Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a common, progressive liver disease that affects up to one-quarter of the adult population worldwide. The clinical and economic burden of NAFLD is mainly due to liver-related morbidity and mortality (nonalcoholic steatohepatitis, cirrhosis or hepatocellular carcinoma) and an increased risk of developing fatal and nonfatal cardiovascular disease, chronic kidney disease and certain types of extrahepatic cancers (for example, colorectal cancer and breast cancer). Additionally, there is now accumulating evidence that NAFLD adversely affects not only the coronary arteries (promoting accelerated coronary atherosclerosis) but also all other anatomical structures of the heart, conferring an increased risk of cardiomyopathy (mainly left ventricular diastolic dysfunction and hypertrophy, leading to the development of congestive heart failure), cardiac valvular calcification (mainly aortic-valve sclerosis), cardiac arrhythmias (mainly atrial fibrillation) and some cardiac conduction defects. This Review focuses on the association between NAFLD and non-ischaemia-related cardiac disease, discusses the putative pathophysiological mechanisms and briefly summarizes current treatment options for NAFLD that might also beneficially affect cardiac disease.

Key points

  • Convincing evidence now substantiates a strong association between the presence and severity of nonalcoholic fatty liver disease (NAFLD) and the risk of cardiomyopathy (mainly left ventricular dysfunction and hypertrophy, possibly leading to heart failure) and arrhythmias (mainly atrial fibrillation).

  • NAFLD exacerbates insulin resistance, predisposes to atherogenic dyslipidaemia and causes the release of pro-inflammatory, profibrogenic and vasoactive mediators that can promote the development of cardiac and arrhythmic complications.

  • An accurate, patient-centred, team-based approach to the management and treatment of individuals with NAFLD, based on a careful evaluation of related cardiometabolic risk factors and monitoring for cardiovascular, cardiac and liver complications, is warranted.

  • Despite the evidence linking NAFLD to these important cardiac and arrhythmic complications, it has not been definitively proved whether a cause–effect association also exists.

  • When treating patients with NAFLD, management should address not only the risk of progressive liver disease but also cardiometabolic risk factors to control cardiovascular disease risk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adverse effects of NAFLD on coronary arteries and other anatomical structures of the heart.
Fig. 2: Role of low-grade systemic inflammation in the development of NAFLD-related cardiomyopathy and cardiac arrhythmias.
Fig. 3: Targeting pathophysiological processes to treat NAFLD.

Similar content being viewed by others

References

  1. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) & European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).

    Google Scholar 

  2. Lonardo, A. et al. Epidemiological modifiers of non-alcoholic fatty liver disease: focus on high-risk groups. Dig. Liver Dis. 47, 997–1006 (2015).

    Article  PubMed  Google Scholar 

  3. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    Article  PubMed  Google Scholar 

  4. Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Targher, G., Day, C. P. & Bonora, E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341–1350 (2010).

    Article  PubMed  CAS  Google Scholar 

  6. Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62, S47–64 (2015).

    Article  PubMed  Google Scholar 

  7. Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).

    Article  PubMed  Google Scholar 

  8. Younossi, Z. M. et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64, 1577–1586 (2016).

    Article  PubMed  Google Scholar 

  9. Perseghin, G. et al. Increased mediastinal fat and impaired left ventricular energy metabolism in young men with newly found fatty liver. Hepatology 47, 51–58 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Rijzewijk, L. J. et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J. Am. Coll. Cardiol. 56, 225–233 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Lautamaki, R. et al. Liver steatosis coexists with myocardial insulin resistance and coronary dysfunction in patients with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 291, E282–E290 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Goland, S. et al. Cardiac abnormalities as a new manifestation of nonalcoholic fatty liver disease: echocardiographic and tissue Doppler imaging assessment. J. Clin. Gastroenterol. 40, 949–955 (2006).

    Article  PubMed  Google Scholar 

  13. Fallo, F. et al. Non-alcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in essential hypertension. Nutr. Metab. Cardiovasc. Dis. 19, 646–653 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Fotbolcu, H. et al. Impairment of the left ventricular systolic and diastolic function in patients with non-alcoholic fatty liver disease. Cardiol. J. 17, 457–463 (2010).

    PubMed  Google Scholar 

  15. Mantovani, A., Zoppini, G., Targher, G., Golia, G. & Bonora, E. Non-alcoholic fatty liver disease is independently associated with left ventricular hypertrophy in hypertensive Type 2 diabetic individuals. J. Endocrinol. Invest. 35, 215–218 (2012).

    Article  PubMed  CAS  Google Scholar 

  16. Bonapace, S. et al. Nonalcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in patients with type 2 diabetes. Diabetes Care 35, 389–395 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hallsworth, K. et al. Cardiac structure and function are altered in adults with non-alcoholic fatty liver disease. J. Hepatol. 58, 757–762 (2013).

    Article  PubMed  Google Scholar 

  18. Kim, N. H. et al. Non-alcoholic fatty liver disease, metabolic syndrome and subclinical cardiovascular changes in the general population. Heart 100, 938–943 (2014).

    Article  PubMed  CAS  Google Scholar 

  19. Karabay, C. Y. et al. Impaired left ventricular mechanics in nonalcoholic fatty liver disease: a speckle-tracking echocardiography study. Eur. J. Gastroenterol. Hepatol. 26, 325–331 (2014).

    Article  PubMed  Google Scholar 

  20. VanWagner, L. B. et al. Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: a population-based study. Hepatology 62, 773–783 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cassidy, S. et al. Cardiac structure and function are altered in type 2 diabetes and non-alcoholic fatty liver disease and associate with glycemic control. Cardiovasc. Diabetol. 14, 23 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kocabay, G. et al. Left atrial deformation parameters in patients with non-alcoholic fatty liver disease: a 2D speckle tracking imaging study. Clin. Sci. 126, 297–304 (2014).

    Article  PubMed  Google Scholar 

  23. Graner, M. et al. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease. Circ. Cardiovasc. Imag. 8, e001979 (2015).

    Article  Google Scholar 

  24. Mantovani, A. et al. Nonalcoholic fatty liver disease is independently associated with early left ventricular diastolic dysfunction in patients with type 2 diabetes. PLoS ONE 10, e0135329 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Petta, S. et al. Epicardial fat, cardiac geometry and cardiac function in patients with non-alcoholic fatty liver disease: association with the severity of liver disease. J. Hepatol. 62, 928–933 (2015).

    Article  PubMed  Google Scholar 

  26. Sunbul, M. et al. Nonalcoholic steatohepatitis score is an independent predictor of right ventricular dysfunction in patients with nonalcoholic fatty liver disease. Cardiovasc. Ther. 33, 294–299 (2015).

    Article  PubMed  Google Scholar 

  27. Psychari, S. N. et al. Epicardial fat in nonalcoholic fatty liver disease: properties and relationships with metabolic factors, cardiac structure, and cardiac function. Angiology 67, 41–48 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Ozveren, O. et al. Doppler tissue evaluation of atrial conduction properties in patients with non-alcoholic fatty-liver disease. Ultrason. Imag. 38, 225–235 (2016).

    Article  Google Scholar 

  29. Widya, R. L. et al. Association between hepatic triglyceride content and left ventricular diastolic function in a population-based cohort: the Netherlands epidemiology of obesity study. Radiology 279, 443–450 (2016).

    Article  PubMed  Google Scholar 

  30. Trovato, F. M. et al. Echocardiography and NAFLD (non-alcoholic fatty liver disease). Int. J. Cardiol. 221, 275–279 (2016).

    Article  PubMed  Google Scholar 

  31. Jung, J. Y. et al. Effect of non-alcoholic fatty liver disease on left ventricular diastolic function and geometry in the Korean general population. Hepatol. Res. 47, 522–532 (2017).

    Article  PubMed  Google Scholar 

  32. Simon, T. G., Bamira, D. G., Chung, R. T., Weiner, R. B. & Corey, K. E. Nonalcoholic steatohepatitis is associated with cardiac remodeling and dysfunction. Obesity 25, 1313–1316 (2017).

    Article  PubMed  Google Scholar 

  33. Lee, Y. H. et al. Association of nonalcoholic steatohepatitis with subclinical myocardial dysfunction in non-cirrhotic patients. J. Hepatol. 68, 764–772 (2018).

    Article  Google Scholar 

  34. Sert, A. et al. Left ventricular function by echocardiography, tissue Doppler imaging, and carotid intima-media thickness in obese adolescents with nonalcoholic fatty liver disease. Am. J. Cardiol. 112, 436–443 (2013).

    Article  PubMed  Google Scholar 

  35. Alp, H. et al. Association between nonalcoholic fatty liver disease and cardiovascular risk in obese children and adolescents. Can. J. Cardiol. 29, 1118–1125 (2013).

    Article  PubMed  Google Scholar 

  36. Singh, G. K. et al. Alterations in ventricular structure and function in obese adolescents with nonalcoholic fatty liver disease. J. Pediatr. 162, 1160–1168.e1 (2013).

    Article  PubMed  Google Scholar 

  37. Pacifico, L. et al. Left ventricular dysfunction in obese children and adolescents with nonalcoholic fatty liver disease. Hepatology 59, 461–470 (2014).

    Article  PubMed  CAS  Google Scholar 

  38. Bonci, E. et al. Association of nonalcoholic fatty liver disease with subclinical cardiovascular changes: a systematic review and meta-analysis. Biomed. Res. Int. 2015, 213737 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dhingra, R. et al. Serum gamma-glutamyl transferase and risk of heart failure in the community. Arterioscler. Thromb. Vasc. Biol. 30, 1855–1860 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wannamethee, S. G., Whincup, P. H., Shaper, A. G., Lennon, L. & Sattar, N. Gamma-glutamyltransferase, hepatic enzymes, and risk of incident heart failure in older men. Arterioscler. Thromb. Vasc. Biol. 32, 830–835 (2012).

    Article  PubMed  CAS  Google Scholar 

  41. Wang, Y. et al. Serum gamma-glutamyltransferase and the risk of heart failure in men and women in Finland. Heart 99, 163–167 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Valbusa, F. et al. Nonalcoholic fatty liver disease is associated with higher 1-year all-cause rehospitalization rates in patients admitted for acute heart failure. Medicine 95, e2760 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Valbusa, F. et al. Nonalcoholic fatty liver disease and increased risk of 1-year all-cause and cardiac hospital readmissions in elderly patients admitted for acute heart failure. PLoS ONE 12, e0173398 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sato, Y. et al. Liver stiffness assessed by Fibrosis-4 index predicts mortality in patients with heart failure. Open Heart 4, e000598 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Otto, C. M. & Prendergast, B. Aortic-valve stenosis — from patients at risk to severe valve obstruction. N. Engl. J. Med. 371, 744–756 (2014).

    Article  PubMed  CAS  Google Scholar 

  46. Volzke, H. et al. Heart valve sclerosis predicts all-cause and cardiovascular mortality. Atherosclerosis 209, 606–610 (2010).

    Article  PubMed  CAS  Google Scholar 

  47. Rossi, A. et al. Aortic and mitral annular calcifications are predictive of all-cause and cardiovascular mortality in patients with type 2 diabetes. Diabetes Care 35, 1781–1786 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. O’Neal, W. T. et al. Mitral annular calcification and incident atrial fibrillation in the Multi-Ethnic Study of Atherosclerosis. Europace 17, 358–363 (2015).

    Article  PubMed  Google Scholar 

  49. Markus, M. R. et al. Hepatic steatosis is associated with aortic valve sclerosis in the general population: the Study of Health in Pomerania (SHIP). Arterioscler. Thromb. Vasc. Biol. 33, 1690–1695 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Bonapace, S. et al. Nonalcoholic fatty liver disease is associated with aortic valve sclerosis in patients with type 2 diabetes mellitus. PLoS ONE 9, e88371 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mantovani, A. et al. Heart valve calcification in patients with type 2 diabetes and nonalcoholic fatty liver disease. Metabolism 64, 879–887 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Newton, J. L. et al. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut 57, 807–813 (2008).

    Article  PubMed  CAS  Google Scholar 

  53. Liu, Y. C. et al. Influence of non-alcoholic fatty liver disease on autonomic changes evaluated by the time domain, frequency domain, and symbolic dynamics of heart rate variability. PLoS ONE 8, e61803 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kumar, M. S. et al. Cardiovascular autonomic dysfunction in patients of nonalcoholic fatty liver disease. Int. J. Hepatol. 2016, 5160754 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ozveren, O. et al. Deterioration of heart rate recovery index in patients with non-alcoholic fatty liver disease (NAFLD). Med. Sci. Monit. 20, 1539–1543 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cho, K. I., Jo, E. A., Cho, S. H. & Kim, B. H. The influence of epicardial fat and nonalcoholic fatty liver disease on heart rate recovery in metabolic syndrome. Metab. Syndr. Relat. Disord. 15, 226–232 (2017).

    Article  PubMed  CAS  Google Scholar 

  57. Targher, G. et al. Non-alcoholic fatty liver disease is associated with an increased prevalence of atrial fibrillation in hospitalized patients with type 2 diabetes. Clin. Sci. 125, 301–309 (2013).

    Article  PubMed  CAS  Google Scholar 

  58. Targher, G. et al. Non-alcoholic fatty liver disease is associated with an increased incidence of atrial fibrillation in patients with type 2 diabetes. PLoS ONE 8, e57183 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sinner, M. F. et al. Relation of circulating liver transaminase concentrations to risk of new-onset atrial fibrillation. Am. J. Cardiol. 111, 219–224 (2013).

    Article  PubMed  CAS  Google Scholar 

  60. Iscen, S. RBBB is associated with an increased risk of NAFLD in young healthy individuals. Int. J. Cardiol. 168, 4056–4057 (2013).

    Article  PubMed  Google Scholar 

  61. Alonso, A. et al. Circulating levels of liver enzymes and incidence of atrial fibrillation: the Atherosclerosis Risk in Communities cohort. Heart 100, 1511–1516 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Targher, G. et al. Association of nonalcoholic fatty liver disease with QTc interval in patients with type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 24, 663–669 (2014).

    Article  PubMed  Google Scholar 

  63. Karajamaki, A. J. et al. Non-alcoholic fatty liver disease as a predictor of atrial fibrillation in middle-aged population (OPERA Study). PLoS ONE 10, e0142937 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Hung, C. S. et al. Nonalcoholic fatty liver disease is associated with QT prolongation in the general population. J. Am. Heart Assoc. 4, e001820 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Markus, M. R. et al. Association between hepatic steatosis and serum liver enzyme levels with atrial fibrillation in the general population: the Study of Health in Pomerania (SHIP). Atherosclerosis 245, 123–131 (2016).

    Article  PubMed  CAS  Google Scholar 

  66. Mantovani, A. et al. Nonalcoholic fatty liver disease is associated with ventricular arrhythmias in patients with type 2 diabetes referred for clinically indicated 24-hour holter monitoring. Diabetes Care 39, 1416–1423 (2016).

    Article  PubMed  CAS  Google Scholar 

  67. Mangi, M. A. et al. Association of non-alcoholic fatty liver disease with conduction defects on electrocardiogram. Cureus 9, e1107 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Karajamaki, A. J. et al. Presence of atrial fibrillation is associated with liver stiffness in an elderly Finnish population. PLoS ONE 12, e0173855 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Long, M. T. et al. Relations of liver fat with prevalent and incident atrial fibrillation in the Framingham Heart Study. J. Am. Heart Assoc. 6, e005227 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Mantovani, A. et al. Nonalcoholic fatty liver disease is associated with an increased risk of heart block in hospitalized patients with type 2 diabetes mellitus. PLoS ONE 12, e0185459 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lip, G. Y., Tse, H. F. & Lane, D. A. Atrial fibrillation. Lancet 379, 648–661 (2012).

    Article  PubMed  Google Scholar 

  72. Wijarnpreecha, K., Boonpheng, B., Thongprayoon, C., Jaruvongvanich, V. & Ungprasert, P. The association between non-alcoholic fatty liver disease and atrial fibrillation: a meta-analysis. Clin. Res. Hepatol. Gastroenterol. 41, 525–532 (2017).

    Article  PubMed  Google Scholar 

  73. Straus, S. M. et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll. Cardiol. 47, 362–367 (2006).

    Article  PubMed  Google Scholar 

  74. Coumbe, A. G. et al. Long-term follow-up of older patients with Mobitz type I second degree atrioventricular block. Heart 99, 334–338 (2013).

    Article  PubMed  Google Scholar 

  75. Kwok, C. S. et al. Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes: a systematic review and meta-analysis. Heart 102, 672–680 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  PubMed  CAS  Google Scholar 

  77. Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    Article  PubMed  CAS  Google Scholar 

  78. Liu, Y. L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Anstee, Q. M. & Day, C. P. The genetics of nonalcoholic fatty liver disease: spotlight on PNPLA3 and TM6SF2. Semin. Liver Dis. 35, 270–290 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Kahali, B. et al. TM6SF2: catch-22 in the fight against nonalcoholic fatty liver disease and cardiovascular disease? Gastroenterology 148, 679–684 (2015).

    Article  PubMed  Google Scholar 

  81. Anstee, Q. M., Seth, D. & Day, C. P. Genetic factors that affect risk of alcoholic and nonalcoholic fatty liver disease. Gastroenterology 150, 1728–1744.e7 (2016).

    Article  PubMed  Google Scholar 

  82. Tilg, H., Moschen, A. R. & Szabo, G. Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 64, 955–965 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11, 183–190 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Arkan, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  PubMed  CAS  Google Scholar 

  85. Kiechl, S. et al. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat. Med. 19, 358–363 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Mohamed-Ali, V. et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).

    PubMed  CAS  Google Scholar 

  87. Moschen, A. R. et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut 59, 1259–1264 (2010).

    Article  PubMed  CAS  Google Scholar 

  88. Byrne, C. D. & Targher, G. Ectopic fat, insulin resistance, and nonalcoholic fatty liver disease: implications for cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 34, 1155–1161 (2014).

    Article  PubMed  CAS  Google Scholar 

  89. Katsiki, N., Athyros, V. G. & Mikhailidis, D. P. Abnormal peri-organ or intra-organ fat (APIFat) deposition: an underestimated predictor of vascular risk? Curr. Vasc. Pharmacol. 14, 432–441 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Tilg, H. & Moschen, A. R. Food, immunity, and the microbiome. Gastroenterology 148, 1107–1119 (2015).

    Article  PubMed  Google Scholar 

  92. Calder, P. C. Fatty acids and inflammation: the cutting edge between food and pharma. Eur. J. Pharmacol. 668 (Suppl. 1), S50–S58 (2011).

    Article  PubMed  CAS  Google Scholar 

  93. Pendyala, S., Walker, J. M. & Holt, P. R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 142, 1100–1101.e2 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chen, Y. M. et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci. Rep. 6, 19076 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Moschen, A. R., Kaser, S. & Tilg, H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol. Metab. 24, 537–545 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Shanahan, F., van Sinderen, D., O’Toole, P. W. & Stanton, C. Feeding the microbiota: transducer of nutrient signals for the host. Gut 66, 1709–1717 (2017).

    Article  PubMed  Google Scholar 

  99. Dusi, V., Ghidoni, A., Ravera, A., De Ferrari, G. M. & Calvillo, L. Chemokines and heart disease: a network connecting cardiovascular biology to immune and autonomic nervous systems. Mediators Inflamm. 2016, 5902947 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lazzerini, P. E., Capecchi, P. L. & Laghi-Pasini, F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur. Heart J. 38, 1717–1727 (2017).

    PubMed  Google Scholar 

  101. Yalta, T. & Yalta, K. Systemic inflammation and arrhythmogenesis: a review of mechanistic and clinical perspectives. Angiology 69, 288–296 (2017).

    Article  PubMed  Google Scholar 

  102. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Monnerat, G. et al. Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat. Commun. 7, 13344 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Aschar-Sobbi, R. et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFalpha. Nat. Commun. 6, 6018 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Abramochkin, D. V. et al. TNF-alpha provokes electrical abnormalities in rat atrial myocardium via a NO-dependent mechanism. Pflugers Arch. 465, 1741–1752 (2013).

    Article  PubMed  CAS  Google Scholar 

  107. London, B. et al. Calcium-dependent arrhythmias in transgenic mice with heart failure. Am. J. Physiol. Heart Circ. Physiol. 284, H431–H441 (2003).

    Article  PubMed  CAS  Google Scholar 

  108. Kawada, H. et al. Tumor necrosis factor-alpha downregulates the voltage gated outward K+ current in cultured neonatal rat cardiomyocytes: a possible cause of electrical remodeling in diseased hearts. Circ. J. 70, 605–609 (2006).

    Article  PubMed  CAS  Google Scholar 

  109. Panama, B. K. et al. Nuclear factor kappaB downregulates the transient outward potassium current I(to,f) through control of KChIP2 expression. Circ. Res. 108, 537–543 (2011).

    Article  PubMed  CAS  Google Scholar 

  110. Fu, X. X. et al. Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis. Int. J. Mol. Med. 36, 83–92 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Takahashi, K. et al. High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b. J. Mol. Cell Cardiol. 90, 38–46 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Luo, B. et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE 9, e104771 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Toldo, S. et al. Interleukin-1beta blockade improves left ventricular systolic/diastolic function and restores contractility reserve in severe ischemic cardiomyopathy in the mouse. J. Cardiovasc. Pharmacol. 64, 1–6 (2014).

    Article  PubMed  CAS  Google Scholar 

  114. Van Tassell, B. W., Raleigh, J. M. & Abbate, A. Targeting interleukin-1 in heart failure and inflammatory heart disease. Curr. Heart Fail. Rep. 12, 33–41 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Amdur, R. L. et al. Interleukin-6 is a risk factor for atrial fibrillation in chronic kidney disease: findings from the CRIC study. PLoS ONE 11, e0148189 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wu, N. et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: a meta-analysis. Int. J. Cardiol. 169, 62–72 (2013).

    Article  PubMed  Google Scholar 

  117. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2017).

    Article  PubMed  Google Scholar 

  118. Zhang, H. J. et al. Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease: a randomized clinical trial. JAMA Intern. Med. 176, 1074–1082 (2016).

    Article  PubMed  Google Scholar 

  119. Promrat, K. et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51, 121–129 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378 (2015).

    Article  PubMed  Google Scholar 

  121. Fontana, L., Meyer, T. E., Klein, S. & Holloszy, J. O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl Acad. Sci. USA 101, 6659–6663 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gupta, P. P., Fonarow, G. C. & Horwich, T. B. Obesity and the obesity paradox in heart failure. Can. J. Cardiol. 31, 195–202 (2015).

    Article  PubMed  Google Scholar 

  123. Mantovani, A., Ballestri, S., Lonardo, A. & Targher, G. Cardiovascular disease and myocardial abnormalities in nonalcoholic fatty liver disease. Dig. Dis. Sci. 61, 1246–1267 (2016).

    Article  PubMed  Google Scholar 

  124. Karimian, S., Stein, J., Bauer, B. & Teupe, C. Improvement of impaired diastolic left ventricular function after diet-induced weight reduction in severe obesity. Diabetes Metab. Syndr. Obes. 10, 19–25 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mahajan, R., Lau, D. H. & Sanders, P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc. Med. 25, 119–126 (2015).

    Article  PubMed  CAS  Google Scholar 

  126. Heneghan, H. M., Meron-Eldar, S., Brethauer, S. A., Schauer, P. R. & Young, J. B. Effect of bariatric surgery on cardiovascular risk profile. Am. J. Cardiol. 108, 1499–1507 (2011).

    Article  PubMed  Google Scholar 

  127. Poirier, P. et al. Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation 123, 1683–1701 (2011).

    Article  PubMed  Google Scholar 

  128. de las Fuentes, L. et al. Effect of moderate diet-induced weight loss and weight regain on cardiovascular structure and function. J. Am. Coll. Cardiol. 54, 2376–2381 (2009).

    Article  CAS  Google Scholar 

  129. Lin, J. S. et al. Behavioral counseling to promote a healthy lifestyle in persons with cardiovascular risk factors: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 161, 568–578 (2014).

    Article  PubMed  Google Scholar 

  130. Hallsworth, K. et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin. Sci. 129, 1097–1105 (2015).

    Article  PubMed  CAS  Google Scholar 

  131. Horwich, T. B. et al. The relationship between obesity and mortality in patients with heart failure. J. Am. Coll. Cardiol. 38, 789–795 (2001).

    Article  PubMed  CAS  Google Scholar 

  132. Bozkurt, B. & Deswal, A. Obesity as a prognostic factor in chronic symptomatic heart failure. Am. Heart J. 150, 1233–1239 (2005).

    Article  PubMed  Google Scholar 

  133. Oreopoulos, A. et al. Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J. 156, 13–22 (2008).

    Article  PubMed  Google Scholar 

  134. Frith, J. et al. Potential strategies to improve uptake of exercise interventions in non-alcoholic fatty liver disease. J. Hepatol. 52, 112–116 (2010).

    Article  PubMed  Google Scholar 

  135. Centis, E. et al. Stage of change and motivation to healthier lifestyle in non-alcoholic fatty liver disease. J. Hepatol. 58, 771–777 (2013).

    Article  PubMed  Google Scholar 

  136. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Taylor, F. et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 1, CD004816 (2013).

    Google Scholar 

  138. Keene, D., Price, C., Shun-Shin, M. J. & Francis, D. P. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ 349, g4379 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gudzune, K. A. et al. Effectiveness of combination therapy with statin and another lipid-modifying agent compared with intensified statin monotherapy: a systematic review. Ann. Intern. Med. 160, 468–476 (2014).

    Article  PubMed  Google Scholar 

  140. Dongiovanni, P. et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J. Hepatol. 63, 705–712 (2015).

    Article  PubMed  CAS  Google Scholar 

  141. Lonardo, A. & Loria, P. Potential for statins in the chemoprevention and management of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 27, 1654–1664 (2012).

    Article  PubMed  CAS  Google Scholar 

  142. Rzouq, F. S. et al. Hepatotoxicity fears contribute to underutilization of statin medications by primary care physicians. Am. J. Med. Sci. 340, 89–93 (2010).

    Article  PubMed  Google Scholar 

  143. Bays, H., Cohen, D. E., Chalasani, N., Harrison, S. A. & The National Lipid Association’s Statin Safety Task Force. An assessment by the statin liver safety task force: 2014 update. J. Clin. Lipidol. 8, S47–S57 (2014).

    Article  PubMed  Google Scholar 

  144. Lewis, J. H. Clinical perspective: statins and the liver — harmful or helpful? Dig. Dis. Sci. 57, 1754–1763 (2012).

    Article  PubMed  Google Scholar 

  145. Athyros, V. G. et al. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet 376, 1916–1922 (2010).

    Article  PubMed  CAS  Google Scholar 

  146. Tikkanen, M. J. et al. Effect of intensive lipid lowering with atorvastatin on cardiovascular outcomes in coronary heart disease patients with mild-to-moderate baseline elevations in alanine aminotransferase levels. Int. J. Cardiol. 168, 3846–3852 (2013).

    Article  PubMed  Google Scholar 

  147. Musso, G., Gambino, R., Cassader, M. & Pagano, G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology 52, 79–104 (2010).

    Article  PubMed  CAS  Google Scholar 

  148. Hirose, A. et al. Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 45, 1375–1381 (2007).

    Article  PubMed  CAS  Google Scholar 

  149. Yokohama, S. et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40, 1222–1225 (2004).

    Article  PubMed  CAS  Google Scholar 

  150. Georgescu, E. F., Ionescu, R., Niculescu, M., Mogoanta, L. & Vancica, L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J. Gastroenterol. 15, 942–954 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. McPherson, S. et al. A randomised controlled trial of losartan as an anti-fibrotic agent in non-alcoholic steatohepatitis. PLoS ONE 12, e0175717 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Sanyal, A. J. et al. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147, 377–384.e1 (2014).

    Article  PubMed  CAS  Google Scholar 

  153. Argo, C. K. et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J. Hepatol. 62, 190–197 (2015).

    Article  PubMed  CAS  Google Scholar 

  154. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article  PubMed  CAS  Google Scholar 

  155. Chen, H. P. et al. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut 62, 606–615 (2013).

    Article  PubMed  CAS  Google Scholar 

  156. Zhang, Z. J. et al. Metformin for liver cancer prevention in patients with type 2 diabetes: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 97, 2347–2353 (2012).

    Article  PubMed  CAS  Google Scholar 

  157. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Cusi, K. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med. 165, 305–315 (2016).

    Article  PubMed  Google Scholar 

  159. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  PubMed  CAS  Google Scholar 

  160. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Perazzo, H. & Dufour, J. F. The therapeutic landscape of non-alcoholic steatohepatitis. Liver Int. 37, 634–647 (2017).

    Article  PubMed  CAS  Google Scholar 

  162. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    Article  PubMed  CAS  Google Scholar 

  163. Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159.e5 (2016).

    Article  PubMed  CAS  Google Scholar 

  164. Friedman, S. L. et al. A randomized, placebo-ontrolled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology https://doi.org/10.1002/hep.29477 (2018).

  165. Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.M.A. is supported by the EPoS (Elucidating Pathways of Steatohepatitis) consortium funded by the Horizon 2020 Framework Programme of the European Union under grant agreement 634413, the UK Medical Research Council and the UK National Institute for Health Research Newcastle Biomedical Research Centre. H.T. is supported by the excellence initiative (Competence Centres for Excellent Technologies — COMET) of the Austrian Research Promotion Agency FFG: Research Centre of Excellence in Vascular Ageing Tyrol, VASCage (K-Project number 843536) funded by the BMVIT (Austrian Ministry for Transport, Innovation and Technology), the BMWFW (Federal Ministry of Science, Research and Economy), the Wirtschaftsagentur Wien and the Standortagentur Tirol. G.T. is supported in part by grants from the University School of Medicine of Verona (Italy).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before its submission.

Corresponding author

Correspondence to Giovanni Targher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anstee, Q.M., Mantovani, A., Tilg, H. et al. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 15, 425–439 (2018). https://doi.org/10.1038/s41575-018-0010-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0010-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing