, Z. Obesity-associated cancer risk: the role of intestinal microbiota in the etiology of the host proinflammatory state. Transl Res. 179, 155–167 (2017).

    PubMed  Google Scholar 

  187. Alang, N. & Kelly, C. R. Weight gain after fecal microbiota transplantation. Open Forum Infect. Dis. 2, ofv004 (2015).

    PubMed  PubMed Central  Google Scholar 

  188. Higgins, J. A. Resistant starch and energy balance: impact on weight loss and maintenance. Crit. Rev. Food Sci. Nutr. 54, 1158–1166 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Murphy, G. et al. Serum ghrelin is inversely associated with risk of subsequent oesophageal squamous cell carcinoma. Gut 61, 1533–1537 (2012).

    CAS  PubMed  Google Scholar 

  190. de Martel, C. et al. Serum ghrelin levels and risk of subsequent adenocarcinoma of the esophagus. Am. J. Gastroenterol. 102, 1166–1172 (2007).

    PubMed  Google Scholar 

  191. Hooper, L. E. et al. Frequent intentional weight loss is associated with higher ghrelin and lower glucose and androgen levels in postmenopausal women. Nutr. Res. 30, 163–170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Cui, H., Lopez, M. & Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 13, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Koelwyn, G. J., Wennerberg, E., Demaria, S. & Jones, L. W. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncology (Williston Park) 29, 908–922 (2015).

    Google Scholar 

  194. Walsh, N. P. et al. Position statement. Part one: immune function and exercise. Exerc. Immunol. Rev. 17, 6–63 (2011).

    PubMed  Google Scholar 

  195. Walsh, N. P. et al. Position statement. Part two: maintaining immune health. Exerc. Immunol. Rev. 17, 64–103 (2011).

    PubMed  Google Scholar 

  196. Campbell, P. T. et al. Effect of exercise on in vitro immune function: a 12-month randomized, controlled trial among postmenopausal women. J. Appl. Physiol. 104, 1648–1655 (2008).

    PubMed  Google Scholar 

  197. Nieman, D. C. et al. Immune response to exercise training and/or energy restriction in obese women. Med. Sci. Sports Exerc. 30, 679–686 (1998).

    CAS  PubMed  Google Scholar 

  198. Martinez-Carrillo, B. E., Jarillo-Luna, R. A., Campos-Rodriguez, R., Valdes-Ramos, R. & Rivera-Aguilar, V. Effect of diet and exercise on the peripheral immune system in young Balb/c mice. Biomed. Res. Int. 2015, 458470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Catalan, V., Gomez-Ambrosi, J., Rodriguez, A. & Fruhbeck, G. Adipose tissue immunity and cancer. Front. Physiol. 4, 275 (2013).

    PubMed  PubMed Central  Google Scholar 

  201. Koelwyn, G. J., Quail, D. F., Zhang, X., White, R. M. & Jones, L. W. Exercise-dependent regulation of the tumour microenvironment. Nat. Rev. Cancer 17, 620–632 (2017).

    PubMed  Google Scholar 

  202. Duffaut, C., Galitzky, J., Lafontan, M. & Bouloumie, A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem. Biophys. Res. Commun. 384, 482–485 (2009).

    CAS  PubMed  Google Scholar 

  203. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD. NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    CAS  PubMed  Google Scholar 

  204. Smart, N. A., King, N., McFarlane, J. R., Graham, P. L. & Dieberg, G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br. J. Sports Med. 52, 834–843 (2016).

    PubMed  Google Scholar 

  205. Goodpaster, B. H. et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 304, 1795–1802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Hallsworth, K. et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60, 1278–1283 (2011).

    PubMed  Google Scholar 

  207. Larson-Meyer, D. E. et al. Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity 16, 1355–1362 (2008).

    CAS  PubMed  Google Scholar 

  208. Razavi Zade, M. et al. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: a randomized clinical trial. Liver Int. 36, 563–571 (2016).

    CAS  PubMed  Google Scholar 

  209. Zhang, H. J. et al. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern. Med. 176, 1074–1082 (2016).

    PubMed  Google Scholar 

  210. Katsagoni, C. N., Georgoulis, M., Papatheodoridis, G. V., Panagiotakos, D. B. & Kontogianni, M. D. Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: a meta-analysis. Metabolism 68, 119–132 (2017).

    CAS  PubMed  Google Scholar 

  211. Kenneally, S., Sier, J. H. & Moore, J. B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: a systematic review. BMJ Open Gastroenterol. 4, e000139 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Orci, L. A. et al. Exercise-based Interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression. Clin. Gastroenterol. Hepatol. 14, 1398–1411 (2016).

    PubMed  Google Scholar 

  213. Quante, M. & Wang, T. C. Stem cells in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 6, 724–737 (2009).

    PubMed  PubMed Central  Google Scholar 

  214. Zeuner, A., Todaro, M., Stassi, G. & De Maria, R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15, 692–705 (2014).

    CAS  PubMed  Google Scholar 

  215. Lee, C. J., Dosch, J. & Simeone, D. M. Pancreatic cancer stem cells. J. Clin. Oncol. 26, 2806–2812 (2008).

    PubMed  Google Scholar 

  216. Takaishi, S., Okumura, T. & Wang, T. C. Gastric cancer stem cells. J. Clin. Oncol. 26, 2876–2882 (2008).

    PubMed  Google Scholar 

  217. Sell, S. & Leffert, H. L. Liver cancer stem cells. J. Clin. Oncol. 26, 2800–2805 (2008).

    PubMed  Google Scholar 

  218. Zheng, Q. et al. Leptin deficiency suppresses MMTV-Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr. Relat. Cancer 18, 491–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Bellows, C. F., Zhang, Y., Simmons, P. J., Khalsa, A. S. & Kolonin, M. G. Influence of BMI on level of circulating progenitor cells. Obesity 19, 1722–1726 (2011).

    PubMed  Google Scholar 

  220. Colditz, G. A. & Peterson, L. L. Obesity and cancer: evidence, impact, and future directions. Clin. Chem. 64, 154–162 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.M.U. was supported by grants from the US National Institutes of Health (NIH)–US National Cancer Institute (NCI) (R01 CA189184, R01 CA207371 and U01 CA206110). C.M.U. and C.H. were also supported by NIH–NCI grant R01 CA211705. A.N.H. was supported by the NIH under Ruth L. Kirschstein National Research Service Award T32 HG008962 from the US National Human Genome Research Institute. S.D.H. was supported by NIH–NCI grant R35 CA197627.

Reviewer information

Nature Reviews Gastroenterology & Hepatology thanks N. Berger and other anonymous reviewer(s) for their contribution to the peer review of this work

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to Cornelia M. Ulrich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrich, C.M., Himbert, C., Holowatyj, A.N. et al. Energy balance and gastrointestinal cancer: risk, interventions, outcomes and mechanisms. Nat Rev Gastroenterol Hepatol 15, 683–698 (2018). https://doi.org/10.1038/s41575-018-0053-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0053-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer