Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The interactions between energy homeostasis and neurovascular plasticity

Abstract

Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood–brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health. Increasing numbers of people are consuming a Western diet (comprising ultra-processed food with high-fat and high-sugar content) and have a sedentary lifestyle, with these factors contributing to the current obesity epidemic. Emerging pharmacological interventions (for example, glucagon-like peptide 1 receptor agonists) successfully trigger weight loss. However, whether these approaches can reverse the detrimental effects of long-term exposure to the Western diet (such as neurovascular uncoupling, neuroinflammation and blood–brain barrier disruption) and maintain stable body weight in the long-term needs to be clarified in addition to possible adverse effects. Lifestyle interventions revert the nutritional trigger for obesity and positively affect our overall health, including the cardiovascular system. This Perspective examines how lifestyle interventions affect the neurovascular system and neuronal networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathological rewiring of the neurovascular landscape of the hypothalamus.
Fig. 2: The effects of lifestyle on neurovascular health.

Similar content being viewed by others

References

  1. Myers, M. G. Jr., Affinati, A. H., Richardson, N. & Schwartz, M. W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 3, 737–750 (2021).

    Article  PubMed  Google Scholar 

  2. Banks, W. A. The blood-brain barrier as an endocrine tissue. Nat. Rev. Endocrinol. 15, 444–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, K. S., Seeley, R. J. & Sandoval, D. A. Signalling from the periphery to the brain that regulates energy homeostasis. Nat. Rev. Neurosci. 19, 185–196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayloo, S. & Gu, C. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 57, 32–38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langen, U. H., Ayloo, S. & Gu, C. Development and cell biology of the blood-brain barrier. Annu. Rev. Cell Dev. Biol. 35, 591–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hillman, E. M. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirst, C. et al. Mapping the fine-scale organization and plasticity of the brain vasculature. Cell 180, 780–795.e25 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jais, A. & Bruning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).

    Article  PubMed  Google Scholar 

  12. Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    Article  PubMed  Google Scholar 

  13. Langlet, F. et al. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang, H. et al. MCH neurons regulate permeability of the median eminence barrier. Neuron 107, 306–319 e309 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hosli, L. et al. Direct vascular contact is a hallmark of cerebral astrocytes. Cell Rep. 39, 110599 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Marina, N. et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66, 1185–1199 (2018).

    Article  PubMed  Google Scholar 

  18. Yi, C. X. et al. High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1, 95–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McManus, R. et al. Dynamic response of cerebral blood flow to insulin-induced hypoglycemia. Sci. Rep. 10, 21300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Z. et al. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front. Endocrinol. 15, 1393253 (2024).

    Article  Google Scholar 

  21. Hernandez-Garzon, E. et al. The insulin-like growth factor I receptor regulates glucose transport by astrocytes. Glia 64, 1962–1971 (2016).

    Article  PubMed  Google Scholar 

  22. Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jais, A. et al. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165, 882–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    Article  PubMed  Google Scholar 

  25. Amen, D. G., Wu, J., George, N. & Newberg, A. Patterns of regional cerebral blood flow as a function of obesity in adults. J. Alzheimers Dis. 77, 1331–1337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Glodzik, L. et al. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front. Aging Neurosci. 14, 948470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Knight, S. P. et al. Obesity is associated with reduced cerebral blood flow — modified by physical activity. Neurobiol. Aging 105, 35–47 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chhabria, K. et al. The effect of hyperglycemia on neurovascular coupling and cerebrovascular patterning in zebrafish. J. Cereb. Blood Flow Metab. 40, 298–313 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, J. et al. Cerebral blood flow alterations in type 2 diabetes mellitus: a systematic review and meta-analysis of arterial spin labeling studies. Front. Aging Neurosci. 14, 847218 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, W. et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R1001–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez-Smith, M. et al. Reduced cerebrovascular reactivity and increased resting cerebral perfusion in rats exposed to a cafeteria diet. Neuroscience 371, 166–177 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Livingston, J. M. et al. Influence of metabolic syndrome on cerebral perfusion and cognition. Neurobiol. Dis. 137, 104756 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Koh, I. S., Minn, Y. K. & Suk, S. H. Body fat mass and risk of cerebrovascular lesions: the PRESENT (Prevention of Stroke and Dementia) project. Int. J. Environ. Res. Public Health 16, 2840 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nam, K. W. et al. Obesity without metabolic disorder and silent brain infarcts in aneurologically healthy population. Int. J. Obes. 44, 362–367 (2020).

    Article  Google Scholar 

  35. Morys, F., Dadar, M. & Dagher, A. Association between midlife obesity and its metabolic consequences, cerebrovascular disease, and cognitive decline. J. Clin. Endocrinol. Metab. 106, e4260–e4274 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rhea, E. M. et al. Blood-brain barriers in obesity. AAPS J. 19, 921–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Collignon, A., Dion-Albert, L., Menard, C. & Coelho-Santos, V. Sex, hormones and cerebrovascular function: from development to disorder. Fluids Barriers CNS 21, 2 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aanerud, J., Borghammer, P., Rodell, A., Jonsdottir, K. Y. & Gjedde, A. Sex differences of human cortical blood flow and energy metabolism. J. Cereb. Blood Flow Metab. 37, 2433–2440 (2017).

    Article  PubMed  Google Scholar 

  39. Koep, J. L. et al. Sex modifies the relationship between age and neurovascular coupling in healthy adults. J. Cereb. Blood Flow Metab. 43, 1254–1266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moon, Y., Lim, C., Kim, Y. & Moon, W. J. Sex-related differences in regional blood-brain barrier integrity in non-demented elderly subjects. Int. J. Mol. Sci. 22, 2860 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bianco, A., Antonacci, Y. & Liguori, M. Sex and gender differences in neurodegenerative diseases: challenges for therapeutic opportunities. Int. J. Mol. Sci. 24, 6354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abi-Ghanem, C., Robison, L. S. & Zuloaga, K. L. Androgens’ effects on cerebrovascular function in health and disease. Biol. Sex Differ. 11, 35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robison, L. S., Gannon, O. J., Salinero, A. E. & Zuloaga, K. L. Contributions of sex to cerebrovascular function and pathology. Brain Res. 1710, 43–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Kris-Etherton, P. M. et al. Strategies for promotion of a healthy lifestyle in clinical settings: pillars of ideal cardiovascular health: a science advisory from the American Heart Association. Circulation 144, e495–e514 (2021).

    PubMed  Google Scholar 

  45. Wadden, T. A., Tronieri, J. S. & Butryn, M. L. Lifestyle modification approaches for the treatment of obesity in adults. Am. Psychol. 75, 235–251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cavalcanti-de-Albuquerque, J. P. & Donato, J. Jr. Rolling out physical exercise and energy homeostasis: focus on hypothalamic circuitries. Front. Neuroendocrinol. 63, 100944 (2021).

    Article  PubMed  Google Scholar 

  47. Hofer, S. J., Carmona-Gutierrez, D., Mueller, M. I. & Madeo, F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol. Med. 14, e14418 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Tsurugizawa, T., Djemai, B. & Zalesky, A. The impact of fasting on resting state brain networks in mice. Sci. Rep. 9, 2976 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Varady, K. A., Cienfuegos, S., Ezpeleta, M. & Gabel, K. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat. Rev. Endocrinol. 18, 309–321 (2022).

    Article  PubMed  Google Scholar 

  50. de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    Article  PubMed  Google Scholar 

  51. Harder-Lauridsen, N. M. et al. Ramadan model of intermittent fasting for 28 d had no major effect on body composition, glucose metabolism, or cognitive functions in healthy lean men. Nutrition 37, 92–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Currenti, W. et al. Association between time restricted feeding and cognitive status in older Italian adults. Nutrients 13, 191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ooi, T. C. et al. Intermittent fasting enhanced the cognitive function in older adults with mild cognitive impairment by inducing biochemical and metabolic changes: a 3-year progressive study. Nutrients 12, 2644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baik, S. H., Rajeev, V., Fann, D. Y., Jo, D. G. & Arumugam, T. V. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav. 10, e01444 (2020).

    Article  PubMed  Google Scholar 

  56. Bang, E., Fincher, A. S., Nader, S., Murchison, D. A. & Griffith, W. H. Late-onset, short-term intermittent fasting reverses age-related changes in calcium buffering and inhibitory synaptic transmission in mouse basal forebrain neurons. J. Neurosci. 42, 1020–1034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajeev, V. et al. Intermittent fasting attenuates hallmark vascular and neuronal pathologies in a mouse model of vascular cognitive impairment. Int. J. Biol. Sci. 18, 6052–6067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, Z. et al. Long-term intermittent fasting improves neurological function by promoting angiogenesis after cerebral ischemia via growth differentiation factor 11 signaling activation. PLoS One 18, e0282338 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andika, F. R., Yoon, J. H., Kim, G. S. & Jeong, Y. Intermittent fasting alleviates cognitive impairments and hippocampal neuronal loss but enhances astrocytosis in mice with subcortical vascular dementia. J. Nutr. 151, 722–730 (2021).

    Article  PubMed  Google Scholar 

  60. Wang, R. et al. Caloric restriction ameliorates high-fat diet induced cognitive deficits through attenuating neuroinflammation via the TREM2-PI3K/AKT signaling pathway. Food Funct. 12, 6464–6478 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Leclerc, E. et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. 25, 2–8 (2020).

    Article  PubMed  Google Scholar 

  62. Prehn, K. et al. Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb. Cortex 27, 1765–1778 (2017).

    PubMed  Google Scholar 

  63. Rahmani, F. et al. 12-weeks of caloric restriction diet improves cortical cerebral blood flow in healthy middle-age adults. Alzheimers Dement. 19, e060865 (2023).

    Article  Google Scholar 

  64. Parikh, I. et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging 8, 2814–2826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tropea, T. & Mandala, M. Caloric restriction enhances vascular tone of cerebral and mesenteric resistance arteries in aged rats. Mech. Ageing Dev. 197, 111520 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, H. et al. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice. J. Cereb. Blood Flow Metab. 36, 1098–1110 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. La Russa, D., Marrone, A., Mandala, M., Macirella, R. & Pellegrino, D. Antioxidant/anti-inflammatory effects of caloric restriction in an aged and obese rat model: the role of adiponectin. Biomedicines 8, 532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Opatrilova, R. et al. Adipokines in neurovascular diseases. Biomed. Pharmacother. 98, 424–432 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Tu, Y. F., Lu, P. J., Huang, C. C., Ho, C. J. & Chou, Y. P. Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke 43, 491–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J. et al. Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J. Cereb. Blood Flow Metab. 39, 1394–1409 (2019).

    Article  PubMed  Google Scholar 

  71. Ciobanu, O. et al. Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 16, 1394–1403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, J. T. et al. Calorie restriction conferred improvement effect on long-term rehabilitation of ischemic stroke via gut microbiota. Pharmacol. Res. 170, 105726 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. de Carvalho, T. S. et al. Hypocaloric diet initiated post-ischemia provides long-term neuroprotection and promotes peri-infarct brain remodeling by regulating metabolic and survival-promoting proteins. Mol. Neurobiol. 58, 1491–1503 (2021).

    Article  PubMed  Google Scholar 

  74. Kim, C. et al. Energy restriction enhances adult hippocampal neurogenesis-associated memory after four weeks in an adult human population with central obesity; a randomized controlled trial. Nutrients 12, 638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Teong, X. T. et al. Eight weeks of intermittent fasting versus calorie restriction does not alter eating behaviors, mood, sleep quality, quality of life and cognitive performance in women with overweight. Nutr. Res. 92, 32–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Horie, N. C. et al. Cognitive effects of intentional weight loss in elderly obese individuals with mild cognitive impairment. J. Clin. Endocrinol. Metab. 101, 1104–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Stillman, C. M. et al. Changes in cerebral perfusion following a 12-month exercise and diet intervention. Psychophysiology 58, e13589 (2021).

    Article  PubMed  Google Scholar 

  78. Loffler, M. C. et al. Challenges in tackling energy expenditure as obesity therapy: from preclinical models to clinical application. Mol. Metab. 51, 101237 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Soares, M. J. & Muller, M. J. Resting energy expenditure and body composition: critical aspects for clinical nutrition. Eur. J. Clin. Nutr. 72, 1208–1214 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Talbot, J. S. et al. Neurovascular coupling and cerebrovascular hemodynamics are modified by exercise training status at different stages of maturation during youth. Am. J. Physiol. Heart Circ. Physiol. 325, H510–H521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park, J. H., Moon, J. H., Kim, H. J., Kong, M. H. & Oh, Y. H. Sedentary lifestyle: overview of updated evidence of potential health risks. Korean J. Fam. Med. 41, 365–373 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qiu, Y. et al. Exercise sustains the hallmarks of health. J. Sport Health Sci. 12, 8–35 (2023).

    Article  PubMed  Google Scholar 

  83. Thyfault, J. P. & Bergouignan, A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia 63, 1464–1474 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Di Liegro, C. M., Schiera, G., Proia, P. & Di Liegro, I. Physical activity and brain health. Genes 10, 720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guadagni, V. et al. Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology 94, e2245–e2257 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Harvey, S. B. et al. Exercise and the prevention of depression: results of the HUNT cohort study. Am. J. Psychiatry 175, 28–36 (2018).

    Article  PubMed  Google Scholar 

  87. Mendez Colmenares, A. et al. White matter plasticity in healthy older adults: the effects of aerobic exercise. NeuroImage 239, 118305 (2021).

    Article  PubMed  Google Scholar 

  88. Broadhouse, K. M. et al. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin. 25, 102182 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bilek, F., Cetisli-Korkmaz, N., Ercan, Z., Deniz, G. & Demir, C. F. Aerobic exercise increases irisin serum levels and improves depression and fatigue in patients with relapsing remitting multiple sclerosis: a randomized controlled trial. Mult. Scler. Relat. Disord. 61, 103742 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Maurus, I. et al. Exercise as an add-on treatment in individuals with schizophrenia: results from a large multicenter randomized controlled trial. Psychiatry Res. 328, 115480 (2023).

    Article  PubMed  Google Scholar 

  91. Jia, R. X., Liang, J. H., Xu, Y. & Wang, Y. Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: a meta-analysis. BMC Geriatr. 19, 181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sleiman, S. F. et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 5, e15092 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nilsson, J. et al. Acute increases in brain-derived neurotrophic factor in plasma following physical exercise relates to subsequent learning in older adults. Sci. Rep. 10, 4395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kullmann, S. et al. Exercise restores brain insulin sensitivity in sedentary adults who are overweight and obese. JCI Insight 7, e161498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nijssen, K. M. R., Mensink, R. P. & Joris, P. J. Effects of intranasal insulin administration on cerebral blood flow and cognitive performance in adults: a systematic review of randomized, placebo-controlled intervention studies. Neuroendocrinology 113, 1–13 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Swain, R. A. et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117, 1037–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Graham, L. C. et al. Exercise prevents obesity-induced cognitive decline and white matter damage in mice. Neurobiol. Aging 80, 154–172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bailey, D. M. et al. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke 44, 3235–3238 (2013).

    Article  PubMed  Google Scholar 

  99. Thomas, B. P. et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J. Magn. Reson. Imaging 38, 1177–1183 (2013).

    Article  PubMed  Google Scholar 

  100. Murrell, C. J. et al. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age 35, 905–920 (2013).

    Article  PubMed  Google Scholar 

  101. Espeland, M. A. et al. Long term effect of intensive lifestyle intervention on cerebral blood flow. J. Am. Geriatr. Soc. 66, 120–126 (2018).

    Article  PubMed  Google Scholar 

  102. Avraham, Y. et al. Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr. Neurovasc. Res. 8, 313–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Cui, Q. et al. Leptin promotes angiogenesis via pericyte STAT3 pathway upon intracerebral hemorrhage. Cells 11, 2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fernandez, A. M. et al. Insulin regulates neurovascular coupling through astrocytes. Proc. Natl Acad. Sci. USA 119, e2204527119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kondo, T. et al. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. J. Clin. Invest. 111, 1835–1842 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Warmke, N. et al. Pericyte insulin receptors modulate retinal vascular remodeling and endothelial angiopoietin signaling. Endocrinology 162, bqab182 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hauptmann, J. et al. Interleukin-1 promotes autoimmune neuroinflammation by suppressing endothelial heme oxygenase-1 at the blood-brain barrier. Acta Neuropathol. 140, 549–567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen, A. Q. et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 10, 487 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Spranger, J. et al. Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55, 141–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Bloemer, J. et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018, 4593530 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Svart, M. et al. Regional cerebral effects of ketone body infusion with 3-hydroxybutyrate in humans: reduced glucose uptake, unchanged oxygen consumption and increased blood flow by positron emission tomography. A randomized, controlled trial. PLoS One 13, e0190556 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hasselbalch, S. G. et al. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am. J. Physiol. 270, E746–751 (1996).

    CAS  PubMed  Google Scholar 

  113. Ma, D. et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 8, 6670 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. van Hall, G. et al. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 29, 1121–1129 (2009).

    Article  PubMed  Google Scholar 

  115. Ide, K., Schmalbruch, I. K., Quistorff, B., Horn, A. & Secher, N. H. Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J. Physiol. 522, 159–164 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maran, A., Cranston, I., Lomas, J., Macdonald, I. & Amiel, S. A. Protection by lactate of cerebral function during hypoglycaemia. Lancet 343, 16–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Takechi, R., Pallebage-Gamarallage, M. M., Lam, V., Giles, C. & Mamo, J. C. Aging-related changes in blood-brain barrier integrity and the effect of dietary fat. Neurodegener. Dis. 12, 125–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Shaheryar, Z. A. et al. Natural fatty acid guards against brain endothelial cell death and microvascular pathology following ischemic insult in the presence of acute hyperglycemia. Biomedicines 11, 3342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sung, K. S. et al. Saturated fatty acid emulsions open the blood-brain barrier and promote drug delivery in rat brains. Pharmaceutics 16, 246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Milanski, M. et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29, 359–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Renaudin, N. et al. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat. Methods 19, 1004–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.S. acknowledges support from the McCluskey family, E. Matilda Ziegler Foundation and Interstellar Initiative (NYAS/AMED). The authors acknowledge the support of the National Institute of Diabetes, Digestive and Kidney Diseases 4R00DK1208689.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and B.C. researched data for the article. M.S., B.C. C.G.C., A.E. and N.R. contributed substantially to discussion of the content. M.S., B.C., C.G.C., A.E. and N.R. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Bandy Chen or Marc Schneeberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Jose Donato Jr, Yong Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Allen Brain Atlas: https://portal.brain-map.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., de Launoit, E., Meseguer, D. et al. The interactions between energy homeostasis and neurovascular plasticity. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01021-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01021-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing