Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Endocrine effects of heat exposure and relevance to climate change

Abstract

Climate change is increasing both seasonal temperatures and the frequency and severity of heat extremes. As the endocrine system facilitates physiological adaptations to temperature changes, diseases with an endocrinological basis have the potential to affect thermoregulation and increase the risk of heat injury. The effect of climate change and associated high temperature exposure on endocrine axis development and function, and on the prevalence and severity of diseases associated with hormone deficiency or excess, is unclear. This Perspective summarizes current knowledge relating to the hormonal effects of heat exposure in species ranging from rodents to humans. We also describe the potential effect of high temperature exposures on patients with endocrine diseases. Finally, we highlight the need for more basic science, clinical and epidemiological research into the effects of heat on endocrine function and health; this research could enable the development of interventions for people most at risk, in the context of rising environmental temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible involvement of hormones in thermoregulatory adaptation to heat.
Fig. 2: Strategies for improving the care of patients with endocrine conditions who are at risk of heat injury and other health events.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (IPCC, 2023).

  2. Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).

    Article  PubMed  Google Scholar 

  3. Valli, F. E., Simoncini, M. S., Gonzalez, M. A. & Pina, C. I. How do maternal androgens and estrogens affect sex determination in reptiles with temperature-dependent sex? Dev. Growth Differ. 65, 565–576 (2023).

    Article  PubMed  Google Scholar 

  4. Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue – a translational perspective. Endocr. Rev. 44, 143–192 (2023).

    Article  PubMed  Google Scholar 

  5. Ratter-Rieck, J. M., Roden, M. & Herder, C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 66, 1003–1015 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kingma, B. R., Frijns, A. J., Schellen, L. & van Marken Lichtenbelt, W. D. Beyond the classic thermoneutral zone: including thermal comfort. Temperature 1, 142–149 (2014).

    Article  Google Scholar 

  7. Rothhaas, R. & Chung, S. Role of the preoptic area in sleep and thermoregulation. Front. Neurosci. 15, 664781 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wee, J. et al. Effects of medications on heat loss capacity in chronic disease patients: health implications amidst global warming. Pharmacol. Rev. 75, 1140–1166 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Farrell, M. J., Trevaks, D. & McAllen, R. M. Preoptic activation and connectivity during thermal sweating in humans. Temperature 1, 135–141 (2014).

    Article  Google Scholar 

  10. Commission for Thermal Physiology of the International Union of Physiological Sciences. Glossary of terms for thermal physiology (third edition). Jpn. J. Physiol. 51, 245–280 (2001).

    Google Scholar 

  11. Periard, J. D., Eijsvogels, T. M. H. & Daanen, H. A. M. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev. 101, 1873–1979 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Follenius, M., Brandenberger, G., Oyono, S. & Candas, V. Cortisol as a sensitive index of heat-intolerance. Physiol. Behav. 29, 509–513 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Powers, S. K., Howley, E. T. & Cox, R. A differential catecholamine response during prolonged exercise and passive heating. Med. Sci. Sports Exerc. 14, 435–439 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. Kazakou, P., Nicolaides, N. C. & Chrousos, G. P. Basic concepts and hormonal regulators of the stress system. Horm. Res. Paediatr. 96, 8–16 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Cameron, A. et al. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple. J. Clin. Endocrinol. Metab. 95, 4689–4695 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L. I., Liu, F., Luo, Y., Zhu, L. & Li, G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Rep. 3, 425–429 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chowers, I., Conforti, N. & Feldman, S. Local effect of cortisol in the preoptic area on temperature regulation. Am. J. Physiol. 214, 538–542 (1968).

    Article  CAS  PubMed  Google Scholar 

  18. Zheng, X., Takatsu, S., Ishikawa, R. & Hasegawa, H. Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J. Therm. Biol. 71, 123–127 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Dempsey, E. W. & Astwood, E. B. A determination of the rate of thyroid hormone secretion at various environmental temperatures. Endocrinology 32, 509–518 (1943).

    Article  CAS  Google Scholar 

  20. Martelli, D. et al. The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep. PLoS One 9, e87793 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Warner, A. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proc. Natl Acad. Sci. USA 110, 16241–16246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahl, S., Elsasser, T. H., Rhoads, R. P., Collier, R. J. & Baumgard, L. H. Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domest. Anim. Endocrinol. 52, 43–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, W. L., Huang, W. S., Lin, Y. F. & Shieh, S. D. Changes in thyroid hormone metabolism in exertional heat stroke with or without acute renal failure. J. Clin. Endocrinol. Metab. 81, 625–629 (1996).

    CAS  PubMed  Google Scholar 

  24. May, J. D. Effect of dietary thyroid hormone on survival time during heat stress. Poult. Sci. 61, 706–709 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. Qi, X., Chan, W. L., Read, R. J., Zhou, A. & Carrell, R. W. Temperature-responsive release of thyroxine and its environmental adaptation in Australians. Proc. Biol. Sci. 281, 20132747 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Périard, J. D., Travers, G. J. S., Racinais, S. & Sawka, M. N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 196, 52–62 (2016).

    Article  PubMed  Google Scholar 

  27. Kosunen, K. J., Pakarinen, A. J., Kuoppasalmi, K. & Adlercreutz, H. Plasma renin activity, angiotensin II, and aldosterone during intense heat stress. J. Appl. Physiol. 41, 323–327 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Takamata, A., Mack, G. W., Stachenfeld, N. S. & Nadel, E. R. Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am. J. Physiol. 269, R874–R880 (1995).

    CAS  PubMed  Google Scholar 

  29. Noakes, T. D. et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc. Natl Acad. Sci. USA 102, 18550–18555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steiner, A. A., Carnio, E. C., Antunes-Rodrigues, J. & Branco, L. G. Role of nitric oxide in systemic vasopressin-induced hypothermia. Am. J. Physiol. 275, R937–R941 (1998).

    CAS  PubMed  Google Scholar 

  31. Tang, Y. et al. Effects of arginine vasopressin on firing activity and thermosensitivity of rat PO/AH area neurons. Neuroscience 219, 10–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Soares, M. J. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2, 51 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chesnokova, V. & Melmed, S. GH and senescence: a new understanding of adult GH action. J. Endocr. Soc. 6, bvab177 (2022).

    Article  PubMed  Google Scholar 

  34. Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61 (2023).

    Article  PubMed  Google Scholar 

  35. Brazaitis, M. et al. Effects of severe whole-body hyperthermia on ovarian hormone and extracellular Hsp72 responses in young adult women. Int. J. Hyperth. 36, 660–665 (2019).

    Article  Google Scholar 

  36. Laatikainen, T., Salminen, K., Kohvakka, A. & Pettersson, J. Response of plasma endorphins, prolactin and catecholamines in women to intense heat in a sauna. Eur. J. Appl. Physiol. Occup. Physiol. 57, 98–102 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Leppaluoto, J., Tapanainen, P. & Knip, M. Heat exposure elevates plasma immunoreactive growth hormone-releasing hormone levels in man. J. Clin. Endocrinol. Metab. 65, 1035–1038 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Glasow, A. et al. Functional aspects of the effect of prolactin (PRL) on adrenal steroidogenesis and distribution of the PRL receptor in the human adrenal gland. J. Clin. Endocrinol. Metab. 81, 3103–3111 (1996).

    CAS  PubMed  Google Scholar 

  39. Weber, R. F. & Calogero, A. E. Prolactin stimulates rat hypothalamic corticotropin-releasing hormone and pituitary adrenocorticotropin secretion in vitro. Neuroendocrinology 54, 248–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Oopik, V., Timpmann, S., Kreegipuu, K., Unt, E. & Tamm, M. Heat acclimation decreases the growth hormone response to acute constant-load exercise in the heat. Growth Horm. IGF Res. 24, 2–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Hasan, W. et al. The sweating apparatus in growth hormone deficiency, following treatment with r-hGH and in acromegaly. Auton. Neurosci. 89, 100–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Boisvert, P., Brisson, G. R. & Peronnet, F. Effect of plasma prolactin on sweat rate and sweat composition during exercise in men. Am. J. Physiol. 264, F816–F820 (1993).

    CAS  PubMed  Google Scholar 

  43. Littlejohn, M. D. et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 5, 5861 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Magkos, F., Wang, X. & Mittendorfer, B. Metabolic actions of insulin in men and women. Nutrition 26, 686–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gupte, A. A., Bomhoff, G. L., Touchberry, C. D. & Geiger, P. C. Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J. Appl. Physiol. 110, 451–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Chung, J. et al. HSP72 protects against obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 105, 1739–1744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupte, A. A., Bomhoff, G. L., Swerdlow, R. H. & Geiger, P. C. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58, 567–578 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Morera, P., Basirico, L., Hosoda, K. & Bernabucci, U. Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. J. Mol. Endocrinol. 48, 129–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Pallubinsky, H. et al. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol. 229, e13488 (2020).

    Article  CAS  Google Scholar 

  50. Valdes, S. et al. Ambient temperature and prevalence of diabetes and insulin resistance in the Spanish population: Di@bet.es study. Eur. J. Endocrinol. 180, 273–280 (2019).

    Article  PubMed  Google Scholar 

  51. Schliess, F. & Haussinger, D. Cell hydration and insulin signalling. Cell Physiol. Biochem. 10, 403–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Blauw, L. L. et al. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open. Diabetes Res. Care 5, e000317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Li, Y. et al. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 185, 949–966 e919 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Mandic, I. et al. The effects of exercise and ambient temperature on dietary intake, appetite sensation, and appetite regulating hormone concentrations. Nutr. Metab. 16, 29 (2019).

    Article  Google Scholar 

  56. Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zakrzewski-Fruer, J. K., Horsfall, R. N., Cottrill, D. & Hough, J. Acute exposure to a hot ambient temperature reduces energy intake but does not affect gut hormones in men during rest. Br. J. Nutr. 125, 951–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Perera, F. & Nadeau, K. Climate change, fossil-fuel pollution, and children’s health. N. Engl. J. Med. 386, 2303–2314 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe, Y. G. Immunohistochemical study on the fetal rat pituitary in hyperthermia-induced exencephaly. Zool. Sci. 19, 689–694 (2002).

    Article  Google Scholar 

  60. Mete, F., Kilic, E., Somay, A. & Yilmaz, B. Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat. Indian. J. Med. Res. 135, 233–239 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. Roa, J. et al. Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc. Natl Acad. Sci. USA 115, E10758–E10767 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aksglaede, L., Juul, A., Olsen, L. W. & Sorensen, T. I. Age at puberty and the emerging obesity epidemic. PLoS ONE 4, e8450 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Greenspan, L. C. & Lee, M. M. Endocrine disrupters and pubertal timing. Curr. Opin. Endocrinol. Diabetes Obes. 25, 49–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han, S. K. et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, H. D. et al. Heat stress during summer attenuates expression of the hypothalamic kisspeptin, an upstream regulator of the hypothalamic–pituitary–gonadal axis, in domestic sows. Animals 12, 2967 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Plant, T. M. 60 years of neuroendocrinology: the hypothalamo-pituitary-gonadal axis. J. Endocrinol. 226, T41–T54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Catalini, L. & Fedder, J. Characteristics of the endometrium in menstruating species: lessons learned from the animal kingdom. Biol. Reprod. 102, 1160–1169 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Han, J. et al. The damage effect of heat stress and psychological stress combined exposure on uterus in female rats. Life Sci. 286, 120053 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Tatsumi, T. et al. Age-dependent and seasonal changes in menstrual cycle length and body temperature based on big data. Obstet. Gynecol. 136, 666–674 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Notley, S. R., Dervis, S., Poirier, M. P. & Kenny, G. P. Menstrual cycle phase does not modulate whole body heat loss during exercise in hot, dry conditions. J. Appl. Physiol. 126, 286–293 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 86, 1307–1323 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, P. H. et al. Exertional heat stroke on fertility, erectile function, and testicular morphology in male rats. Sci. Rep. 11, 3539 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thonneau, P., Bujan, L., Multigner, L. & Mieusset, R. Occupational heat exposure and male fertility: a review. Hum. Reprod. 13, 2122–2125 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Gaskins, A. J. et al. Impact of ambient temperature on ovarian reserve. Fertil. Steril. 116, 1052–1060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bridges, P. J., Brusie, M. A. & Fortune, J. E. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29, 508–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Booth, G. L. et al. Influence of environmental temperature on risk of gestational diabetes. CMAJ 189, E682–E689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Samuels, L. et al. Physiological mechanisms of the impact of heat during pregnancy and the clinical implications: review of the evidence from an expert group meeting. Int. J. Biometeorol. 66, 1505–1513 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ullah, S. et al. Heat exposure affected the reproductive performance of pregnant mice: enhancement of autophagy and alteration of subcellular structure in the corpus luteum. Reprod. Biol. 19, 261–269 (2019).

    Article  PubMed  Google Scholar 

  79. Part, C. et al. How do high ambient temperatures affect infant feeding practices? A prospective cohort study of postpartum women in Bobo-Dioulasso, Burkina Faso. BMJ Open. 12, e061297 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. do Amaral, B. C. et al. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest. Anim. Endocrinol. 38, 38–45 (2010).

    Article  PubMed  Google Scholar 

  81. Tao, S. et al. Impact of heat stress on lactational performance of dairy cows. Theriogenology 150, 437–444 (2020).

    Article  PubMed  Google Scholar 

  82. Ouellet, V. et al. Endocrine signals altered by heat stress impact dairy cow mammary cellular processes at different stages of the dry period. Animals 11, 563 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zeng, H., Li, S., Zhai, Y., Chang, H. & Han, Z. Preliminary transcriptome analysis of long noncoding RNA in hypothalamic–pituitary–mammary gland axis of dairy cows under heat stress. Biomolecules 13, 390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Modi, M. & Dhillo, W. S. The neuroendocrinology of the preoptic area in menopause: symptoms and therapeutic strategies. Handb. Clin. Neurol. 179, 455–460 (2021).

    Article  PubMed  Google Scholar 

  85. Freeman, E. W., Sammel, M. D. & Sanders, R. J. Risk of long-term hot flashes after natural menopause: evidence from the Penn Ovarian Aging Study cohort. Menopause 21, 924–932 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mukarram, M. et al. Menopausal symptoms in underserved and homeless women living in extreme temperatures in the Southwest. Women’s Health Rep. 2, 44–52 (2021).

    Article  Google Scholar 

  87. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

    Article  Google Scholar 

  88. Maley, M. J., Hunt, A. P., Stewart, I. B., Faulkner, S. H. & Minett, G. M. Passive heating and glycaemic control in non-diabetic and diabetic individuals: a systematic review and meta-analysis. PLoS ONE 14, e0214223 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burkart, K. G. et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet 398, 685–697 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Miyamura, K., Nawa, N., Nishimura, H., Fushimi, K. & Fujiwara, T. Association between heat exposure and hospitalization for diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia in Japan. Env. Int. 167, 107410 (2022).

    Article  CAS  Google Scholar 

  91. Schwartz, J. Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology 16, 67–72 (2005).

    Article  PubMed  Google Scholar 

  92. Kenny, G. P., Sigal, R. J. & McGinn, R. Body temperature regulation in diabetes. Temperature 3, 119–145 (2016).

    Article  Google Scholar 

  93. Notley, S. R. et al. Exercise heat stress in patients with and without type 2 diabetes. JAMA 322, 1409–1411 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Parker, R. J. & Davidson, A. C. Hypothyroidism – an unexpected diagnosis following emergency treatment for heatstroke. Int. J. Clin. Pract. 59, 31–33 (2005).

    Article  Google Scholar 

  95. Siegler, R. W. Fatal heatstroke in a young woman with previously undiagnosed Hashimoto’s thyroiditis. J. Forensic Sci. 43, 1237–1240 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Jang, W. et al. Clinical characteristics of patients with adrenal insufficiency and fever. J. Korean Med. Sci. 36, e152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kinoshita, H. et al. Low body temperature, a frequently observed manifestation of patients with adrenocortical insufficiency that can recover with glucocorticoid administration: case series of 15 patients. Endocrinol. Stud. 2, e2 (2012).

    Article  Google Scholar 

  98. Hartman, F. A., Lockwood, J. E. & Lockie, L. M. Lowered resistance to heat in adrenal insufficiency. Exp. Biol. Med. 29, 409–410 (1932).

    Article  Google Scholar 

  99. Juul, A. et al. Growth hormone deficiency and hyperthermia during exercise: a controlled study of sixteen GH-deficient patients. J. Clin. Endocrinol. Metab. 80, 3335–3340 (1995).

    CAS  PubMed  Google Scholar 

  100. Behr, R., Dietrich, C. & Brück, K. in Thermal Balance in Health and Disease (eds Zeisberger, E., Schönbaum, E. & Lomax, P) 267–276 (Birkhäuser, 1994).

  101. Karan, A. et al. A stroke of luck: central diabetes insipidus unmasked by a heat stroke. Cureus 14, e30768 (2022).

    PubMed  PubMed Central  Google Scholar 

  102. Ongphiphadhanakul, B. & Rajatanavin, R. Diabetes insipidus: another cause of hormonal hyperthermia. J. Med. Assoc. Thai 75, 127–132 (1992).

    CAS  PubMed  Google Scholar 

  103. Bernhardt, J. M. et al. Development of a screening tool for assessment of climate change-related heat illness in the clinical setting. J. Am. Assoc. Nurse Pract. 35, 291–298 (2023).

    Article  PubMed  Google Scholar 

  104. Ramphal-Naley, L. Screening for heat stress in workers and athletes. Proc. (Bayl. Univ. Med. Cent.) 25, 224–228 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Hanna, E. G. & Tait, P. W. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int. J. Env. Res. Public. Health 12, 8034–8074 (2015).

    Article  CAS  Google Scholar 

  106. Layton, J. B. et al. Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions. PLoS ONE 15, e0243665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Adubofour, K. O., Kajiwara, G. T., Goldberg, C. M. & King-Angell, J. L. Oxybutynin-induced heatstroke in an elderly patient. Ann. Pharmacother. 30, 144–147 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Ahmad, S., Reyes, J. V. M. & Lieber, J. Oxybutynin-induced hyperthermia in a patient with Parkinson’s disease. Cureus 13, e14701 (2021).

    PubMed  PubMed Central  Google Scholar 

  109. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gordon, C. J. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol. Behav. 179, 55–66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ganeshan, K. & Chawla, A. Warming the mouse to model human diseases. Nat. Rev. Endocrinol. 13, 458–465 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lees, A. M. et al. The impact of heat load on cattle. Animals 9, 322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gomez-Prado, J. et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: an overview. Front. Vet. Sci. 9, 1023294 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cramer, T., Rosenberg, T., Kisliouk, T. & Meiri, N. Early-life epigenetic changes along the corticotropin-releasing hormone (CRH) gene influence resilience or vulnerability to heat stress later in life. Mol. Psychiatry 24, 1013–1026 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Dreiling, C. E., Carman, F. S. 3rd & Brown, D. E. Maternal endocrine and fetal metabolic responses to heat stress. J. Dairy Sci. 74, 312–327 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Itoh, F., Obara, Y., Rose, M. T., Fuse, H. & Hashimoto, H. Insulin and glucagon secretion in lactating cows during heat exposure. J. Anim. Sci. 76, 2182–2189 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Meltzer, A. Thermoneutral zone and resting metabolic rate of broilers. Br. Poult. Sci. 24, 471–476 (1983).

    Article  CAS  PubMed  Google Scholar 

  118. Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92, 2667–2679 (2002).

    Article  PubMed  Google Scholar 

  119. Habimana, V. et al. Heat stress effects on milk yield traits and metabolites and mitigation strategies for dairy cattle breeds reared in tropical and sub-tropical countries. Front. Vet. Sci. 10, 1121499 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gourdine, J. L., Rauw, W. M., Gilbert, H. & Poullet, N. The genetics of thermoregulation in pigs: a review. Front. Vet. Sci. 8, 770480 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ruiz-Ortega, M. et al. Thermoregulatory response of blackbelly adult ewes and female lambs during the summer under tropical conditions in Southern Mexico. Animals 12, 1860 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Epstein, Y., Albukrek, D., Kalmovitc, B., Moran, D. S. & Shapiro, Y. Heat intolerance induced by antidepressants. Ann. N. Y. Acad. Sci. 813, 553–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Karachristianou, S., Papamichalis, E., Sarantopoulos, A., Boura, P. & Georgiadis, G. Hypohidrosis induced by topiramate in an adult patient. Epileptic Disord. 15, 203–206 (2013).

    Article  PubMed  Google Scholar 

  124. Johannsen, D. L. et al. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans. PLoS ONE 7, e40837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Celi, F. S. et al. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J. Clin. Endocrinol. Metab. 96, 3466–3474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, Y. & Yu, T. Testosterone mediates hyperthermic response of mice to heat exposure. Life Sci. 214, 34–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Bodel, P. & Dillard, M. Studies on steroid fever: I. Production of leukocyte pyrogen in vitro by etiocholanolone. J. Clin. Invest. 47, 107–117 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stachenfeld, N. S., Silva, C. & Keefe, D. L. Estrogen modifies the temperature effects of progesterone. J. Appl. Physiol. 88, 1643–1649 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.M.H. and S.H.K. gratefully acknowledge the support of the Family Larsson-Rosenquist Foundation. R.V.T. is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme, and has received an NIHR Senior Investigator Award (grant number NF- SI-0514–10091).

Author information

Authors and Affiliations

Authors

Contributions

F.M.H., M.K.S.L., J.K.W.L., S.K. and T.E. researched data for the article and wrote the manuscript. S.H.K. and R.V.T. reviewed and edited the manuscript. All authors made substantial contributions to discussion of the content.

Corresponding author

Correspondence to Fadil M. Hannan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Nisha Charkoudian, Roderick Clifton-Bligh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannan, F.M., Leow, M.K.S., Lee, J.K.W. et al. Endocrine effects of heat exposure and relevance to climate change. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01017-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-024-01017-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing