Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer

Abstract

Overweight and obesity are associated with increased risk of developing metabolic disorders such as diabetes and cardiovascular diseases. However, besides these metabolic diseases, excess body weight is also associated with different cancers, including gastrointestinal cancers, such as liver, pancreatic and colon cancers. Inflammation is a common feature of both obesity and cancer; however, the origin of this inflammation has been largely debated. Over the past decade, growing evidence has shown that the composition of the gut microbiota and its activity might be associated not only with the onset of inflammation but also with metabolic disorders and cancer. Here, we review the links between the gut microbiota, gut barrier function and the onset of low-grade inflammation in the development of gastrointestinal cancer. We also describe the mechanisms by which specific microorganism-associated molecular patterns crosstalk with the immune system and how the metabolic activity of bacteria induces specific signalling pathways beyond the gut that eventually trigger carcinogenesis.

Key points

  • Gut microorganisms produce a myriad of metabolites and factors that affect host metabolism and immunity.

  • Obesity and gastrointestinal cancer are characterized by inflammation and common molecular mechanisms contributing to the onset of these diseases.

  • Specific gut bacteria are undeniably associated with the development of gastrointestinal cancers.

  • Targeting the composition of the intestinal microbiota and eventually the metabolites produced might constitute an interesting strategy to tackle obesity and cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Production of active metabolites by the gut microbial factory.
Fig. 2: Gut barrier dysfunction and low-grade inflammation in obesity and cancer.
Fig. 3: Mechanisms by which obesity-related inflammation and microbial metabolites modulate gastrointestinal cancer.

Similar content being viewed by others

References

  1. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC working group. N. Engl. J. Med. 375, 794–798 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arnold, M. et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 16, 36–46 (2015).

    PubMed  Google Scholar 

  3. Clevers, H. At the crossroads of inflammation and cancer. Cell 118, 671–674 (2004).

    CAS  PubMed  Google Scholar 

  4. Gupta, R. A. & Dubois, R. N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat. Rev. Cancer 1, 11–21 (2001).

    CAS  PubMed  Google Scholar 

  5. Balkwill, F. & Coussens, L. M. Cancer: an inflammatory link. Nature 431, 405–406 (2004).

    CAS  PubMed  Google Scholar 

  6. Pikarsky, E. et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  7. Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  8. Vogtmann, E. & Goedert, J. J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114, 237–242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dzutsev, A., Goldszmid, R. S., Viaud, S., Zitvogel, L. & Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 45, 17–31 (2015).

    CAS  PubMed  Google Scholar 

  10. Erdman, S. E. & Poutahidis, T. The microbiome modulates the tumor macroenvironment. Oncoimmunology 3, e28271 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fulbright, L. E., Ellermann, M. & Arthur, J. C. The microbiome and the hallmarks of cancer. PLoS Pathog. 13, e1006480 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS  PubMed  Google Scholar 

  14. Bindels, L. B., Delzenne, N. M., Cani, P. D. & Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12, 303–310 (2015).

    CAS  PubMed  Google Scholar 

  15. Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

    PubMed  Google Scholar 

  16. Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Hoek, M. & Merks, R. M. H. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst. Biol. 11, 56 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Ze, X., Le Mougen, F., Duncan, S. H., Louis, P. & Flint, H. J. Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4, 236–240 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Louis, P. & Flint, H. J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 19, 29–41 (2017).

    CAS  PubMed  Google Scholar 

  20. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Byndloss, M. X. et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cani, P. D. Gut cell metabolism shapes the microbiome. Science 357, 548–549 (2017).

    CAS  PubMed  Google Scholar 

  23. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    CAS  PubMed  Google Scholar 

  24. Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang, M. J. et al. The effect of gut microbiota on drug metabolism. Expert Opin. Drug Metab. Toxicol. 9, 1295–1308 (2013).

    CAS  PubMed  Google Scholar 

  26. Haiser, H. J. & Turnbaugh, P. J. Is it time for a metagenomic basis of therapeutics? Science 336, 1253–1255 (2012).

    CAS  PubMed  Google Scholar 

  27. Koppel, N., Maini Rekdal, V. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).

    PubMed  Google Scholar 

  28. Qin, Y. & Wade, P. A. Crosstalk between the microbiome and epigenome: messages from bugs. J. Biochem. 163, 105–112 (2018).

    PubMed  Google Scholar 

  29. Cortese, R., Lu, L., Yu, Y., Ruden, D. & Claud, E. C. Epigenome-microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11, 205–215 (2016).

    PubMed  PubMed Central  Google Scholar 

  30. Maudet, C. et al. Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat. Commun. 5, 4718 (2014).

    CAS  PubMed  Google Scholar 

  31. Staedel, C. & Darfeuille, F. MicroRNAs and bacterial infection. Cell. Microbiol. 15, 1496–1507 (2013).

    CAS  PubMed  Google Scholar 

  32. Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170, 548–563.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).

    CAS  PubMed  Google Scholar 

  34. Brooks, L. et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 6, 48–60 (2017).

    CAS  PubMed  Google Scholar 

  35. Cani, P. D. et al. Endocannabinoids - at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    CAS  PubMed  Google Scholar 

  36. Cani, P. D. & Knauf, C. How gut microbes talk to organs: the role of endocrine and nervous routes. Mol. Metab. 5, 743–752 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cani, P. D., Everard, A. & Duparc, T. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13, 935–940 (2013).

    CAS  PubMed  Google Scholar 

  38. Everard, A. & Cani, P. D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 15, 189–196 (2014).

    CAS  PubMed  Google Scholar 

  39. Cani, P. D., Dewever, C. & Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004).

    CAS  PubMed  Google Scholar 

  40. Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes. Res. 13, 1000–1007 (2005).

    CAS  PubMed  Google Scholar 

  41. Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

    CAS  PubMed  Google Scholar 

  42. Cani, P. D. et al. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55, 1484–1490 (2006).

    CAS  PubMed  Google Scholar 

  43. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  44. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    CAS  PubMed  Google Scholar 

  45. Chen, B. D. et al. Effect of the GLP-1 analog exendin-4 and oxaliplatin on intrahepatic cholangiocarcinoma cell line and mouse model. Int. J. Mol. Sci. 14, 24293–24304 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Zhou, M. et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP-PKA-EGFR-STAT3 axis. Oncogene 36, 4135–4149 (2017).

    CAS  PubMed  Google Scholar 

  47. Kosowska, A. et al. Exenatide modulates tumor-endothelial cell interactions in human ovarian cancer cells. Endocr. Connect. 6, 856–865 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fidan-Yaylali, G., Dodurga, Y., Secme, M. & Elmas, L. Antidiabetic exendin-4 activates apoptotic pathway and inhibits growth of breast cancer cells. Tumour Biol. 37, 2647–2653 (2016).

    CAS  PubMed  Google Scholar 

  49. Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan, B. F., Gourgue, F. & Cani, P. D. Adipose tissue metabolism and cancer progression: novel insights from gut microbiota? Curr. Pathobiol. Rep. 5, 315–322 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Deng, T., Lyon, C. J., Bergin, S., Caligiuri, M. A. & Hsueh, W. A. Obesity, inflammation, and cancer. Annu. Rev. Pathol. 11, 421–449 (2016).

    CAS  PubMed  Google Scholar 

  52. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  Google Scholar 

  53. Gomes, J. M., Costa, J. A. & Alfenas, R. C. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 68, 133–144 (2017).

    CAS  PubMed  Google Scholar 

  54. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    CAS  PubMed  Google Scholar 

  55. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11, 183–190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Creely, S. J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    CAS  PubMed  Google Scholar 

  59. Mantovani, A. Molecular pathways linking inflammation and cancer. Curr. Mol. Med. 10, 369–373 (2010).

    CAS  PubMed  Google Scholar 

  60. Neal, M. D. et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006).

    CAS  PubMed  Google Scholar 

  61. Ghoshal, S., Witta, J., Zhong, J., de, V. W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    CAS  PubMed  Google Scholar 

  62. Guerville, M. & Boudry, G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G1–G15 (2016).

    PubMed  Google Scholar 

  63. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Google Scholar 

  64. Amar, J. et al. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 87, 1219–1223 (2008).

    CAS  PubMed  Google Scholar 

  65. Lassenius, M. I. et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 34, 1809–1815 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pussinen, P. J., Havulinna, A. S., Lehto, M., Sundvall, J. & Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 34, 392–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wells, J. M. et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G171–G193 (2017).

    PubMed  Google Scholar 

  68. Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 1, 254–268 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation 133, 2434–2446 (2016).

    CAS  PubMed  Google Scholar 

  71. Chassaing, B., Raja, S. M., Lewis, J. D., Srinivasan, S. & Gewirtz, A. T. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell. Mol. Gastroenterol. Hepatol. 4, 205–221 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. de Vos, W. M. Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology 163, 646–648 (2017).

    PubMed  Google Scholar 

  73. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    CAS  PubMed  Google Scholar 

  74. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

    CAS  PubMed  Google Scholar 

  75. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67, 891–901 (2018).

    PubMed  Google Scholar 

  77. Hanninen, A. et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut https://doi.org/10.1136/gutjnl-2017-314508 (2017).

    PubMed  Google Scholar 

  78. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    CAS  PubMed  Google Scholar 

  79. Bevins, C. L. & Salzman, N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9, 356–368 (2011).

    CAS  PubMed  Google Scholar 

  80. Pott, J. & Hornef, M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 13, 684–698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    CAS  PubMed  Google Scholar 

  82. Everard, A. et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 8, 2116–2130 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Macpherson, A. J., Geuking, M. B., Slack, E., Hapfelmeier, S. & McCoy, K. D. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol. Rev. 245, 132–146 (2012).

    CAS  PubMed  Google Scholar 

  84. Vereecke, L., Beyaert, R. & van Loo, G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol. Med. 17, 584–593 (2011).

    CAS  PubMed  Google Scholar 

  85. Kitazawa, H. et al. Intectin, a novel small intestine-specific glycosylphosphatidylinositol-anchored protein, accelerates apoptosis of intestinal epithelial cells. J. Biol. Chem. 279, 42867–42874 (2004).

    CAS  PubMed  Google Scholar 

  86. Muccioli, G. G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 6, 392 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Moreno-Navarrete, J. M., Sabater, M., Ortega, F., Ricart, W. & Fernandez-Real, J. M. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE 7, e37160 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Casselbrant, A., Elias, E., Fandriks, L. & Wallenius, V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 11, 45–53 (2015).

    PubMed  Google Scholar 

  89. Telle-Hansen, V. H., Christensen, J. J., Ulven, S. M. & Holven, K. B. Does dietary fat affect inflammatory markers in overweight and obese individuals?-a review of randomized controlled trials from 2010 to 2016. Genes Nutr. 12, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Schulz, O. & Pabst, O. Antigen sampling in the small intestine. Trends Immunol. 34, 155–161 (2013).

    CAS  PubMed  Google Scholar 

  91. Luck, H. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21, 527–542 (2015).

    CAS  PubMed  Google Scholar 

  92. Wang, K. & Karin, M. Common flora and intestine: a carcinogenic marriage. Cell Logist. 3, e24975 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. Monteiro-Sepulveda, M. et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 22, 113–124 (2015).

    CAS  PubMed  Google Scholar 

  94. Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Dahal, L. N. The dichotomy of T helper 17 cells in cancer. Nat. Rev. Immunol. 17, 592 (2017).

    CAS  PubMed  Google Scholar 

  96. Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544 (2017).

    CAS  PubMed  Google Scholar 

  97. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  98. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  Google Scholar 

  99. Schetter, A. J., Heegaard, N. H. & Harris, C. C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31, 37–49 (2010).

    CAS  PubMed  Google Scholar 

  100. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nat. Rev. Cancer 3, 276–285 (2003).

    CAS  PubMed  Google Scholar 

  101. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal 20, 1126–1167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Galon, J., Angell, H. K., Bedognetti, D. & Marincola, F. M. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39, 11–26 (2013).

    CAS  PubMed  Google Scholar 

  103. Li, T. T., Ogino, S. & Qian, Z. R. Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J. Gastroenterol. 20, 17699–17708 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Oke, S. & Martin, A. Insights into the role of the intestinal microbiota in colon cancer. Therap. Adv. Gastroenterol. 10, 417–428 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pradere, J. P., Dapito, D. H. & Schwabe, R. F. The Yin and Yang of Toll-like receptors in cancer. Oncogene 33, 3485–3495 (2014).

    CAS  PubMed  Google Scholar 

  106. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, Y. et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33, 1231–1238 (2012).

    CAS  PubMed  Google Scholar 

  108. Pimentel-Nunes, P. et al. Functional polymorphisms of Toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in Europeans. Dig. Liver Dis. 45, 63–69 (2013).

    CAS  PubMed  Google Scholar 

  109. Lu, C. C. et al. Upregulation of TLRs and IL-6 as a marker in human colorectal cancer. Int. J. Mol. Sci. 16, 159–177 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Fukata, M. et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm. Bowel Dis. 17, 1464–1473 (2011).

    PubMed  Google Scholar 

  111. Fukata, M. et al. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm. Bowel Dis. 15, 997–1006 (2009).

    PubMed  Google Scholar 

  112. Fukata, M. & Abreu, M. T. Pathogen recognition receptors, cancer and inflammation in the gut. Curr. Opin. Pharmacol. 9, 680–687 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    CAS  PubMed  Google Scholar 

  114. Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, Y. et al. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APC(Min/+) mice. Oncogene 33, 369–377 (2014).

    PubMed  Google Scholar 

  116. Yu, L. X. et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52, 1322–1333 (2010).

    CAS  PubMed  Google Scholar 

  117. Ochi, A. et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med. 209, 1671–1687 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

    CAS  PubMed  Google Scholar 

  119. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Denou, E. et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ikebe, M. et al. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J. Surg. Oncol. 100, 725–731 (2009).

    CAS  PubMed  Google Scholar 

  123. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    CAS  PubMed  Google Scholar 

  124. Huang, L. C. & Merchea, A. Dysplasia and cancer in inflammatory bowel disease. Surg. Clin. North Am. 97, 627–639 (2017).

    PubMed  Google Scholar 

  125. Li, X. Y. et al. Lipopolysaccharide promotes tumorigenicity of hepatic progenitor cells by promoting proliferation and blocking normal differentiation. Cancer Lett. 386, 35–46 (2017).

    CAS  PubMed  Google Scholar 

  126. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    CAS  PubMed  Google Scholar 

  127. Ogrendik, M. Periodontal pathogens in the etiology of pancreatic cancer. Gastrointest. Tumors 3, 125–127 (2017).

    PubMed  Google Scholar 

  128. Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS ONE 6, e20447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    CAS  PubMed  Google Scholar 

  130. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    CAS  PubMed  Google Scholar 

  131. Andoh, A. et al. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J. Clin. Biochem. Nutr. 59, 65–70 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 65, 1973–1980 (2016).

    CAS  PubMed  Google Scholar 

  136. Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Yamaoka, Y. et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J. Gastroenterol. 53, 517–524 (2018).

    CAS  PubMed  Google Scholar 

  138. Ramos, A. & Hemann, M. T. Drugs, bugs, and cancer: Fusobacterium nucleatum promotes chemoresistance in colorectal cancer. Cell 170, 411–413 (2017).

    CAS  PubMed  Google Scholar 

  139. Yang, Y. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology 152, 851–866.e24 (2017).

    CAS  PubMed  Google Scholar 

  140. Chen, Y. et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 8, 31802–31814 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Yu, L. X. & Schwabe, R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 14, 527–539 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Brahe, L. K., Astrup, A. & Larsen, L. H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14, 950–959 (2013).

    CAS  PubMed  Google Scholar 

  143. Hartstra, A. V., Bouter, K. E., Backhed, F. & Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38, 159–165 (2015).

    CAS  PubMed  Google Scholar 

  144. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  PubMed  Google Scholar 

  145. Ilhan, Z. E. et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 11, 2047–2058 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M. & Comelli, E. M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. O’Keefe, Diet, S. J. microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Jobin, C. GPR109a: the missing link between microbiome and good health? Immunity 40, 8–10 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    CAS  PubMed  Google Scholar 

  152. Bardhan, K. et al. IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer. Cancer Immunol. Res. 3, 795–805 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sivaprakasam, S. et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 5, e238 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Sivaprakasam, S., Prasad, P. D. & Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164, 144–151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Boursi, B., Mamtani, R., Haynes, K. & Yang, Y. X. Recurrent antibiotic exposure may promote cancer formation — another step in understanding the role of the human microbiota? Eur. J. Cancer 51, 2655–2664 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692–00613 (2013).

    PubMed  PubMed Central  Google Scholar 

  157. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847–856 (2011).

    CAS  PubMed  Google Scholar 

  158. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504, 451–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  160. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Zeng, H. & Chi, H. Metabolic control of regulatory T cell development and function. Trends Immunol. 36, 3–12 (2015).

    CAS  PubMed  Google Scholar 

  162. Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rudolph, U. et al. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat. Genet. 10, 143–150 (1995).

    CAS  PubMed  Google Scholar 

  164. Belcheva, A., Irrazabal, T. & Martin, A. Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health? Bioessays 37, 403–412 (2015).

    PubMed  Google Scholar 

  165. Howe, G. R. et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J. Natl Cancer Inst. 84, 1887–1896 (1992).

    CAS  PubMed  Google Scholar 

  166. Chirakkal, H. et al. Upregulation of BAK by butyrate in the colon is associated with increased Sp3 binding. Oncogene 25, 7192–7200 (2006).

    CAS  PubMed  Google Scholar 

  167. Xiao, M., Liu, Y. G., Zou, M. C. & Zou, F. Sodium butyrate induces apoptosis of human colon cancer cells by modulating ERK and sphingosine kinase 2. Biomed. Environ. Sci. 27, 197–203 (2014).

    CAS  PubMed  Google Scholar 

  168. Donohoe, D. R. et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    CAS  PubMed  Google Scholar 

  170. White, D. L., Kanwal, F. & El-Serag, H. B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin. Gastroenterol. Hepatol. 10, 1342–1359.e2 (2012).

    PubMed  PubMed Central  Google Scholar 

  171. Moschen, A. R., Kaser, S. & Tilg, H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol. Metab. 24, 537–545 (2013).

    CAS  PubMed  Google Scholar 

  172. Tilg, H., Cani, P. D. & Mayer, E. A. Gut microbiome and liver diseases. Gut 65, 2035–2044 (2016).

    CAS  PubMed  Google Scholar 

  173. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    PubMed  Google Scholar 

  174. Hsu, D. et al. Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. Lab. Invest. 90, 1295–1305 (2010).

    CAS  PubMed  Google Scholar 

  175. Tomita, K. et al. Epiregulin promotes the emergence and proliferation of adult liver progenitor cells. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G50–57 (2014).

    CAS  PubMed  Google Scholar 

  176. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  PubMed  Google Scholar 

  177. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  178. Kasai, C. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 15, 100 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Loo, T. M. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 7, 522–538 (2017).

    CAS  PubMed  Google Scholar 

  180. Staley, C., Weingarden, A. R., Khoruts, A. & Sadowsky, M. J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 101, 47–64 (2017).

    CAS  PubMed  Google Scholar 

  181. Payne, C. M. et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28, 215–222 (2007).

    CAS  PubMed  Google Scholar 

  182. Takahashi, A. et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/C(Cdh1) in senescent cells. Mol. Cell 45, 123–131 (2012).

    CAS  PubMed  Google Scholar 

  183. Poutahidis, T. et al. Dietary microbes modulate transgenerational cancer risk. Cancer Res. 75, 1197–1204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Nishimura, F. & Murayama, Y. Periodontal inflammation and insulin resistance — lessons from obesity. J. Dent. Res. 80, 1690–1694 (2001).

    CAS  PubMed  Google Scholar 

  185. Genco, R. J., Grossi, S. G., Ho, A., Nishimura, F. & Murayama, Y. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J. Periodontol. 76, 2075–2084 (2005).

    PubMed  Google Scholar 

  186. Chitsazi, M. T., Pourabbas, R., Shirmohammadi, A., Ahmadi Zenouz, G. & Vatankhah, A. H. Association of periodontal diseases with elevation of serum C-reactive protein and body mass index. J. Dent. Res. Dent. Clin. Dent. Prospects 2, 9–14 (2008).

    PubMed  PubMed Central  Google Scholar 

  187. Thanakun, S., Pornprasertsuk-Damrongsri, S. & Izumi, Y. Increased oral inflammation, leukocytes, and leptin, and lower adiponectin in overweight or obesity. Oral Dis. 23, 956–965 (2017).

    CAS  PubMed  Google Scholar 

  188. Dursun, E. et al. Oxidative stress and periodontal disease in obesity. Medicine 95, e3136 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Otomo-Corgel, J., Pucher, J. J., Rethman, M. P. & Reynolds, M. A. State of the science: chronic periodontitis and systemic health. J. Evid. Based Dent. Pract. 12, 20–28 (2012).

    PubMed  Google Scholar 

  190. Hujoel, P. P., Drangsholt, M., Spiekerman, C. & Weiss, N. S. An exploration of the periodontitis-cancer association. Ann. Epidemiol. 13, 312–316 (2003).

    PubMed  Google Scholar 

  191. Stolzenberg-Solomon, R. Z. et al. Tooth loss, pancreatic cancer, and Helicobacter pylori. Am. J. Clin. Nutr. 78, 176–181 (2003).

    CAS  PubMed  Google Scholar 

  192. Ahn, J., Segers, S. & Hayes, R. B. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis 33, 1055–1058 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Michaud, D. S. & Izard, J. Microbiota, oral microbiome, and pancreatic cancer. Cancer J. 20, 203–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Michaud, D. S. et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62, 1764–1770 (2013).

    PubMed  Google Scholar 

  195. Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67, 120–127 (2018).

    CAS  PubMed  Google Scholar 

  196. Mitsuhashi, K. et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 6, 7209–7220 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Li, X., Kolltveit, K. M., Tronstad, L. & Olsen, I. Systemic diseases caused by oral infection. Clin. Microbiol. Rev. 13, 547–558 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Singh, A. et al. The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect. Immun. 79, 4533–4542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Taxman, D. J. et al. Porphyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis. J. Biol. Chem. 287, 32791–32799 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Palm, E., Khalaf, H. & Bengtsson, T. Porphyromonas gingivalis downregulates the immune response of fibroblasts. BMC Microbiol. 13, 155 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Farrell, J. J. et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582–588 (2012).

    CAS  PubMed  Google Scholar 

  202. Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Ren, Z. et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget 8, 95176–95191 (2017).

    PubMed  PubMed Central  Google Scholar 

  204. Greenblum, S., Turnbaugh, P. J. & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl Acad. Sci. USA 109, 594–599 (2012).

    CAS  PubMed  Google Scholar 

  205. Plovier, H. & Cani, P. D. Microbial impact on host metabolism: opportunities for novel treatments of nutritional disorders? Microbiol. Spectr. 5, BAD-0002-2016 (2017).

    Google Scholar 

  206. Wen, L. & Duffy, A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J. Nutr. 147, 1468S–1475S (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Li, S., Bostick, J. W. & Zhou, L. Regulation of innate lymphoid cells by aryl hydrocarbon receptor. Front. Immunol. 8, 1909 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

B.F.J. and P.D.C. are senior research associates at FRS-FNRS (Fonds de la Recherche Scientifique). P.D.C. is a recipient of grants from FNRS (Projet de Recherche, convention: T.0138.14) and Walloon region DG06-FSO project (Microbes 1510053). This work was supported by FRFS-WELBIO (Fund for Strategic Fundamental Research-Walloon Excellence in Life sciences and Biotechnology) grants, WELBIO-CR-2012S-02 R and WELBIO-CR-2017-C02 (continuation grant 2017), and in part by the Fonds Baillet Latour (Grant for Medical Research 2015). P.D.C. is a recipient of Proof of Concept ERC grant 2016 (European Research Council, Microbes4U_713547) and ERC Starting Grant 2013 (Starting grant 336452-ENIGMO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C. is inventor on patent applications dealing with the use of Akkermansia muciniphila and its components in the treatment of obesity and related disorders. P.D.C. is co-founder of A-Mansia biotech SA. B.F.J. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P.D., Jordan, B.F. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 15, 671–682 (2018). https://doi.org/10.1038/s41575-018-0025-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0025-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer