Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium

Abstract

The epithelial lining of the gastrointestinal tract serves as the interface for digestion and absorption of nutrients and water and as a defensive barrier. The defensive functions of the intestinal epithelium are remarkable considering that the gut lumen is home to trillions of resident bacteria, fungi and protozoa (collectively, the intestinal microbiota) that must be prevented from translocation across the epithelial barrier. Imbalances in the relationship between the intestinal microbiota and the host lead to the manifestation of diseases that range from disorders of motility and sensation (IBS) and intestinal inflammation (IBD) to behavioural and metabolic disorders, including autism and obesity. The latest discoveries shed light on the sophisticated intracellular, intercellular and interkingdom signalling mechanisms of host defence that involve epithelial and enteroendocrine cells, the enteric nervous system and the immune system. Together, they maintain homeostasis by integrating luminal signals, including those derived from the microbiota, to regulate the physiology of the gastrointestinal tract in health and disease. Therapeutic strategies are being developed that target these signalling systems to improve the resilience of the gut and treat the symptoms of gastrointestinal disease.

Key points

  • The gastrointestinal epithelium allows the absorption of nutrients, water and immune surveillance while simultaneously limiting the translocation of potentially harmful antigens and commensal and pathogenic microorganisms.

  • Disturbances in the barrier function of the gastrointestinal tract lead to the development or exacerbation of disease that can manifest locally in the gut wall or involve distant organs including the brain.

  • Intestinal barrier function is regulated by multidirectional interactions between epithelial (enteroendocrine, tuft, goblet and Paneth) cells and the enteric nervous and immune systems.

  • The intestinal microbiota is a key element in sophisticated intracellular, intercellular and interkingdom signalling systems that regulate intestinal barrier function.

  • Therapeutic strategies are being developed that target these signalling systems to increase the resilience of the gastrointestinal tract and limit disturbances in barrier function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of the concepts of intestinal neuroimmunophysiology.
Fig. 2: The intracellular epithelial microenvironment as an integrated circuit.
Fig. 3: Neuro–glial–epithelial signalling pathways in the gastrointestinal tract.

Similar content being viewed by others

References

  1. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    PubMed  CAS  Google Scholar 

  2. Ramanan, D. & Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19, 434–441 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    PubMed  Google Scholar 

  4. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    PubMed  Google Scholar 

  5. Sonnenburg, J. L. & Backhed, F. Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).

    CAS  PubMed  Google Scholar 

  8. Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Moloney, R. D. et al. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci. Ther. 22, 102–117 (2016).

    PubMed  Google Scholar 

  11. Beumer, J. & Clevers, H. Regulation and plasticity of intestinal stem cells during homeostasis and regeneration. Development 143, 3639–3649 (2016).

    PubMed  CAS  Google Scholar 

  12. Pitman, R. S. & Blumberg, R. S. First line of defense: the role of the intestinal epithelium as an active component of the mucosal immune system. J. Gastroenterol. 35, 805–814 (2000).

    PubMed  CAS  Google Scholar 

  13. Perdue, M. H. & McKay, D. M. Integrative immunophysiology in the intestinal mucosa. Am. J. Physiol. 267, G151–G165 (1994).

    PubMed  CAS  Google Scholar 

  14. Hooper, L. V. Epithelial cell contributions to intestinal immunity. Adv. Immunol. 126, 129–172 (2015).

    PubMed  Google Scholar 

  15. Dahan, S., Roth-Walter, F., Arnaboldi, P., Agarwal, S. & Mayer, L. Epithelia: lymphocyte interactions in the gut. Immunol. Rev. 215, 243–253 (2007).

    PubMed  CAS  Google Scholar 

  16. Kurashima, Y. & Kiyono, H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu. Rev. Immunol. 35, 119–147 (2017).

    PubMed  CAS  Google Scholar 

  17. Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Birchenough, G. M., Nystrom, E. E., Johansson, M. E. & Hansson, G. C. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science 352, 1535–1542 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. McDole, J. R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Clevers, H. C. & Bevins, C. L. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75, 289–311 (2013).

    PubMed  CAS  Google Scholar 

  21. Worthington, J. J. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem. Soc. Trans. 43, 727–733 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Berg, C. J. & Kaunitz, J. D. Gut chemosensing: implications for disease pathogenesis. F1000Res. 5, 2424 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Psichas, A., Reimann, F. & Gribble, F. M. Gut chemosensing mechanisms. J. Clin. Invest. 125, 908–917 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Gerbe, F. & Jay, P. Intestinal tuft cells: epithelial sentinels linking luminal cues to the immune system. Mucosal Immunol. 9, 1353–1359 (2016).

    PubMed  CAS  Google Scholar 

  25. Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    PubMed  CAS  Google Scholar 

  26. Sharkey, K. A. & Savidge, T. C. Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton. Neurosci. 181, 94–106 (2014).

    PubMed  CAS  Google Scholar 

  27. Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol. 817, 3–24 (2014).

    PubMed  CAS  Google Scholar 

  28. Green, B. T. & Brown, D. R. Interactions between bacteria and the gut mucosa: do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection? Adv. Exp. Med. Biol. 874, 121–141 (2016).

    PubMed  CAS  Google Scholar 

  29. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012).

    PubMed  Google Scholar 

  30. Canavan, C., West, J. & Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 6, 71–80 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    PubMed  CAS  Google Scholar 

  32. Luissint, A. C., Parkos, C. A. & Nusrat, A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151, 616–632 (2016).

    PubMed  CAS  Google Scholar 

  33. Gonzalez-Castro, A. M. et al. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome. J. Gastroenterol. Hepatol. 32, 53–63 (2017).

    PubMed  Google Scholar 

  34. Leonarduzzi, G., Sottero, B., Testa, G., Biasi, F. & Poli, G. New insights into redox-modulated cell signaling. Curr. Pharm. Des. 17, 3994–4006 (2011).

    PubMed  CAS  Google Scholar 

  35. Handy, D. E. & Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Perez, S., Talens-Visconti, R., Rius-Perez, S., Finamor, I. & Sastre, J. Redox signaling in the gastrointestinal tract. Free Radic. Biol. Med. 104, 75–103 (2017).

    PubMed  CAS  Google Scholar 

  37. Roediger, W. E. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 2, 712–715 (1980).

    PubMed  CAS  Google Scholar 

  38. Schoultz, I., Soderholm, J. D. & McKay, D. M. Is metabolic stress a common denominator in inflammatory bowel disease? Inflamm. Bowel Dis. 17, 2008–2018 (2011).

    PubMed  Google Scholar 

  39. Rath, E. & Haller, D. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur. J. Nutr. 50, 219–233 (2011).

    PubMed  CAS  Google Scholar 

  40. Salim, S. Y. & Soderholm, J. D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 362–381 (2011).

    PubMed  Google Scholar 

  41. Resta-Lenert, S., Smitham, J. & Barrett, K. E. Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a−/− mice. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G153–G162 (2005).

    PubMed  CAS  Google Scholar 

  42. Nazli, A. et al. Epithelia under metabolic stress perceive commensal bacteria as a threat. Am. J. Pathol. 164, 947–957 (2004).

    PubMed  PubMed Central  Google Scholar 

  43. Lewis, K. et al. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm. Bowel Dis. 16, 1138–1148 (2010).

    PubMed  Google Scholar 

  44. Wang, A. et al. Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am. J. Pathol. 184, 2516–2527 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Schoultz, I. et al. Indomethacin-induced translocation of bacteria across enteric epithelia is reactive oxygen species-dependent and reduced by vitamin C. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G536–G545 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Somasundaram, S. et al. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment. Pharmacol. Ther. 14, 639–650 (2000).

    PubMed  CAS  Google Scholar 

  47. Novak, E. A. & Mollen, K. P. Mitochondrial dysfunction in inflammatory bowel disease. Front. Cell Dev. Biol. 3, 62 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Van Welden, S., Selfridge, A. C. & Hindryckx, P. Intestinal hypoxia and hypoxia-induced signalling as therapeutic targets for IBD. Nat. Rev. Gastroenterol. Hepatol. 14, 596–611 (2017).

    PubMed  Google Scholar 

  49. Giatromanolaki, A. et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J. Clin. Pathol. 56, 209–213 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Hirota, S. A. et al. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139, 259–269.e3 (2010).

    PubMed  CAS  Google Scholar 

  51. Taylor, C. T., Dzus, A. L. & Colgan, S. P. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. Gastroenterology 114, 657–668 (1998).

    PubMed  CAS  Google Scholar 

  52. Synnestvedt, K. et al. Ecto-5ʹ-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Joshi, A. U., Kornfeld, O. S. & Mochly-Rosen, D. The entangled ER-mitochondrial axis as a potential therapeutic strategy in neurodegeneration: a tangled duo unchained. Cell Calcium 60, 218–234 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Naon, D. & Scorrano, L. At the right distance: ER-mitochondria juxtaposition in cell life and death. Biochim. Biophys. Acta 1843, 2184–2194 (2014).

    Google Scholar 

  56. Motori, E. et al. Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. Cell Metab. 18, 844–859 (2013).

    PubMed  CAS  Google Scholar 

  57. Guo, X. et al. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J. Clin. Invest. 123, 5371–5388 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Cao, S. S. et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 144, 989–1000.e6 (2013).

    PubMed  CAS  Google Scholar 

  60. Liu, B. et al. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G573–G584 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Rath, E. et al. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61, 1269–1278 (2012).

    PubMed  CAS  Google Scholar 

  63. Rodriguez-Colman, M. J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).

    PubMed  CAS  Google Scholar 

  64. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Elliott, E. I. & Sutterwala, F. S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol. Rev. 265, 35–52 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Bronner, D. N. et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity 43, 451–462 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota-mitochondria inter-talk: consequence for microbiota-host interaction. Pathog. Dis. 74, ftv096 (2016).

    PubMed  Google Scholar 

  68. Karrasch, T. & Jobin, C. NF-kappaB and the intestine: friend or foe? Inflamm. Bowel Dis. 14, 114–124 (2008).

    PubMed  Google Scholar 

  69. Archer, S. L. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369, 2236–2251 (2013).

    PubMed  CAS  Google Scholar 

  70. Sumida, M. et al. Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J. Am. Soc. Nephrol. 26, 2378–2387 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhao, Y. et al. The Parkinson’s disease-associated gene PINK1 protects neurons from ischemic damage by decreasing mitochondrial translocation of the fission promoter Drp1. J. Neurochem. 127, 711–722 (2013).

    PubMed  CAS  Google Scholar 

  72. Brooks, C., Wei, Q., Cho, S. G. & Dong, Z. Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275–1285 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Gonzalez, A. S. et al. Abnormal mitochondrial fusion-fission balance contributes to the progression of experimental sepsis. Free Radic. Res. 48, 769–783 (2014).

    PubMed  CAS  Google Scholar 

  74. Suzuki, M., Danilchanka, O. & Mekalanos, J. J. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases. Cell Host Microbe 16, 581–591 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Stavru, F., Palmer, A. E., Wang, C., Youle, R. J. & Cossart, P. Atypical mitochondrial fission upon bacterial infection. Proc. Natl Acad. Sci. USA 110, 16003–16008 (2013).

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Torralba, D., Baixauli, F. & Sanchez-Madrid, F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4, 107 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Dockray, G. J. Cholecystokinin and gut-brain signalling. Regul. Pept. 155, 6–10 (2009).

    PubMed  CAS  Google Scholar 

  81. Worthington, J. J., Samuelson, L. C., Grencis, R. K. & McLaughlin, J. T. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion. PLoS Pathog. 9, e1003122 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Procaccini, C. et al. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 66, 120–129 (2017).

    PubMed  CAS  Google Scholar 

  83. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    PubMed  CAS  Google Scholar 

  84. Bohorquez, D. V., Chandra, R., Samsa, L. A., Vigna, S. R. & Liddle, R. A. Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J. Mol. Histol. 42, 3–13 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Bohorquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Bohorquez, D. V. et al. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. PLoS ONE 9, e89881 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Chandra, R., Hiniker, A., Kuo, Y. M., Nussbaum, R. L. & Liddle, R. A. Alpha-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, 92295 (2017).

    PubMed  Google Scholar 

  88. Ford, M. J., Burton, L. J., Morris, R. J. & Hall, S. M. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113, 177–192 (2002).

    PubMed  CAS  Google Scholar 

  89. Marcos, Z., Pffeifer, K., Bodegas, M. E., Sesma, M. P. & Guembe, L. Cellular prion protein is expressed in a subset of neuroendocrine cells of the rat gastrointestinal tract. J. Histochem. Cytochem. 52, 1357–1365 (2004).

    PubMed  CAS  Google Scholar 

  90. Davies, G. A., Bryant, A. R., Reynolds, J. D., Jirik, F. R. & Sharkey, K. A. Prion diseases and the gastrointestinal tract. Can. J. Gastroenterol. 20, 18–24 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    CAS  PubMed  Google Scholar 

  93. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Kashyap, P. C. et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology 144, 967–977 (2013).

    PubMed  Google Scholar 

  95. Hoffman, J. M. et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. Gastroenterology 142, 844–854.e4 (2012).

    PubMed  CAS  Google Scholar 

  96. Spohn, S. N. et al. Protective actions of epithelial 5-hydroxytryptamine 4 receptors in normal and inflamed colon. Gastroenterology 151, 933–944.e3 (2016).

    PubMed  CAS  Google Scholar 

  97. McKay, D. M., Halton, D. W., Johnston, C. F., Fairweather, I. & Shaw, C. Hymenolepis diminuta: changes in intestinal morphology and the enterochromaffin cell population associated with infection in male C57 mice. Parasitology 101, 107–113 (1990).

    PubMed  Google Scholar 

  98. Wang, H. et al. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 56, 949–957 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Manocha, M. et al. IL-13-mediated immunological control of enterochromaffin cell hyperplasia and serotonin production in the gut. Mucosal Immunol. 6, 146–155 (2013).

    PubMed  CAS  Google Scholar 

  100. Shajib, M. S., Baranov, A. & Khan, W. I. Diverse effects of gut-derived serotonin in intestinal inflammation. ACS Chem. Neurosci. 8, 920–931 (2017).

    PubMed  CAS  Google Scholar 

  101. Gershon, M. D. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans. Am. Clin. Climatol. Assoc. 123, 268–280; discussion 280 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Kim, J. J. et al. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation. J. Immunol. 190, 4795–4804 (2013).

    PubMed  CAS  Google Scholar 

  103. Guseva, D. et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm. Bowel Dis. 20, 1516–1529 (2014).

    PubMed  Google Scholar 

  104. Bogunovic, M. et al. Enteroendocrine cells express functional Toll-like receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1770–G1783 (2007).

    PubMed  CAS  Google Scholar 

  105. Palazzo, M. et al. Activation of enteroendocrine cells via TLRs induces hormone, chemokine, and defensin secretion. J. Immunol. 178, 4296–4303 (2007).

    PubMed  CAS  Google Scholar 

  106. Larraufie, P., Dore, J., Lapaque, N. & Blottiere, H. M. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways. Cell. Microbiol. https://doi.org/10.1111/cmi.12648 (2017).

    Article  PubMed  Google Scholar 

  107. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    PubMed  CAS  Google Scholar 

  108. Kidd, M., Gustafsson, B. I., Drozdov, I. & Modlin, I. M. IL1beta- and LPS-induced serotonin secretion is increased in EC cells derived from Crohn’s disease. Neurogastroenterol. Motil. 21, 439–450 (2009).

    PubMed  CAS  Google Scholar 

  109. Viswanathan, V. K. Sensing bacteria, without bitterness? Gut Microbes 4, 91–93 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Latorre, R. et al. Expression of the bitter taste receptor, T2R38, in enteroendocrine cells of the colonic mucosa of overweight/obese versus lean subjects. PLoS ONE 11, e0147468 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Schutz, B. et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6, 87 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Google Scholar 

  113. Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).

    PubMed  CAS  Google Scholar 

  114. Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    PubMed  CAS  Google Scholar 

  117. Qu, D. et al. Ablation of Doublecortin-like kinase 1 in the colonic epithelium exacerbates dextran sulfate sodium-induced colitis. PLoS ONE 10, e0134212 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. Hirota, C. L. & McKay, D. M. M3 muscarinic receptor-deficient mice retain bethanechol-mediated intestinal ion transport and are more sensitive to colitis. Can. J. Physiol. Pharmacol. 84, 1153–1161 (2006).

    PubMed  CAS  Google Scholar 

  119. McLean, L. P. et al. Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of Nippostrongylus brasiliensis through induction of TH2 cytokines. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G130–G141 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Knoop, K. A., McDonald, K. G., McCrate, S., McDole, J. R. & Newberry, R. D. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 8, 198–210 (2015).

    PubMed  CAS  Google Scholar 

  121. Plaisancie, P. et al. Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am. J. Physiol. 275, G1073–G1084 (1998).

    PubMed  CAS  Google Scholar 

  122. Hokari, R. et al. Vasoactive intestinal peptide upregulates MUC2 intestinal mucin via CREB/ATF1. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G949–G959 (2005).

    PubMed  CAS  Google Scholar 

  123. Wu, X. et al. Vasoactive intestinal polypeptide promotes intestinal barrier homeostasis and protection against colitis in mice. PLoS ONE 10, e0125225 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. McKay, D. M., Shute, A. & Lopes, F. Helminths and intestinal barrier function. Tissue Barriers 5, e1283385 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Smyth, D. et al. Interferon-gamma signals via an ERK1/2-ARF6 pathway to promote bacterial internalization by gut epithelia. Cell. Microbiol. 14, 1257–1270 (2012).

    PubMed  CAS  Google Scholar 

  126. Heller, F. et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129, 550–564 (2005).

    PubMed  CAS  Google Scholar 

  127. Martinez, F. O. et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121, e57–e69 (2013).

    PubMed  CAS  Google Scholar 

  128. Mauer, J. et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15, 423–430 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Fernando, M. R., Reyes, J. L., Iannuzzi, J., Leung, G. & McKay, D. M. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS ONE 9, e94188 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Fernando, M. R., Giembycz, M. A. & McKay, D. M. Bidirectional crosstalk via IL-6, PGE2 and PGD2 between murine myofibroblasts and alternatively activated macrophages enhances anti-inflammatory phenotype in both cells. Br. J. Pharmacol. 173, 899–912 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Hunter, M. M. et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice. Gastroenterology 138, 1395–1405 (2010).

    PubMed  CAS  Google Scholar 

  132. Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Leung, G. et al. Cryopreserved IL-4-treated macrophages attenuate murine colitis in an integrin beta7-dependent manner. Mol. Med. 21, 924–936 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Bosurgi, L. et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. Science 356, 1072–1076 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Hammad, H. & Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

    PubMed  CAS  Google Scholar 

  137. Reyes, J. L. et al. IL-22 restrains tapeworm-mediated protection against experimental colitis via regulation of IL-25 expression. PLoS Pathog. 12, e1005481 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Saenz, S. A. et al. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J. Exp. Med. 210, 1823–1837 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    PubMed  CAS  Google Scholar 

  140. Bouchery, T. et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6, 6970 (2015).

    PubMed  CAS  Google Scholar 

  141. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e13 (2016).

    PubMed  CAS  Google Scholar 

  145. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    PubMed  CAS  Google Scholar 

  146. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Fernando, M. R., Saxena, A., Reyes, J. L. & McKay, D. M. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G822–G831 (2016).

    PubMed  Google Scholar 

  148. Ji, J. et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci. Rep. 6, 24838 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Neunlist, M. et al. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 90–100 (2013).

    PubMed  CAS  Google Scholar 

  152. Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Veiga-Fernandes, H. & Mucida, D. Neuro-immune interactions at barrier surfaces. Cell 165, 801–811 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Pothoulakis, C. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. NY Acad. Sci. 915, 347–356 (2000).

    PubMed  CAS  Google Scholar 

  155. Jodal, M. Neuronal influence on intestinal transport. J. Intern. Med. Suppl. 732, 125–132 (1990).

    PubMed  CAS  Google Scholar 

  156. Lundgren, O. & Jodal, M. The enteric nervous system and cholera toxin-induced secretion. Comp. Biochem. Physiol. A Physiol. 118, 319–327 (1997).

    PubMed  CAS  Google Scholar 

  157. Dupont, J. R., Jervis, H. R. & Sprinz, H. Auerbach’s plexus of the rat cecum in relation to the germfree state. J. Comp. Neurol. 125, 11–18 (1965).

    PubMed  CAS  Google Scholar 

  158. Al-Nedawi, K. et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 29, 684–695 (2015).

    PubMed  CAS  Google Scholar 

  159. Kunze, W. A. et al. Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J. Cell. Mol. Med. 13, 2261–2270 (2009).

    PubMed  PubMed Central  Google Scholar 

  160. Mao, Y. K. et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat. Commun. 4, 1465 (2013).

    PubMed  Google Scholar 

  161. McVey Neufeld, K. A., Mao, Y. K., Bienenstock, J., Foster, J. A. & Kunze, W. A. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol. Motil. 25, 183–e188 (2013).

    PubMed  CAS  Google Scholar 

  162. McVey Neufeld, K. A., Perez-Burgos, A., Mao, Y. K., Bienenstock, J. & Kunze, W. A. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol. Motil. 27, 627–636 (2015).

    PubMed  CAS  Google Scholar 

  163. Wang, B. et al. Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol. Motil. 22, 98–107, e133 (2010).

    PubMed  CAS  Google Scholar 

  164. Khoshdel, A. et al. Bifidobacterium longum NCC3001 inhibits AH neuron excitability. Neurogastroenterol. Motil. 25, e478–e484 (2013).

    PubMed  CAS  Google Scholar 

  165. Furness, J. B., Kunze, W. A., Bertrand, P. P., Clerc, N. & Bornstein, J. C. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol. 54, 1–18 (1998).

    PubMed  CAS  Google Scholar 

  166. Kamm, K., Hoppe, S., Breves, G., Schroder, B. & Schemann, M. Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol. Motil. 16, 53–60 (2004).

    PubMed  CAS  Google Scholar 

  167. Anitha, M., Vijay-Kumar, M., Sitaraman, S. V., Gewirtz, A. T. & Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 143, 1006–1016.e4 (2012).

    PubMed  CAS  Google Scholar 

  168. Burgueno, J. F. et al. TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J. Neuroinflammation 13, 187 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Barajon, I. et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J. Histochem. Cytochem. 57, 1013–1023 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Brun, P. et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145, 1323–1333 (2013).

    PubMed  CAS  Google Scholar 

  171. Hamodeh, S. A., Rehn, M., Haschke, G. & Diener, M. Mechanism of butyrate-induced hyperpolarization of cultured rat myenteric neurones. Neurogastroenterol. Motil. 16, 597–604 (2004).

    PubMed  CAS  Google Scholar 

  172. Haschke, G., Schafer, H. & Diener, M. Effect of butyrate on membrane potential, ionic currents and intracellular Ca2+ concentration in cultured rat myenteric neurones. Neurogastroenterol. Motil. 14, 133–142 (2002).

    PubMed  CAS  Google Scholar 

  173. Kaji, I. et al. Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon. J. Physiol. 594, 3339–3352 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  174. Nohr, M. K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells versus FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552–3564 (2013).

    PubMed  Google Scholar 

  175. Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

    PubMed  CAS  Google Scholar 

  176. Bertrand, P. P., Kunze, W. A., Bornstein, J. C., Furness, J. B. & Smith, M. L. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am. J. Physiol. 273, G422–G435 (1997).

    PubMed  CAS  Google Scholar 

  177. di Giancamillo, A., Vitari, F., Bosi, G., Savoini, G. & Domeneghini, C. The chemical code of porcine enteric neurons and the number of enteric glial cells are altered by dietary probiotics. Neurogastroenterol. Motil. 22, e271–e278 (2010).

    PubMed  Google Scholar 

  178. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 9, 625–632 (2012).

    PubMed  CAS  Google Scholar 

  179. Cornet, A. et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn’s disease? Proc. Natl Acad. Sci. USA 98, 13306–13311 (2001).

    PubMed  CAS  PubMed Central  Google Scholar 

  180. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    PubMed  CAS  Google Scholar 

  181. Rao, M. et al. Enteric glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.e7 (2017).

    PubMed  Google Scholar 

  182. Savidge, T. C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132, 1344–1358 (2007).

    PubMed  CAS  Google Scholar 

  183. Abdo, H. et al. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione. FASEB J. 24, 1082–1094 (2010).

    PubMed  CAS  Google Scholar 

  184. Van Landeghem, L. et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G976–G987 (2011).

    PubMed  PubMed Central  Google Scholar 

  185. MacEachern, S. J. et al. Inhibiting inducible nitric oxide synthase in enteric glia restores electrogenic ion transport in mice with colitis. Gastroenterology 149, 445–455.e3 (2015).

    PubMed  CAS  Google Scholar 

  186. Chow, A. K. & Gulbransen, B. D. Potential roles of enteric glia in bridging neuroimmune communication in the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G145–G152 (2017).

    PubMed  Google Scholar 

  187. Hanani, M., Zamir, O. & Baluk, P. Glial cells in the guinea pig myenteric plexus are dye coupled. Brain Res. 497, 245–249 (1989).

    PubMed  CAS  Google Scholar 

  188. Esposito, G. et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation. Gut 63, 1300–1312 (2014).

    PubMed  CAS  Google Scholar 

  189. Turco, F. et al. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells. Gut 63, 105–115 (2014).

    PubMed  CAS  Google Scholar 

  190. Brun, P. et al. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Mol. Cell. Neurosci. 68, 24–35 (2015).

    PubMed  CAS  Google Scholar 

  191. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Kabouridis, P. S. et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85, 289–295 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Kabouridis, P. S. et al. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes 6, 398–403 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Lomax, A. E., Sharkey, K. A. & Furness, J. B. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol. Motil. 22, 7–18 (2010).

    PubMed  CAS  Google Scholar 

  195. Browning, K. N., Verheijden, S. & Boeckxstaens, G. E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152, 730–744 (2017).

    PubMed  Google Scholar 

  196. Reardon, C. Neuro-immune interactions in the cholinergic anti-inflammatory reflex. Immunol. Lett. 178, 92–96 (2016).

    PubMed  CAS  Google Scholar 

  197. Costantini, T. W. et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1308–G1318 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  198. Costantini, T. W. et al. Targeting alpha-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am. J. Pathol. 181, 478–486 (2012).

    PubMed  CAS  Google Scholar 

  199. Langness, S., Coimbra, R., Eliceiri, B. P. & Costantini, T. W. Vagus nerve mediates the neural stem cell response to intestinal injury. J. Am. Coll. Surg. 221, 871–879 (2015).

    PubMed  Google Scholar 

  200. Langness, S., Kojima, M., Coimbra, R., Eliceiri, B. P. & Costantini, T. W. Enteric glia cells are critical to limiting the intestinal inflammatory response after injury. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G274–G282 (2017).

    PubMed  Google Scholar 

  201. Cheadle, G. A., Costantini, T. W., Bansal, V., Eliceiri, B. P. & Coimbra, R. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells. Surg. Infect. (Larchmt) 15, 387–393 (2014).

    Google Scholar 

  202. Linan-Rico, A. et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm. Bowel Dis. 22, 1812–1834 (2016).

    PubMed  Google Scholar 

  203. Macpherson, A. J. & McCoy, K. D. Standardised animal models of host microbial mutualism. Mucosal Immunol. 8, 476–486 (2015).

    PubMed  CAS  Google Scholar 

  204. Luczynski, P. et al. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol. 19, pyw020 (2016).

    PubMed  PubMed Central  Google Scholar 

  205. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    PubMed  CAS  Google Scholar 

  206. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    PubMed  CAS  PubMed Central  Google Scholar 

  207. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    PubMed  CAS  Google Scholar 

  208. Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

    CAS  PubMed  Google Scholar 

  209. Laforest-Lapointe, I. & Arrieta, M. C. Patterns of early-life gut microbial colonization during human immune development: an ecological perspective. Front. Immunol. 8, 788 (2017).

    PubMed  PubMed Central  Google Scholar 

  210. Valcheva, R. et al. Soluble dextrin fibers alter the intestinal microbiota and reduce proinflammatory cytokine secretion in male IL-10-deficient mice. J. Nutr. 145, 2060–2066 (2015).

    PubMed  CAS  Google Scholar 

  211. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  212. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  213. Quintana, F. J. et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    PubMed  CAS  Google Scholar 

  214. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  215. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    PubMed  CAS  Google Scholar 

  216. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    PubMed  CAS  Google Scholar 

  217. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    PubMed  PubMed Central  Google Scholar 

  218. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    PubMed  CAS  Google Scholar 

  219. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  220. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    PubMed  CAS  Google Scholar 

  221. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    PubMed  CAS  Google Scholar 

  222. Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  223. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  224. De Palma, G. et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 6, 7735 (2015).

    PubMed  Google Scholar 

  225. Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl Med. 7, 307ra152 (2015).

    PubMed  Google Scholar 

  226. Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    CAS  PubMed  Google Scholar 

  227. Lecuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    PubMed  CAS  Google Scholar 

  228. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  229. Kumar, P. et al. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity 44, 659–671 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  230. Marshall, J. K. et al. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology 131, 445–450 (2006).

    PubMed  Google Scholar 

  231. Wensaas, K. A. et al. Irritable bowel syndrome and chronic fatigue 3 years after acute giardiasis: historic cohort study. Gut 61, 214–219 (2012).

    PubMed  Google Scholar 

  232. Reti, K. L., Tymensen, L. D., Davis, S. P., Amrein, M. W. & Buret, A. G. Campylobacter jejuni increases flagellar expression and adhesion of noninvasive Escherichia coli: effects on enterocytic Toll-like receptor 4 and CXCL-8 expression. Infect. Immun. 83, 4571–4581 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  233. Sproule-Willoughby, K. M. et al. In vitro anaerobic biofilms of human colonic microbiota. J. Microbiol. Methods 83, 296–301 (2010).

    PubMed  CAS  Google Scholar 

  234. Macfarlane, S., Bahrami, B. & Macfarlane, G. T. Mucosal biofilm communities in the human intestinal tract. Adv. Appl. Microbiol. 75, 111–143 (2011).

    PubMed  CAS  Google Scholar 

  235. Beatty, J. K. et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int. J. Parasitol. 47, 311–326 (2017).

    PubMed  Google Scholar 

  236. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 127, 412–421 (2004).

    PubMed  Google Scholar 

  237. Ellermann, M. et al. Adherent-invasive Escherichia coli production of cellulose influences iron-induced bacterial aggregation, phagocytosis, and induction of colitis. Infect. Immun. 83, 4068–4080 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  238. Tan, J. et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 15, 2809–2824 (2016).

    PubMed  CAS  Google Scholar 

  239. Vieira, A. T. et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J. Leukoc. Biol. 101, 275–284 (2017).

    PubMed  CAS  Google Scholar 

  240. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    PubMed  CAS  Google Scholar 

  241. Miyamoto, J. et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J. Biol. Chem. 290, 2902–2918 (2015).

    PubMed  CAS  Google Scholar 

  242. Shepshelovich, J. et al. Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J. Cell Sci. 118, 1577–1586 (2005).

    PubMed  CAS  Google Scholar 

  243. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  244. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  245. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    PubMed  CAS  Google Scholar 

  246. Whelan, F. J. et al. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS ONE 12, e0172811 (2017).

    PubMed  PubMed Central  Google Scholar 

  247. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

    PubMed  CAS  Google Scholar 

  248. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio 7, e01250–16 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  249. Escalante, N. K. et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J. Exp. Med. 213, 2841–2850 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  250. Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e14 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  251. Ramanan, D. et al. Helminth infection promotes colonization resistance via type 2 immunity. Science 352, 608–612 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  252. Lopes, F. et al. Helminth regulation of immunity: a three-pronged approach to treat colitis. Inflamm. Bowel Dis. 22, 2499–2512 (2016).

    PubMed  Google Scholar 

  253. Zaiss, M. M. et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 43, 998–1010 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  254. Osborne, L. C. et al. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  255. Reese, T. A. et al. Helminth infection reactivates latent gamma-herpesvirus via cytokine competition at a viral promoter. Science 345, 573–577 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  256. Aira, N., Andersson, A. M., Singh, S. K., McKay, D. M. & Blomgran, R. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: direct effect on the innate anti-mycobacterial response. PLoS Negl. Trop. Dis. 11, e0005390 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Kendall, M. M. & Sperandio, V. What a dinner party! Mechanisms and functions of interkingdom signaling in host-pathogen associations. mBio 7, e01748 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  258. Savidge, T. C. Epigenetic regulation of enteric neurotransmission by gut bacteria. Front. Cell. Neurosci. 9, 503 (2015).

    PubMed  Google Scholar 

  259. Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).

    PubMed  PubMed Central  Google Scholar 

  260. Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

    PubMed  PubMed Central  Google Scholar 

  261. Marrie, R. A. et al. Increased incidence of psychiatric disorders in immune-mediated inflammatory disease. J. Psychosom. Res. 101, 17–23 (2017).

    PubMed  Google Scholar 

  262. Nellesen, D. et al. Comorbidities in patients with irritable bowel syndrome with constipation or chronic idiopathic constipation: a review of the literature from the past decade. Postgrad. Med. 125, 40–50 (2013).

    PubMed  Google Scholar 

  263. Ott, C. & Scholmerich, J. Extraintestinal manifestations and complications in IBD. Nat. Rev. Gastroenterol. Hepatol. 10, 585–595 (2013).

    PubMed  CAS  Google Scholar 

  264. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  265. Yamawaki, H. et al. Management of functional dyspepsia: state of the art and emerging therapies. Ther. Adv. Chronic Dis. 9, 23–32 (2018).

    PubMed  CAS  Google Scholar 

  266. Enck, P. et al. Functional dyspepsia. Nat. Rev. Dis. Primers 3, 17081 (2017).

    PubMed  Google Scholar 

  267. Schumann, D. et al. Effect of yoga in the therapy of irritable bowel syndrome: a systematic review. Clin. Gastroenterol. Hepatol. 14, 1720–1731 (2016).

    PubMed  Google Scholar 

  268. Shahabi, L., Naliboff, B. D. & Shapiro, D. Self-regulation evaluation of therapeutic yoga and walking for patients with irritable bowel syndrome: a pilot study. Psychol. Health Med. 21, 176–188 (2016).

    PubMed  Google Scholar 

  269. Drossman, D. A. et al. Neuromodulators for functional gastrointestinal disorders (disorders of gut-brain interaction): A Rome Foundation Working Team report. Gastroenterology 154, 1140–1171.e1 (2018).

    PubMed  Google Scholar 

  270. Jin, H. et al. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 313, G192–G202 (2017).

    PubMed  Google Scholar 

  271. Cheifetz, A. S., Gianotti, R., Luber, R. & Gibson, P. R. Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology 152, 415–429.e15 (2017).

    PubMed  Google Scholar 

  272. Sharma, P., Poojary, G., Dwivedi, S. N. & Deepak, K. K. Effect of yoga-based intervention in patients with inflammatory bowel disease. Int. J. Yoga Therap. 25, 101–112 (2015).

    PubMed  Google Scholar 

  273. Gerbarg, P. L. et al. The effect of breathing, movement, and meditation on psychological and physical symptoms and inflammatory biomarkers in inflammatory bowel disease: a randomized controlled trial. Inflamm. Bowel Dis. 21, 2886–2896 (2015).

    PubMed  Google Scholar 

  274. Berrill, J. W., Sadlier, M., Hood, K. & Green, J. T. Mindfulness-based therapy for inflammatory bowel disease patients with functional abdominal symptoms or high perceived stress levels. J. Crohns Colitis 8, 945–955 (2014).

    PubMed  Google Scholar 

  275. Bilski, J. et al. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacol. Rep. 68, 827–836 (2016).

    PubMed  Google Scholar 

  276. Val-Laillet, D. et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 8, 1–31 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  277. Bernstein, C. N. et al. Cortical mapping of visceral pain in patients with GI disorders using functional magnetic resonance imaging. Am. J. Gastroenterol. 97, 319–327 (2002).

    PubMed  Google Scholar 

  278. Park, B. Y., Hong, J. & Park, H. Neuroimaging biomarkers to associate obesity and negative emotions. Sci. Rep. 7, 7664 (2017).

    PubMed  PubMed Central  Google Scholar 

  279. Lv, K., Fan, Y. H., Xu, L. & Xu, M. S. Brain changes detected by functional magnetic resonance imaging and spectroscopy in patients with Crohn’s disease. World J. Gastroenterol. 23, 3607–3614 (2017).

    PubMed  PubMed Central  Google Scholar 

  280. Agostini, A. et al. Stress and brain functional changes in patients with Crohn’s disease: a functional magnetic resonance imaging study. Neurogastroenterol. Motil. 29, 1–10 (2017).

    PubMed  CAS  Google Scholar 

  281. Jarrett, M. E. et al. Balance of autonomic nervous system predicts who benefits from a self-management intervention program for irritable bowel syndrome. J. Neurogastroenterol. Motil. 22, 102–111 (2016).

    PubMed  PubMed Central  Google Scholar 

  282. Sarli, B. et al. Heart rate recovery is impaired in patients with inflammatory bowel diseases. Med. Princ. Pract. 25, 363–367 (2016).

    PubMed  PubMed Central  Google Scholar 

  283. Bonaz, B., Sinniger, V. & Pellissier, S. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterol. Motil. 28, 455–462 (2016).

    PubMed  CAS  Google Scholar 

  284. Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28, 948–953 (2016).

    PubMed  CAS  Google Scholar 

  285. Bonaz, B., Sinniger, V. & Pellissier, S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med. 282, 46–63 (2017).

    PubMed  CAS  Google Scholar 

  286. Chakravarthy, K., Chaudhry, H., Williams, K. & Christo, P. J. Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19, 54 (2015).

    PubMed  Google Scholar 

  287. Ben-Menachem, E., Revesz, D., Simon, B. J. & Silberstein, S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur. J. Neurol. 22, 1260–1268 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  288. Zhang, X. et al. Vagus nerve stimulation modulates visceral pain-related affective memory. Behav. Brain Res. 236, 8–15 (2013).

    PubMed  Google Scholar 

  289. Aalbers, M. W. et al. The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in children with refractory epilepsy: an exploratory study. Neuroimmunomodulation 19, 352–358 (2012).

    PubMed  CAS  Google Scholar 

  290. Majoie, H. J. et al. Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 18, 52–56 (2011).

    PubMed  CAS  Google Scholar 

  291. De Herdt, V. et al. Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. J. Neuroimmunol. 214, 104–108 (2009).

    PubMed  Google Scholar 

  292. Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    PubMed  CAS  Google Scholar 

  293. Yoshikawa, H. et al. Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin. Exp. Immunol. 146, 116–123 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  294. Sun, P. et al. Involvement of MAPK/NF-kappaB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS ONE 8, e69424 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  295. Meregnani, J. et al. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton. Neurosci. 160, 82–89 (2011).

    PubMed  CAS  Google Scholar 

  296. Inoue, T. et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through alpha7nAChR+ splenocytes. J. Clin. Invest. 126, 1939–1952 (2016).

    PubMed  PubMed Central  Google Scholar 

  297. Matteoli, G. et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63, 938–948 (2014).

    PubMed  CAS  Google Scholar 

  298. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    PubMed  CAS  Google Scholar 

  299. Usichenko, T., Hacker, H. & Lotze, M. Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10, 1042–1044 (2017).

    PubMed  Google Scholar 

  300. Garcia, R. G. et al. Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158, 1461–1472 (2017).

    PubMed  PubMed Central  Google Scholar 

  301. Bauer, S. et al. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9, 356–363 (2016).

    PubMed  CAS  Google Scholar 

  302. Wang, Z., Yu, L., Chen, M., Wang, S. & Jiang, H. Transcutaneous electrical stimulation of auricular branch of vagus nerve: a noninvasive therapeutic approach for post-ischemic heart failure. Int. J. Cardiol. 177, 676–677 (2014).

    PubMed  Google Scholar 

  303. Huang, F. et al. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Altern. Med. 14, 203 (2014).

    PubMed  PubMed Central  Google Scholar 

  304. Kovacic, K. et al. Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol. Hepatol. 2, 727–737 (2017).

    PubMed  Google Scholar 

  305. Barboza, J. L., Okun, M. S. & Moshiree, B. The treatment of gastroparesis, constipation and small intestinal bacterial overgrowth syndrome in patients with Parkinson’s disease. Expert Opin. Pharmacother. 16, 2449–2464 (2015).

    PubMed  CAS  Google Scholar 

  306. Camilleri, M., Kerstens, R., Rykx, A. & Vandeplassche, L. A placebo-controlled trial of prucalopride for severe chronic constipation. N. Engl. J. Med. 358, 2344–2354 (2008).

    PubMed  CAS  Google Scholar 

  307. Shin, A. et al. Systematic review with meta-analysis: highly selective 5-HT4 agonists (prucalopride, velusetrag or naronapride) in chronic constipation. Aliment. Pharmacol. Ther. 39, 239–253 (2014).

    PubMed  CAS  Google Scholar 

  308. Sridharan, K. & Sivaramakrishnan, G. Drugs for treating opioid-induced constipation: a mixed treatment comparison network meta-analysis of randomized controlled clinical trials. J. Pain Symptom Manage. 55, 468–479.e1 (2017).

    PubMed  Google Scholar 

  309. Smart, C. J. & Malik, K. I. Prucalopride for the treatment of ileus. Expert Opin. Investig. Drugs 26, 489–493 (2017).

    PubMed  CAS  Google Scholar 

  310. Gong, J. et al. Randomised clinical trial: prucalopride, a colonic pro-motility agent, reduces the duration of post-operative ileus after elective gastrointestinal surgery. Aliment. Pharmacol. Ther. 43, 778–789 (2016).

    PubMed  CAS  Google Scholar 

  311. Kessing, B. F. et al. Prucalopride decreases esophageal acid exposure and accelerates gastric emptying in healthy subjects. Neurogastroenterol. Motil. 26, 1079–1086 (2014).

    PubMed  CAS  Google Scholar 

  312. Vigone, B. et al. Preliminary safety and efficacy profile of prucalopride in the treatment of systemic sclerosis (SSc)-related intestinal involvement: results from the open label cross-over PROGASS study. Arthritis Res. Ther. 19, 145 (2017).

    PubMed  PubMed Central  Google Scholar 

  313. Bianco, F. et al. Prucalopride exerts neuroprotection in human enteric neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G768–G775 (2016).

    PubMed  PubMed Central  Google Scholar 

  314. Sanger, G. J. & Furness, J. B. Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 38–48 (2016).

    PubMed  CAS  Google Scholar 

  315. Mosinska, P., Zatorski, H., Storr, M. & Fichna, J. Future treatment of constipation-associated disorders: role of Relamorelin and other ghrelin receptor agonists. J. Neurogastroenterol. Motil. 23, 171–179 (2017).

    PubMed  PubMed Central  Google Scholar 

  316. Ai, W. et al. Ghrelin ameliorates atherosclerosis by inhibiting endoplasmic reticulum stress. Fundam. Clin. Pharmacol. 31, 147–154 (2017).

    PubMed  CAS  Google Scholar 

  317. Lilleness, B. M. & Frishman, W. H. Ghrelin and the cardiovascular system. Cardiol. Rev. 24, 288–297 (2016).

    PubMed  Google Scholar 

  318. Chowen, J. A. & Argente, J. Ghrelin: a link between energy homeostasis and the immune system. Endocrinology 158, 2077–2081 (2017).

    PubMed  Google Scholar 

  319. Wang, Q. et al. Ghrelin protects the heart against ischemia/reperfusion injury via inhibition of TLR4/NLRP3 inflammasome pathway. Life Sci. 186, 50–58 (2017).

    PubMed  CAS  Google Scholar 

  320. Van der Ploeg, L. et al. Preclinical gastrointestinal prokinetic efficacy and endocrine effects of the ghrelin mimetic RM-131. Life Sci. 109, 20–29 (2014).

    PubMed  Google Scholar 

  321. Lembo, A. et al. Relamorelin reduces vomiting frequency and severity and accelerates gastric emptying in adults with diabetic gastroparesis. Gastroenterology 151, 87–96.e6 (2016).

    PubMed  CAS  Google Scholar 

  322. Acosta, A. et al. Relamorelin relieves constipation and accelerates colonic transit in a phase 2, placebo-controlled, randomized trial. Clin. Gastroenterol. Hepatol. 13, 2312–2319.e1 (2015).

    PubMed  CAS  Google Scholar 

  323. Parkinson Study Group. A randomized trial of Relamorelin for constipation in Parkinson’s disease (MOVE-PD): trial results and lessons learned. Parkinsonism Relat. Disord. 37, 101–105 (2017).

    Google Scholar 

  324. Acosta, A. et al. Short-term effects of Relamorelin on descending colon motility in chronic constipation: a randomized, controlled trial. Dig. Dis. Sci. 61, 852–860 (2016).

    PubMed  CAS  Google Scholar 

  325. In, J. G. et al. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat. Rev. Gastroenterol. Hepatol. 13, 633–642 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  326. Workman, M. J. et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23, 49–59 (2017).

    PubMed  CAS  Google Scholar 

  327. Gulbransen, B. D. Emerging tools to study enteric neuromuscular function. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G420–G426 (2017).

    PubMed  PubMed Central  Google Scholar 

  328. McClain, J. L., Fried, D. E. & Gulbransen, B. D. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell. Mol. Gastroenterol. Hepatol. 1, 631–645 (2015).

    PubMed  PubMed Central  Google Scholar 

  329. Boesmans, W., Hao, M. M. & Vanden Berghe, P. Optical tools to investigate cellular activity in the intestinal wall. J. Neurogastroenterol. Motil. 21, 337–351 (2015).

    PubMed  PubMed Central  Google Scholar 

  330. Boesmans, W. et al. Imaging neuron-glia interactions in the enteric nervous system. Front. Cell. Neurosci. 7, 183 (2013).

    PubMed  PubMed Central  Google Scholar 

  331. Spohn, S. N. & Mawe, G. M. Non-conventional features of peripheral serotonin signalling — the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412–420 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  332. Muskiet, M. H. A. et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat. Rev. Nephrol. 13, 605–628 (2017).

    PubMed  CAS  Google Scholar 

  333. Cani, P. D. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin. Microbiol. Infect. 18 (Suppl. 4), 50–53 (2012).

    PubMed  CAS  Google Scholar 

  334. Budden, K. F. et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15, 55–63 (2017).

    PubMed  CAS  Google Scholar 

  335. Brandl, K., Kumar, V. & Eckmann, L. Gut-liver axis at the frontier of host-microbial interactions. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G413–G419 (2017).

    PubMed  PubMed Central  Google Scholar 

  336. Chimerel, C., Riccio, C., Murison, K., Gribble, F. M. & Reimann, F. Optogenetic analysis of depolarization dependent glucagon-like peptide-1 release. Endocrinology 158, 3426–3434 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank W. Kunze for valuable comments on the manuscript. K.A.S. holds the Crohn’s and Colitis Canada Chair in Inflammatory Bowel Disease Research. D.M.M. holds a Canada Research Chair (tier 1) in Intestinal Immunophysiology in Health and Disease.

Referee information

Nature Reviews Gastroenterology & Hepatology thanks G. Matteoli and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing and editing of the article.

Corresponding author

Correspondence to Keith A. Sharkey.

Ethics declarations

Competing interests

K.A.S. has received research grant funding from Ironwood, Lallemand Health Solutions, MedImmune and Takeda. D.M.M. and P.L.B. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharkey, K.A., Beck, P.L. & McKay, D.M. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 15, 765–784 (2018). https://doi.org/10.1038/s41575-018-0051-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0051-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing