Review Article | Published:

Systems biology in hepatology: approaches and applications

Nature Reviews Gastroenterology & Hepatologyvolume 15pages365377 (2018) | Download Citation


Detailed insights into the biological functions of the liver and an understanding of its crosstalk with other human tissues and the gut microbiota can be used to develop novel strategies for the prevention and treatment of liver-associated diseases, including fatty liver disease, cirrhosis, hepatocellular carcinoma and type 2 diabetes mellitus. Biological network models, including metabolic, transcriptional regulatory, protein–protein interaction, signalling and co-expression networks, can provide a scaffold for studying the biological pathways operating in the liver in connection with disease development in a systematic manner. Here, we review studies in which biological network models were used to integrate multiomics data to advance our understanding of the pathophysiological responses of complex liver diseases. We also discuss how this mechanistic approach can contribute to the discovery of potential biomarkers and novel drug targets, which might lead to the design of targeted and improved treatment strategies. Finally, we present a roadmap for the successful integration of models of the liver and other human tissues with the gut microbiota to simulate whole-body metabolic functions in health and disease.

Key points

  • Detailed characterization of human liver tissue and gut microbiota is enabled by omics technologies.

  • Biological network models are functional tools for the exploration and integration of multiomics data.

  • Systems biology uses a holistic and integrative approach for comprehensive analysis of the biological functions in healthy and diseased states.

  • Systems biology approaches have been successfully employed in gastroenterology and hepatology to identify biomarkers and drug targets.

  • These integrative tools can be used for simulation of liver tissue functions and crosstalk of liver with other tissues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

TCSBN: a database of tissue and cancer-specific biological networks:


  1. 1.

    Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

  2. 2.

    Kampf, C. et al. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. FASEB J. 28, 2901–2914 (2014).

  3. 3.

    Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

  4. 4.

    Lonardo, A., Ballestri, S., Marchesini, G., Angulo, P. & Loria, P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig. Liver Dis. 47, 181–190 (2015).

  5. 5.

    Videla, L. A., Rodrigo, R., Araya, J. & Poniachik, J. Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease. Trends Mol. Med. 12, 555–558 (2006).

  6. 6.

    Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014).

  7. 7.

    Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

  8. 8.

    Paschos, P. & Paletas, K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 13, 9–19 (2009).

  9. 9.

    Dyson, J. K., Anstee, Q. M. & McPherson, S. Non-alcoholic fatty liver disease: a practical approach to treatment. Frontline Gastroenterol. 5, 277–286 (2014).

  10. 10.

    Charlton, M. Nonalcoholic fatty liver disease: a review of current understanding and future impact. Clin. Gastroenterol. Hepatol. 2, 1048–1058 (2004).

  11. 11.

    Bosley, J. et al. Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discov. Today 22, 1532–1538 (2017).

  12. 12.

    Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B. & Workman, P. Personalized cancer medicine: molecular diagnostics, predictive biomarkers, and drug resistance. Clin. Pharmacol. Ther. 93, 252–259 (2013).

  13. 13.

    Auffray, C., Chen, Z. & Hood, L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 1, 2 (2009).

  14. 14.

    Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579 (2017).

  15. 15.

    Mardinoglu, A. & Nielsen, J. Editorial: the impact of systems medicine on human health and disease. Front. Physiol. 7, 552 (2016).

  16. 16.

    Gebhardt, R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther. 53, 275–354 (1992).

  17. 17.

    Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017).

  18. 18.

    Gebhardt, R. & Matz-Soja, M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J. Gastroenterol. 20, 8491–8504 (2014).

  19. 19.

    Uhlen, M. et al. Towards a knowledge-based human protein atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

  20. 20.

    Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

  21. 21.

    Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014).

  22. 22.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

  23. 23.

    Mann, M. & Jensen, O. N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003).

  24. 24.

    Beck, H. C. et al. Quantitative proteomic analysis of post-translational modifications of human histones. Mol. Cell. Proteomics 5, 1314–1325 (2006).

  25. 25.

    GTEx. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  26. 26.

    Yu, N. Y. et al. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res. 43, 6787–6798 (2015).

  27. 27.

    Uhlen, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).

  28. 28.

    Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

  29. 29.

    Chen, Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol. Metab. 5, 164–170 (2016).

  30. 30.

    Chen, Y., Huang, H., Xu, C., Yu, C. & Li, Y. Long non-coding RNA profiling in a non-alcoholic fatty liver disease rodent model: new insight into pathogenesis. Int. J. Mol. Sci. 18, 21 (2017).

  31. 31.

    Afonso, M. B., Rodrigues, P. M., Simao, A. L. & Castro, R. E. Circulating microRNAs as potential biomarkers in non-alcoholic fatty liver disease and hepatocellular carcinoma. J. Clin. Med. 5, 30 (2016).

  32. 32.

    Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017).

  33. 33.

    Holmes, E., Wijeyesekera, A., Taylor-Robinson, S. D. & Nicholson, J. K. The promise of metabolic phenotyping in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 458–471 (2015).

  34. 34.

    Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

  35. 35.

    Wurtz, P. et al. Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61, 1372–1380 (2012).

  36. 36.

    Lee, S. et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 24, 172–184 (2016).

  37. 37.

    Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

  38. 38.

    Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).

  39. 39.

    Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207–214 (2010).

  40. 40.

    Magnusson, M. et al. A diabetes-predictive amino acid score and future cardiovascular disease. Eur. Heart J. 34, 1982–1989 (2013).

  41. 41.

    Kalhan, S. C. et al. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 60, 404–413 (2011).

  42. 42.

    Tan, Y. et al. Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Mol. Cell. Proteomics 11, M111.010694 (2012).

  43. 43.

    Ganti, S. & Weiss, R. H. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol. Oncol. 29, 551–557 (2011).

  44. 44.

    McDunn, J. E. et al. Metabolomic signatures of aggressive prostate cancer. Prostate 73, 1547–1560 (2013).

  45. 45.

    Zeng, J. et al. Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J. Proteome Res. 13, 3420–3431 (2014).

  46. 46.

    Dumas, M. E., Kinross, J. & Nicholson, J. K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146, 46–62 (2014).

  47. 47.

    Sookoian, S. et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 103, 422–434 (2016).

  48. 48.

    Sookoian, S. & Pirola, C. J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol. 18, 3775–3781 (2012).

  49. 49.

    Sookoian, S. & Pirola, C. J. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J. Gastroenterol. 21, 711–725 (2015).

  50. 50.

    Cheng, S. et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125, 2222–2231 (2012).

  51. 51.

    Krumsiek, J. et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLOS Genet. 8, e1003005 (2012).

  52. 52.

    Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis. PLOS Med. 13, e1002179 (2016).

  53. 53.

    Taskinen, M. R. & Boren, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 239, 483–495 (2015).

  54. 54.

    Bjornson, E., Adiels, M., Taskinen, M. R. & Boren, J. Kinetics of plasma triglycerides in abdominal obesity. Curr. Opin. Lipidol 28, 11–18 (2017).

  55. 55.

    Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

  56. 56.

    Kawano, Y. & Cohen, D. E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48, 434–441 (2013).

  57. 57.

    Dentin, R., Girard, J. & Postic, C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81–86 (2005).

  58. 58.

    Williams, K. J. & Wu, X. Imbalanced insulin action in chronic over nutrition: clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 247, 225–282 (2016).

  59. 59.

    Adiels, M., Mardinoglu, A., Taskinen, M. R. & Boren, J. Kinetic studies to elucidate impaired metabolism of triglyceride-rich lipoproteins in humans. Front. Physiol. 6, 342 (2015).

  60. 60.

    Boren, J., Taskinen, M. R. & Adiels, M. Kinetic studies to investigate lipoprotein metabolism. J. Intern. Med. 271, 166–173 (2012).

  61. 61.

    Mardinoglu, A. et al. Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017).

  62. 62.

    Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

  63. 63.

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

  64. 64.

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

  65. 65.

    Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

  66. 66.

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

  67. 67.

    Qin, J. J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

  68. 68.

    Mardinoglu, A., Boren, J. & Smith, U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab. 23, 10–12 (2016).

  69. 69.

    Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

  70. 70.

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

  71. 71.

    Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

  72. 72.

    Arora, T. & Backhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. J. Intern. Med. 280, 339–349 (2016).

  73. 73.

    Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012).

  74. 74.

    Van Regenmortel, M. H. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 5, 1016–1020 (2004).

  75. 75.

    Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

  76. 76.

    Scannell, J. W. & Bosley, J. When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLOS ONE 11, e0147215 (2016).

  77. 77.

    Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).

  78. 78.

    Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 (2014).

  79. 79.

    Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism — a systems biology approach. Biotechnol. J. 8, 985–996 (2013).

  80. 80.

    Shoaie, S. & Nielsen, J. Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front. Genet. 5, 86 (2014).

  81. 81.

    Oberhardt, M. A., Yizhak, K. & Ruppin, E. Metabolically re-modeling the drug pipeline. Curr. Opin. Pharmacol. 13, 778–785 (2013).

  82. 82.

    Mardinoglu, A. & Nielsen, J. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34, 91–97 (2015).

  83. 83.

    O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).

  84. 84.

    Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744 (2014).

  85. 85.

    Yizhak, K. et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3, e03641 (2014).

  86. 86.

    Yizhak, K., Gabay, O., Cohen, H. & Ruppin, E. Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat. Commun. 4, 2632 (2013).

  87. 87.

    Zhang, C., Ji, B., Mardinoglu, A., Nielsen, J. & Hua, Q. Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics 31, 2324–2331 (2015).

  88. 88.

    Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

  89. 89.

    Björnson, E. et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 13, 2014–2026 (2015).

  90. 90.

    Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).

  91. 91.

    Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

  92. 92.

    Ma, H. et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).

  93. 93.

    Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLOS Comput. Biol. 8, e1002518 (2012).

  94. 94.

    Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).

  95. 95.

    Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).

  96. 96.

    Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).

  97. 97.

    Yizhak, K., Chaneton, B., Gottlieb, E. & Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817 (2015).

  98. 98.

    Bordbar, A. et al. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst. Biol. 5, 180 (2011).

  99. 99.

    Wang, Y. L., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 153 (2012).

  100. 100.

    Nam, H. et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLOS Comput. Biol. 10, e1003837 (2014).

  101. 101.

    Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLOS Comput. Biol. 10, e1003424 (2014).

  102. 102.

    Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

  103. 103.

    Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

  104. 104.

    Pechenick, D. A., Payne, J. L. & Moore, J. H. Phenotypic robustness and the assortativity signature of human transcription factor networks. PLOS Comput. Biol. 10, e1003780 (2014).

  105. 105.

    Xu, H., Ang, Y. S., Sevilla, A., Lemischka, I. R. & Ma’ayan, A. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLOS Comput. Biol. 10, e1003777 (2014).

  106. 106.

    Bossi, A. & Lehner, B. Tissue specificity and the human protein interaction network. Mol. Syst. Biol. 5, 260 (2009).

  107. 107.

    De Las Rivas, J. & Fontanillo, C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLOS Comput. Biol. 6, e1000807 (2010).

  108. 108.

    Szklarczyk, D. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

  109. 109.

    Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 43, D470–D478 (2015).

  110. 110.

    Goel, R., Harsha, H. C., Pandey, A. & Prasad, T. S. Human Protein Reference Database and Human Proteinpedia as resources for phosphoproteome analysis. Mol. Biosyst. 8, 453–463 (2012).

  111. 111.

    Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004).

  112. 112.

    Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

  113. 113.

    Safari-Alighiarloo, N., Taghizadeh, M., Rezaei-Tavirani, M., Goliaei, B. & Peyvandi, A. A. Protein-protein interaction networks (PPI) and complex diseases. Gastroenterol. Hepatol. Bed Bench 7, 17–31 (2014).

  114. 114.

    Helikar, T., Konvalina, J., Heidel, J. & Rogers, J. A. Emergent decision-making in biological signal transduction networks. Proc. Natl Acad. Sci. USA 105, 1913–1918 (2008).

  115. 115.

    Cui, Q. et al. A map of human cancer signaling. Mol. Syst. Biol. 3, 152 (2007).

  116. 116.

    Kim, J. et al. Robustness and evolvability of the human signaling network. PLOS Comput. Biol. 10, e1003763 (2014).

  117. 117.

    Lee, S., Mardinoglu, A., Lee, D. & Nielsen, J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 44, 5529–5539 (2016).

  118. 118.

    Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).

  119. 119.

    Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).

  120. 120.

    Sookoian, S. & Pirola, C. J. NAFLD: metabolic make-up of NASH: from fat and sugar to amino acids. Nat. Rev. Gastroenterol. Hepatol. 11, 205–207 (2014).

  121. 121.

    Hyötyläinen, T. et al. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat. Commun. 7, 8994 (2016).

  122. 122.

    Ghaffari, P., Mardinoglu, A. & Nielsen, J. Cancer metabolism: a modeling perspective. Front. Physiol. 6, 382 (2015).

  123. 123.

    Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).

  124. 124.

    Pinyol, R. & Llovet, J. M. Hepatocellular carcinoma: genome-scale metabolic models for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 11, 336–337 (2014).

  125. 125.

    Ghaffari, P. et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5, 8183 (2015).

  126. 126.

    Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).

  127. 127.

    Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).

  128. 128.

    Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

  129. 129.

    Magnusdottir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

  130. 130.

    Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

  131. 131.

    Mardinoglu, A. et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 11, 834 (2015).

  132. 132.

    Lee, S. et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).

  133. 133.

    Lee, S. et al. TCSBN: a database of tissue and cancer specific biological networks. Nucleic Acids Res. 46, D595–D600 (2017).

  134. 134.

    Bjornson, E., Boren, J. & Mardinoglu, A. Personalized cardiovascular disease prediction and treatment-a review of existing strategies and novel systems medicine tools. Front. Physiol. 7, 2 (2016).

  135. 135.

    Mardinoglu, A. & Uhlen, M. Liver: Phenotypic and genetic variance: a systems approach to the liver. Nat. Rev. Gastroenterol. Hepatol. 13, 439–440 (2016).

  136. 136.

    Williams, E. G. et al. Systems proteomics of liver mitochondria function. Science 352, aad0189 (2016).

  137. 137.

    Zhang, C., Lee, S., Mardinoglu, A. & Hua, Q. Investigating the combinatory effects of biological networks on gene co-expression. Front. Physiol. 7, 160 (2016).

  138. 138.

    Gatto, F. et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).

Download references


Funding was provided by the Knut and Alice Wallenberg Foundation. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under European Medical Information Framework grant agreement no. 115372.

Author information


  1. Science for Life Laboratory, KTH — Royal Institute of Technology, Stockholm, Sweden

    • Adil Mardinoglu
    • , Mathias Uhlen
    •  & Jens Nielsen
  2. Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden

    • Adil Mardinoglu
    •  & Jens Nielsen
  3. Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden

    • Jan Boren
    •  & Ulf Smith


  1. Search for Adil Mardinoglu in:

  2. Search for Jan Boren in:

  3. Search for Ulf Smith in:

  4. Search for Mathias Uhlen in:

  5. Search for Jens Nielsen in:

Competing interests

A.M., M.U. and J.B. are founders of ScandiBio and ScandiEdge Therapeutics.

Corresponding author

Correspondence to Adil Mardinoglu.



A field that analyses data to quantify protein abundance.


A field that measures mRNA transcript levels.


A field that analyses data to determine the abundance of small cellular metabolites.


A field that directly analyses the genomes contained within an environmental sample.


A field that quantifies the flux of substrates through a reaction step to establish dynamic changes of molecules within a cell over time.


A field that analyses the interactions between major constituents of cells, including proteins and metabolites, to resolve the whole set of molecular interactions in cells.

Systems biology

An interdisciplinary field that studies the complex interactions within cells and/or tissues using a holistic approach.

Biological networks

Models that make up the basis of systems biology and provide a mathematical representation of connections between the constituents of cells or tissues.

Genome-scale metabolic models

Mathematical models for a collection of metabolic biochemical reactions and the associated enzymes and transporters.

Gene regulatory networks

Networks that represent the interactions between transcription factors and their target genes.

Protein–protein interaction networks

Networks that provides detailed information about the protein complexes formed by biochemical events.

Signalling networks

Networks describing sequential molecular reactions that govern how a cell responds to its environment.

Gene co-expression networks

Networks representing the links between the expression of genes that might result in functional connections.


A collection of cell components secreted to the outside of the cell or tissue.

Druggable proteome

A collection of the proteins used in the development of drugs.

Network topology

The arrangement of the network components including links, nodes and edges.

About this article

Publication history