Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut–liver axis and the intersection with the microbiome

A Publisher Correction to this article was published on 21 May 2018

This article has been updated

Abstract

In the past decade, an exciting realization has been that diverse liver diseases — ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma — fall along a spectrum. Work on the biology of the gut–liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut–liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These ‘avatar mice’ could be especially useful for guiding new microbiome-based or microbiome-informed therapies.

Key points

  • The liver and intestine communicate extensively through the biliary tract, portal vein and systemic mediators.

  • Liver products primarily influence the gut microbiota composition and gut barrier integrity, whereas intestinal factors regulate bile acid synthesis, glucose and lipid metabolism in the liver.

  • Diverse liver diseases (including nonalcoholic fatty liver disease and alcoholic liver disease) are not unrelated but converge along a common path of progression; pro-inflammatory changes in the liver and intestine mediate development of fibrosis, cirrhosis and, ultimately, hepatocellular carcinoma.

  • Alcoholic and nonalcoholic fatty liver diseases share key characteristics, such as intestinal dysbiosis, gut permeability and shifts in levels of bile acids, ethanol and choline metabolites.

  • Precise contributions of the microbiome to liver diseases could differ based on aetiology; improvements in experimental design and development of animal models are rapidly elucidating causal mechanisms.

  • Advances in understanding the gut–liver axis could encourage research into microbiome-based, diagnostic, prognostic and therapeutic modalities to improve management of liver diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiological manifestations of liver injury along a spectrum of progression.
Fig. 2: Bidirectional communication between gut and liver.
Fig. 3: Interplay between the liver and gut microbiota in alcoholic liver disease and NAFLD.

Similar content being viewed by others

Change history

  • 21 May 2018

    In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled ‘Translocation’ for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.

References

  1. Schnabl, B. & Brenner, D. A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146, 1513–1524 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hartmann, P., Seebauer, C. T. & Schnabl, B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol. Clin. Exp. Res. 39, 763–775 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64, 1577–1586 (2016).

    Article  PubMed  Google Scholar 

  4. Bertola, A., Mathews, S., Ki, S. H., Wang, H. & Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 8, 627–637 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pelz, S., Stock, P., Brückner, S. & Christ, B. A methionine-choline-deficient diet elicits NASH in the immunodeficient mouse featuring a model for hepatic cell transplantation. Exp. Cell Res. 318, 276–287 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Itagaki, H., Shimizu, K., Morikawa, S., Ogawa, K. & Ezaki, T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int. J. Clin. Exp. Pathol. 6, 2683–2696 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yang, A.-M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017). This is the first study to implicate the mycobiome in ALD.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen, Y.-M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Csak, T. et al. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54, 133–144 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Uesugi, T., Froh, M., Arteel, G. E., Bradford, B. U. & Thurman, R. G. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34, 101–108 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Anand, G., Zarrinpar, A. & Loomba, R. Targeting dysbiosis for the treatment of liver disease. Semin. Liver Dis. 36, 37–47 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. Seki, E. & Schnabl, B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J. Physiol. 590, 447–458 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  15. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Garrett, W. S. Cancer and the microbiota. Science 348, 80–86 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Koppel, N., Maini Rekdal, V. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).

    Article  CAS  Google Scholar 

  18. Tolba, R., Kraus, T., Liedtke, C., Schwarz, M. & Weiskirchen, R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab. Anim. 49, 59–69 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. Stärkel, P. & Schnabl, B. Bidirectional communication between liver and gut during alcoholic liver disease. Semin. Liver Dis. 36, 331–339 (2016).

    Article  PubMed  CAS  Google Scholar 

  20. Chiang, J. Y. L. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Wahlström, A., Sayin, S. I., Marschall, H. U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article  PubMed  Google Scholar 

  23. Zarrinpar, A. & Loomba, R. Review article: The emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 36, 909–921 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Copple, B. L. & Li, T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol. Res. 104, 9–21 (2016).

    Article  PubMed  CAS  Google Scholar 

  25. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Pols, T. W. H., Noriega, L. G., Nomura, M., Auwerx, J. & Schoonjans, K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J. Hepatol. 54, 1263–1272 (2011).

    Article  PubMed  CAS  Google Scholar 

  27. Broeders, E. P. M. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Perino, A. & Schoonjans, K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol. Sci. 36, 847–857 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Schaap, F. G., Trauner, M. & Jansen, P. L. M. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11, 55–67 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Parséus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 66, 429–437 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    Article  PubMed  Google Scholar 

  34. Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mouzaki, M. et al. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE 11, e0151829 (2016).

    Google Scholar 

  36. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    Article  PubMed  CAS  Google Scholar 

  37. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    Article  PubMed  CAS  Google Scholar 

  39. Gallo, R. L. & Hooper, L. V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 12, 503–516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mantis, N. J., Rol, N. & Corthésy, B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. Yaku, K. et al. The enhancement of phase 2 enzyme activities by sodium butyrate in normal intestinal epithelial cells is associated with Nrf2 and p53. Mol. Cell. Biochem. 370, 7–14 (2012).

    Article  PubMed  CAS  Google Scholar 

  43. Wächtershäuser, A. & Stein, J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur. J. Nutr. 39, 164–171 (2000).

    Article  PubMed  Google Scholar 

  44. Ziegler, K., Kerimi, A., Poquet, L. & Williamson, G. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4). Arch. Biochem. Biophys. 599, 3–12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lobos, O., Barrera, A. & Padilla, C. Microorganisms of the intestinal microbiota of oncorhynchus mykiss produce antagonistic substances against bacteria contaminating food and causing disease in humans. Ital. J. Food Saf. 6, 6240 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Walsh, C. J., Guinane, C. M., O’ Toole, P. W. & Cotter, P. D. A Profile Hidden Markov Model to investigate the distribution and frequency of LanB-encoding lantibiotic modification genes in the human oral and gut microbiome. PeerJ 5, e3254 (2017).

    Article  CAS  Google Scholar 

  47. Graham, C. E., Cruz, M. R., Garsin, D. A. & Lorenz, M. C. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc. Natl Acad. Sci. USA 114, 4507–4512 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Leclercq, S. et al. Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain. Behav. Immun. 26, 911–918 (2012). This paper demonstrates the role of inflammation in ALD and reversibility on abstinence in humans.

    Article  PubMed  CAS  Google Scholar 

  49. Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012). This paper shows the role of inflammation in NAFLD and transferability of symptoms by co-housing mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Martinez-Medina, M. et al. Western diet induces dysbiosis with increased E. coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 63, 116–124 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Serino, M. et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang, Y. et al. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol. Med. Rep. 9, 2352–2356 (2014).

    Article  PubMed  CAS  Google Scholar 

  54. Fukui, H., Brauner, B., Bode, J. C. & Bode, C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: reevaluation with an improved chromogenic assay. J. Hepatol. 12, 162–169 (1991).

    Article  PubMed  CAS  Google Scholar 

  55. Schäfer, C., Parlesak, A., Schütt, C., Bode, J. C. & Bode, C. Concentrations of lipopolysaccharide-binding protein, bactericidal/permeability-increasing protein, soluble CD14 and plasma lipids in relation to endotoxaemia in patients with alcoholic liver disease. Alcohol Alcohol. 37, 81–86 (2002).

    Article  PubMed  Google Scholar 

  56. Tulstrup, M. V.-L. et al. Antibiotic treatment affects intestinal permeability and gut microbial composition in wistar rats dependent on antibiotic class. PLoS ONE 10, e0144854 (2015).

    Article  CAS  Google Scholar 

  57. Forbes, J. D., Van Domselaar, G. & Bernstein, C. N. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7, 1081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Grander, C. et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut https://doi.org/10.1136/gutjnl-2016-313432 (2017).

  59. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Nati. Acad. Sci. USA 110, 9066–9071 (2013).

    Article  Google Scholar 

  60. Elamin, E. E., Masclee, A. A., Dekker, J. & Jonkers, D. M. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr. Rev. 71, 483–499 (2013).

    Article  PubMed  Google Scholar 

  61. Filliol, A. et al. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. J. Hepatol. 66, 1205–1213 (2017).

    Article  PubMed  CAS  Google Scholar 

  62. Ni, Y. H., Huo, L. J. & Li, T. T. Effect of interleukin-22 on proliferation and activation of hepatic stellate cells induced by acetaldehyde and related mechanism [Chinese]. Zhonghua Gan Zang Bing Za Zhi 25, 9–14 (2017).

    PubMed  CAS  Google Scholar 

  63. Wu, X., Wang, Y., Wang, S., Xu, R. & Lv, X. Purinergic P2X7 receptor mediates acetaldehyde-induced hepatic stellate cells activation via PKC-dependent GSK3β pathway. Int Immunopharmacol. 43, 164–171 (2017).

    Article  PubMed  CAS  Google Scholar 

  64. López-Lázaro, M. A local mechanism by which alcohol consumption causes cancer. Oral Oncol. 62, 149–152 (2016).

    Article  PubMed  CAS  Google Scholar 

  65. Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013). This study reports elevated ethanol production by gut microbiota in paediatric patients with NASH.

    Article  PubMed  CAS  Google Scholar 

  66. Miele, L. et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49, 1877–1887 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Pascual, S. et al. Intestinal permeability is increased in patients with advanced cirrhosis. Hepatogastroenterology 50, 1482–1486 (2003).

    PubMed  Google Scholar 

  68. Philips, C. A. et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin. Gastroenterol. Hepatol. 15, 600–602 (2017).

    Article  PubMed  Google Scholar 

  69. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  PubMed  CAS  Google Scholar 

  70. Isayama, F. et al. LPS signaling enhances hepatic fibrogenesis caused by experimental cholestasis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1318–G1328 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Gäbele, E. et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 376, 271–276 (2008).

    Article  PubMed  CAS  Google Scholar 

  72. Hartmann, P., Haimerl, M., Mazagova, M., Brenner, D. A. & Schnabl, B. Toll-Like receptor 2-mediated intestinal injury and enteric tumor necrosis factor receptor i contribute to liver fibrosis in mice. Gastroenterology 143, 1330–1340.e1 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lebeaupin, C. et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis. 6, e1879 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zeisel, S. H. & da Costa, K.-A. Choline: an essential nutrient for public health. Nutr. Rev. 67, 615–623 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Han, J. et al. Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model. Obesity 25, 1069–1076 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Muraki, Y., Makita, Y., Yamasaki, M., Amano, Y. & Matsuo, T. Elevation of liver endoplasmic reticulum stress in a modified choline-deficient l -amino acid-defined diet-fed non-alcoholic steatohepatitis mouse model. Biochem. Biophys. Res. Commun. 486, 632–638 (2017).

    Article  PubMed  CAS  Google Scholar 

  77. Rutenburg, A. M. et al. The role of intestinal bacteria in the development of dietary cirrhosis in rats. J. Exp. Med. 106, 1–14 (1957).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mehedint, M. G. & Zeisel, S. H. Choline’s role in maintaining liver function: new evidence for epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 16, 339–345 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Velasquez, M., Ramezani, A., Manal, A. & Raj, D. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins 8, 326 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  80. Del Rio, D. et al. The Gut microbial metabolite trimethylamine-N-oxide is present in human cerebrospinal fluid. Nutrients 9, 1053 (2017).

    Article  PubMed Central  Google Scholar 

  81. Spencer, M. D. et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986 (2011).

    Article  PubMed  CAS  Google Scholar 

  82. Gogiashvili, M. et al. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS 1H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway. Anal. Bioanal. Chem. 409, 1591–1606 (2017).

    Article  PubMed  CAS  Google Scholar 

  83. Sherriff, J. L., O.Sullivan, T. A., Properzi, C., Oddo, J.-L. & Adams, L. A. Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv. Nutr. An. Int. Rev. J. 7, 5–13 (2016).

    Article  CAS  Google Scholar 

  84. Chen, P. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214.e16 (2015).

    Article  PubMed  CAS  Google Scholar 

  85. Cresci, G. A. et al. Prophylactic tributyrin treatment mitigates chronic-binge alcohol-induced intestinal barrier and liver injury. J. Gastroenterol. Hepatol. 32, 1587–1597 (2017). This paper describes an example of microbiome-based therapeutics for liver disease management.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Shi, X. et al. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus gg on alcoholic fatty liver disease in mice. J. Proteome Res. 14, 1174–1182 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Kim, D.-H. et al. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPARα in adipose tissue. Mol. Nutr. Food Res. 61, 1700252 (2017).

    Article  CAS  Google Scholar 

  88. Nanji, A. A., Khettry, U. & Sadrzadeh, S. M. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc. Soc. Exp. Biol. Med. 205, 243–247 (1994).

    Article  PubMed  CAS  Google Scholar 

  89. Forsyth, C. B. et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43, 163–172 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Loguercio, C. et al. Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J. Clin. Gastroenterol. 39, 540–543 (2005).

    Article  PubMed  Google Scholar 

  91. Kirpich, I. A. et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42, 675–682 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Stadlbauer, V. et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J. Hepatol. 48, 945–951 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Chen, R.-C. et al. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol. Lett. 241, 103–110 (2016).

    Article  PubMed  CAS  Google Scholar 

  94. Levitt, M. D. et al. Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism. Am. J. Physiol. 273, G951–G957 (1997).

    PubMed  CAS  Google Scholar 

  95. Norberg, A., Jones, A. W., Hahn, R. G. & Gabrielsson, J. L. Role of variability in explaining ethanol pharmacokinetics. Clin. Pharmacokinet. 42, 1–31 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. Hamarneh, S. R. et al. Intestinal alkaline phosphatase attenuates alcohol-induced hepatosteatosis in mice. Dig. Dis. Sci. 62, 2021–2034 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chen, P. et al. Microbiota protects mice against acute alcohol-induced liver injury. Alcohol. Clin. Exp. Res. 39, 2313–2323 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Ansari, R., Husain, K. & Rizvi, S. Role of transcription factors in steatohepatitis and hypertension after ethanol: the epicenter of metabolism. Biomolecules 6, 29 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  99. Setshedi, M., Wands, J. R. & de la Monte, S. M. Acetaldehyde adducts in alcoholic liver disease. Oxid. Med. Cell. Longev. 3, 178–185 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rao, R. K. Acetaldehyde-induced barrier disruption and paracellular permeability in caco-2 cell monolayer. Methods Mol. Biol. 447, 171–183 (2008).

    Article  PubMed  CAS  Google Scholar 

  101. Mir, H. et al. Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice. Biochim. Biophys. Acta 1860, 765–774 (2016).

    Article  PubMed  CAS  Google Scholar 

  102. Chaudhry, K. K. et al. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J. Nutr. Biochem. 27, 16–26 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Chen, P., Stärkel, P., Turner, J. R., Ho, S. B. & Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 61, 883–894 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Forsyth, C. B., Voigt, R. M., Burgess, H. J., Swanson, G. R. & Keshavarzian, A. Circadian rhythms, alcohol and gut interactions. Alcohol 49, 389–398 (2015).

    Article  PubMed  CAS  Google Scholar 

  105. Yan, A. W. & Schnabl, B. Bacterial translocation and changes in the intestinal microbiome associated with alcoholic liver disease. World J. Hepatol. 4, 110–118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yan, A. W. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105 (2011).

    Article  PubMed  CAS  Google Scholar 

  107. Hartmann, P. et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 58, 108–119 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Park, B., Lee, H.-R. & Lee, Y.-J. Alcoholic liver disease: focus on prodromal gut health. J. Dig. Dis. 17, 493–500 (2016).

    Article  PubMed  Google Scholar 

  109. Wang, H., Lafdil, F., Kong, X. & Gao, B. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. Int. J. Biol. Sci. 7, 536–550 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Mottaran, E. et al. Lipid peroxidation contributes to immune reactions associated with alcoholic liver disease. Free Radic. Biol. Med. 32, 38–45 (2002).

    Article  PubMed  CAS  Google Scholar 

  111. Xie, G. et al. Chronic Ethanol consumption alters mammalian gastrointestinal content metabolites. J. Proteome Res. 12, 3297–3306 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Couch, R. D. et al. Alcohol induced alterations to the human fecal VOC metabolome. PLoS ONE 10, e0119362 (2015).

    Google Scholar 

  113. Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA 111, E4485–E4493 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Arroyo, V. et al. Acute-on-chronic liver failure in cirrhosis. Nat. Rev. Dis. Primers 2, 16041 (2016).

    Article  PubMed  Google Scholar 

  115. Cresci, G. A., Bush, K. & Nagy, L. E. Tributyrin supplementation protects mice from acute ethanol-induced gut injury. Alcohol. Clin. Exp. Res. 38, 1489–1501 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Spengler, E. K. & Loomba, R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin. Proc. 90, 1233–1246 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Loomba, R., Abraham, M. & Unalp, A. Association between diabetes, family history of diabetes and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology 56, 943–951 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Doycheva, I. et al. Non-invasive screening of diabetics in primary care for NAFLD and advanced fibrosis by MRI and MRE. Aliment. Pharmacol. Ther. 43, 83–95 (2016).

    Article  PubMed  CAS  Google Scholar 

  119. Loomba, R. et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149, 1784–1793 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cui, J. et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology 64, 1547–1558 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Caussy, C. et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J. Clin. Invest. 127, 2697–2704 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wieland, A., Frank, D. N., Harnke, B. & Bambha, K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment. Pharmacol. Ther. 42, 1051–1063 (2015).

    Article  PubMed  CAS  Google Scholar 

  124. Kapil, S. et al. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 31, 213–221 (2016).

    Article  PubMed  CAS  Google Scholar 

  125. Boursier, J. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63, 764–775 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bajaj, J. S. et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 62, 1260–1271 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Rahman, K. et al. Loss of Junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151, 733–746.e12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Arendt, B. M. et al. Nonalcoholic fatty liver disease is associated with lower hepatic and erythrocyte ratios of phosphatidylcholine to phosphatidylethanolamine. Appl. Physiol. Nutr. Metab. 38, 334–340 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Rao, R. K., Seth, A. & Sheth, P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G881–G884 (2004).

    Article  PubMed  CAS  Google Scholar 

  130. Ferrier, L. et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am. J. Pathol. 168, 1148–1154 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ferrere, G. et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol. 66, 806–815 (2017). This study shows that FMT could prevent alcohol-induced liver damage.

    Article  PubMed  CAS  Google Scholar 

  132. Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G966–G978 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Tuomisto, S. et al. Changes in gut bacterial populations and their translocation into liver and ascites in alcoholic liver cirrhotics. BMC Gastroenterol. 14, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen, Y. et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 54, 562–572 (2011).

    Article  PubMed  Google Scholar 

  135. Wang, L. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19, 227–239 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Inamine, T. et al. Genetic loss of immunoglobulin A does not influence development of alcoholic steatohepatitis in mice. Alcohol. Clin. Exp. Res. 40, 2604–2613 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Adachi, Y., Bradford, B. U., Gao, W., Bojes, H. K. & Thurman, R. G. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20, 453–460 (1994).

    Article  PubMed  CAS  Google Scholar 

  138. Seo, W. & Jeong, W. Il. Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease? World J. Gastroenterol. 22, 1348–1356 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ju, C. & Mandrekar, P. Macrophages and alcohol-related liver inflammation. Alcohol Res. 37, 251–262 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Tilg, H., Moschen, A. R. & Szabo, G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 64, 955–965 (2016).

    Article  PubMed  CAS  Google Scholar 

  141. Axelson, M., Mörk, B. & Sjövall, J. Ethanol has an acute effect on bile acid biosynthesis in man. FEBS Lett. 281, 155–159 (1991).

    Article  PubMed  CAS  Google Scholar 

  142. Xie, G. et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J. 27, 3583–3593 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wu, W.-B. et al. Excessive bile acid activated NF-kappa B and promoted the development of alcoholic steatohepatitis in farnesoid X receptor deficient mice. Biochimie 115, 86–92 (2015).

    Article  PubMed  CAS  Google Scholar 

  144. Wu, W.-B. et al. Agonist of farnesoid X receptor protects against bile acid induced damage and oxidative stress in mouse placenta — a study on maternal cholestasis model. Placenta 36, 545–551 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Bhat, M. et al. Implication of the intestinal microbiome in complications of cirrhosis. World J. Hepatol. 8, 1128–1136 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. National Institute of Diabetes and Digestive and Kidney Diseases. Cirrhosis. NIDDK https://www.niddk.nih.gov/health-information/liver-disease/cirrhosis (2014).

  147. Mells, G. F. et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 43, 329–332 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Charlton, M. R. et al. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141, 1249–1253 (2011).

    Article  PubMed  Google Scholar 

  149. Yang, J. D. et al. Diabetes mellitus heightens the risk of hepatocellular carcinoma except in patients with hepatitis C cirrhosis. Am. J. Gastroenterol. 111, 1573–1580 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  150. Bajaj, J. S. et al. Gut microbiota alterations can predict hospitalizations in cirrhosis independent of diabetes mellitus. Sci. Rep. 5, 18559 (2016).

    Article  CAS  Google Scholar 

  151. Jun, D. W. et al. Association between small intestinal bacterial overgrowth and peripheral bacterial dna in cirrhotic patients. Dig. Dis. Sci. 55, 1465–1471 (2010).

    Article  PubMed  CAS  Google Scholar 

  152. Yao, J., Chang, L., Yuan, L. & Duan, Z. Nutrition status and small intestinal bacterial overgrowth in patients with virus-related cirrhosis. Asia Pac. J. Clin. Nutr. 25, 283–291 (2016).

    PubMed  Google Scholar 

  153. Chen, Y. et al. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci. Rep. 6, 34055 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Mas, A. et al. Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial. J. Hepatol. 38, 51–58 (2003).

    Article  PubMed  CAS  Google Scholar 

  155. Bajaj, J. S. et al. Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy. Gastroenterology 140, 478–487.e1 (2011).

    Article  PubMed  CAS  Google Scholar 

  156. Vlachogiannakos, J. et al. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J. Gastroenterol. Hepatol. 28, 450–455 (2013).

    Article  PubMed  CAS  Google Scholar 

  157. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  PubMed  CAS  Google Scholar 

  158. Bajaj, J. S. et al. Fungal dysbiosis in cirrhosis. Gut https://doi.org/10.1136/gutjnl-2016-313170 (2017). This article discusses the role of the mycobiome in cirrhosis.

  159. Fouts, D. E., Torralba, M., Nelson, K. E., Brenner, D. A. & Schnabl, B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J. Hepatol. 56, 1283–1292 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013). In this study, deoxycholic acid, a gut-microbiota-derived bile acid, is shown to promote HCC.

    Article  PubMed  CAS  Google Scholar 

  161. Xie, G. et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7, 19355–19366 (2016).

    PubMed  PubMed Central  Google Scholar 

  162. Grat, M. et al. Relevance of pre-transplant α-fetoprotein dynamics in liver transplantation for hepatocellular cancer. Ann. Transplant. 21, 115–124 (2016).

    Article  PubMed  CAS  Google Scholar 

  163. Fox, J. G. et al. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59, 88–97 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rogers, A. B. Distance burning. Gut Microbes 2, 52–57 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Huang, Y. et al. Identification of helicobacter species in human liver samples from patients with primary hepatocellular carcinoma. J. Clin. Pathol. 57, 1273–1277 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Krüttgen, A. et al. Study on the association of helicobacter species with viral hepatitis-induced hepatocellular carcinoma. Gut Microbes 3, 228–233 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ward, J. M. et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J. Natl Cancer Inst. 86, 1222–1227 (1994).

    Article  PubMed  CAS  Google Scholar 

  168. Mima, K. et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 402, 9–15 (2017).

    Article  PubMed  CAS  Google Scholar 

  169. Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. Front. Immunol. 4, 222 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012). This paper demonstrates the role of the gut microbiota in HCC development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Xie, G. et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int. J. Cancer 139, 1764–1775 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  PubMed  CAS  Google Scholar 

  175. Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    Article  PubMed  CAS  Google Scholar 

  176. Li, J. et al. Interleukin 17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. PLoS ONE 6, e21816 (2011).

    Article  CAS  Google Scholar 

  177. Hammerich, L., Heymann, F. & Tacke, F. Role of IL-17 and Th17 Cells in liver diseases. Clin. Dev. Immunol. 2011, 1–12 (2011).

    Article  CAS  Google Scholar 

  178. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article  PubMed  CAS  Google Scholar 

  180. Thiele, M., Wiest, R., Gluud, L. L., Albillos, A. & Krag, A. Can non-selective beta-blockers prevent hepatocellular carcinoma in patients with cirrhosis? Med. Hypotheses 81, 871–874 (2013).

    Article  PubMed  CAS  Google Scholar 

  181. Li, J. et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl Acad. Sci. USA 113, E1306–E1315 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Noguera-Julian, M. et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine 5, 135–146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 749–756 (2016).

    Article  PubMed  CAS  Google Scholar 

  188. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Debelius, J. et al. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 17, 217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. The microbiome quality control project: baseline study design and future directions. Genome Biol. 16, 276 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. van Dongen, J., Slagboom, P. E., Draisma, H. H. M., Martin, N. G. & Boomsma, D. I. The continuing value of twin studies in the omics era. Nat. Rev. Genet. 13, 640–653 (2012).

    Article  PubMed  CAS  Google Scholar 

  193. Smith, M. I. et al. Gut microbes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Sookoian, S. & Pirola, C. J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 23, 1–12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Weingarden, A. et al. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017). This article explains how instability as a community characteristic might be important to understand inflammatory disease.

    Article  PubMed  CAS  Google Scholar 

  198. Piscaglia, F. et al. Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: a multicenter prospective study. Hepatology 63, 827–838 (2016).

    Article  PubMed  Google Scholar 

  199. Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17, 260–273 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Manichanh, C. et al. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 20, 1411–1419 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Kiraly, D. D. et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci. Rep. 6, 35455 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).

    Article  PubMed  CAS  Google Scholar 

  205. Llopis, M. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65, 830–839 (2016).

    Article  PubMed  CAS  Google Scholar 

  206. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  PubMed  CAS  Google Scholar 

  207. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Mattner, J. Impact of microbes on the pathogenesis of primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Int. J. Mol. Sci. 17, 1864 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  209. Verdier, J., Luedde, T. & Sellge, G. Biliary mucosal barrier and microbiome. Viszeralmedizin 31, 156–161 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Miyake, Y. & Yamamoto, K. Role of gut microbiota in liver diseases. Hepatol. Res. 43, 139–146 (2013).

    Article  PubMed  CAS  Google Scholar 

  211. Pflughoeft, K. J. & Versalovic, J. Human microbiome in health and disease. Annu. Rev. Pathol. Mech. Dis. 7, 99–122 (2012).

    Article  CAS  Google Scholar 

  212. Bogdanos, D.-P. et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross-reactive with the major mitochondrial autoepitope and its Lactobacillus mimic. Hepatology 42, 458–465 (2005).

    Article  PubMed  CAS  Google Scholar 

  213. Padgett, K. et al. Phylogenetic and immunological definition of four lipoylated proteins from, implications for primary biliary cirrhosis. J. Autoimmun. 24, 209–219 (2005).

    Article  PubMed  CAS  Google Scholar 

  214. Mohammed, J. P. et al. Identification of Cd101 as a susceptibility gene for Novosphingobium aromaticivorans-induced liver autoimmunity. J. Immunol. 187, 337–349 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Lee, J.-Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Olsson, R. et al. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J. Hepatol. 28, 426–432 (1998).

    Article  PubMed  CAS  Google Scholar 

  217. Pollheimer, M. J., Halilbasic, E., Fickert, P. & Trauner, M. Pathogenesis of primary sclerosing cholangitis. Best Pract. Res. Clin. Gastroenterol. 25, 727–739 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Toyoki, Y. et al. Semiquantitative evaluation of hepatic fibrosis by measuring tissue hydroxyproline. Hepatogastroenterology 45, 2261–2264 (1998).

    PubMed  CAS  Google Scholar 

  219. Karrar, A. et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132, 1504–1514 (2007).

    Article  PubMed  CAS  Google Scholar 

  220. Katt, J. et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58, 1084–1093 (2013).

    Article  PubMed  CAS  Google Scholar 

  221. Loftus, E. V., Sandborn, W. J., Lindor, K. D. & Larusso, N. F. Interactions between chronic liver disease and inflammatory bowel disease. Inflamm. Bowel Dis. 3, 288–302 (1997).

    Article  PubMed  Google Scholar 

  222. Bode, J. C., Bode, C., Heidelbach, R., Dürr, H. K. & Martini, G. A. Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology 31, 30–34 (1984).

    PubMed  CAS  Google Scholar 

  223. Bull-Otterson, L. et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS ONE 8, e53028 (2013).

    Article  CAS  Google Scholar 

  224. Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Raman, M. et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 11, 868–875.e3 (2013).

    Article  PubMed  CAS  Google Scholar 

  226. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Achur, R. N., Freeman, W. M. & Vrana, K. E. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J. Neuroimmune Pharmacol. 5, 83–91 (2010).

    Article  PubMed  Google Scholar 

  229. Luck, H. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21, 527–542 (2015).

    Article  PubMed  CAS  Google Scholar 

  230. Luther, J. et al. Hepatic Injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell. Mol. Gastroenterol. Hepatol. 1, 222–232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).

    Article  PubMed  CAS  Google Scholar 

  232. Bala, S., Marcos, M., Gattu, A., Catalano, D. & Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 9, e96864 (2014).

    Article  Google Scholar 

  233. Bode, C., Kugler, V. & Bode, J. C. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J. Hepatol. 4, 8–14 (1987).

    Article  PubMed  CAS  Google Scholar 

  234. Parlesak, A., Schäfer, C., Schütz, T., Bode, J. C. & Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747 (2000).

    Article  PubMed  CAS  Google Scholar 

  235. Roh, Y. S., Zhang, B., Loomba, R. & Seki, E. TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G30–G41 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Jin, R. et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int. J. Hepatol. 2014, 560620 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Mridha, A. R. et al. TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival. Clin. Sci. 131, 2145–2159 (2017).

    Article  PubMed  CAS  Google Scholar 

  238. Alm, R., Carlson, J. & Eriksson, S. Fasting serum bile acids in liver disease. A comparison with histological features. Scand. J. Gastroenterol. 17, 213–218 (1982).

    Article  PubMed  CAS  Google Scholar 

  239. Ferslew, B. C. et al. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig. Dis. Sci. 60, 3318–3328 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Fernando, H., Bhopale, K. K., Kondraganti, S., Kaphalia, B. S. & Shakeel Ansari, G. A. Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol. Appl. Pharmacol. 255, 127–137 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Fernando, H. et al. 1H and 31P NMR lipidome of ethanol-induced fatty liver. Alcohol. Clin. Exp. Res. 34, 1937–1947 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Dumas, M.-E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA 103, 12511–12516 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Liu, J., Han, L., Zhu, L. & Yu, Y. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids Health Dis. 15, 27 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Volynets, V. et al. Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Dis. Sci. 57, 1932–1941 (2012).

    Article  PubMed  CAS  Google Scholar 

  245. Engstler, A. J. et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease. Gut 65, 1564–1571 (2016).

    Article  PubMed  CAS  Google Scholar 

  246. Nakamura, A. & Terauchi, Y. Lessons from mouse models of high-fat diet-induced NAFLD. Int. J. Mol. Sci. 14, 21240–21257 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Ishioka, M., Miura, K., Minami, S., Shimura, Y. & Ohnishi, H. Altered gut microbiota composition and immune response in experimental steatohepatitis mouse models. Dig. Dis. Sci. 62, 396–406 (2017).

    Article  PubMed  CAS  Google Scholar 

  248. Lieber, C. S. & DeCarli, L. M. The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcohol. Clin. Exp. Res. 6, 523–531 (1982).

    Article  PubMed  CAS  Google Scholar 

  249. Tsukamoto, H., Reidelberger, R. D., French, S. W. & Largman, C. Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am. J. Physiol. 247, R595–R599 (1984).

    PubMed  CAS  Google Scholar 

  250. Ronis, M. J. J. et al. Increased 4-hydroxynonenal protein adducts in male GSTA4-4/PPAR-α double knockout mice enhance injury during early stages of alcoholic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G403–G415 (2015).

    Article  PubMed  CAS  Google Scholar 

  251. Ericsson, A. C. et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS ONE 10, e0116704 (2015).

    Article  CAS  Google Scholar 

  252. Stappenbeck, T. S. & Virgin, H. W. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 534, 191–199 (2016).

    Article  PubMed  CAS  Google Scholar 

  253. Nakagawa, H. et al. Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proc. Natl Acad. Sci. USA 111, 1090–1095 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Etienne-Mesmin, L., Vijay-Kumar, M., Gewirtz, A. T. & Chassaing, B. Hepatocyte Toll-like receptor 5 promotes bacterial clearance and protects mice against high-fat diet-induced liver disease. Cell. Mol. Gastroenterol. Hepatol. 2, 584–604 (2016). This well-designed mouse study shows the importance of both inflammatory and tolerizing bacteria in regulating liver inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Wu, T. et al. Multimodal imaging of a humanized orthotopic model of hepatocellular carcinoma in immunodeficient mice. Sci. Rep. 6, 35230 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. McDonald, T. Kosciółek, Z. Xu and A. Plymoth for their helpful discussions. M.K. is supported by NIH grants R01 AI043477 and R01 CA118165. R.L. is supported in part by grant R01-DK106419-03. Research reported in this publication was supported in part by the National Institute of Environmental Health Sciences of the NIH under award number P42ES010337. B.S. is supported by NIH grants R01 AA020703, U01 AA021856 and U01AA24726 and by award number I01BX002213 from the Biomedical Laboratory Research and Development Service of the VA Office of Research and Development. J.D. is supported by the Robert Wood Johnson Foundation. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.T., J.D., D.A.B., M.K., R.L., B.S. and R.K. researched data for the article. A.T., J.D., D.A.B., M.K., R.L., B.S. and R.K. made substantial contributions to discussion of content. A.T., D.A.B., M.K., R.L., B.S. and R.K. reviewed and edited the manuscript before submission. A.T., J.D. and R.K. wrote the article.

Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Qiita: http://qiita.microbio.me

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Debelius, J., Brenner, D.A. et al. The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15, 397–411 (2018). https://doi.org/10.1038/s41575-018-0011-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0011-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing