Abstract
Climate change is increasing both seasonal temperatures and the frequency and severity of heat extremes. As the endocrine system facilitates physiological adaptations to temperature changes, diseases with an endocrinological basis have the potential to affect thermoregulation and increase the risk of heat injury. The effect of climate change and associated high temperature exposure on endocrine axis development and function, and on the prevalence and severity of diseases associated with hormone deficiency or excess, is unclear. This Perspective summarizes current knowledge relating to the hormonal effects of heat exposure in species ranging from rodents to humans. We also describe the potential effect of high temperature exposures on patients with endocrine diseases. Finally, we highlight the need for more basic science, clinical and epidemiological research into the effects of heat on endocrine function and health; this research could enable the development of interventions for people most at risk, in the context of rising environmental temperatures.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Intergovernmental Panel on Climate Change. Climate change 2023: Synthesis report. Contribution of working groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (IPCC, 2023).
Ebi, K. L. et al. Hot weather and heat extremes: health risks. Lancet 398, 698–708 (2021).
Valli, F. E., Simoncini, M. S., Gonzalez, M. A. & Pina, C. I. How do maternal androgens and estrogens affect sex determination in reptiles with temperature-dependent sex? Dev. Growth Differ. 65, 565–576 (2023).
Carpentier, A. C., Blondin, D. P., Haman, F. & Richard, D. Brown adipose tissue – a translational perspective. Endocr. Rev. 44, 143–192 (2023).
Ratter-Rieck, J. M., Roden, M. & Herder, C. Diabetes and climate change: current evidence and implications for people with diabetes, clinicians and policy stakeholders. Diabetologia 66, 1003–1015 (2023).
Kingma, B. R., Frijns, A. J., Schellen, L. & van Marken Lichtenbelt, W. D. Beyond the classic thermoneutral zone: including thermal comfort. Temperature 1, 142–149 (2014).
Rothhaas, R. & Chung, S. Role of the preoptic area in sleep and thermoregulation. Front. Neurosci. 15, 664781 (2021).
Wee, J. et al. Effects of medications on heat loss capacity in chronic disease patients: health implications amidst global warming. Pharmacol. Rev. 75, 1140–1166 (2023).
Farrell, M. J., Trevaks, D. & McAllen, R. M. Preoptic activation and connectivity during thermal sweating in humans. Temperature 1, 135–141 (2014).
Commission for Thermal Physiology of the International Union of Physiological Sciences. Glossary of terms for thermal physiology (third edition). Jpn. J. Physiol. 51, 245–280 (2001).
Periard, J. D., Eijsvogels, T. M. H. & Daanen, H. A. M. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev. 101, 1873–1979 (2021).
Follenius, M., Brandenberger, G., Oyono, S. & Candas, V. Cortisol as a sensitive index of heat-intolerance. Physiol. Behav. 29, 509–513 (1982).
Powers, S. K., Howley, E. T. & Cox, R. A differential catecholamine response during prolonged exercise and passive heating. Med. Sci. Sports Exerc. 14, 435–439 (1982).
Kazakou, P., Nicolaides, N. C. & Chrousos, G. P. Basic concepts and hormonal regulators of the stress system. Horm. Res. Paediatr. 96, 8–16 (2023).
Cameron, A. et al. Temperature-responsive release of cortisol from its binding globulin: a protein thermocouple. J. Clin. Endocrinol. Metab. 95, 4689–4695 (2010).
Wang, L. I., Liu, F., Luo, Y., Zhu, L. & Li, G. Effect of acute heat stress on adrenocorticotropic hormone, cortisol, interleukin-2, interleukin-12 and apoptosis gene expression in rats. Biomed. Rep. 3, 425–429 (2015).
Chowers, I., Conforti, N. & Feldman, S. Local effect of cortisol in the preoptic area on temperature regulation. Am. J. Physiol. 214, 538–542 (1968).
Zheng, X., Takatsu, S., Ishikawa, R. & Hasegawa, H. Moderate intensity, exercise-induced catecholamine release in the preoptic area and anterior hypothalamus in rats is enhanced in a warm environment. J. Therm. Biol. 71, 123–127 (2018).
Dempsey, E. W. & Astwood, E. B. A determination of the rate of thyroid hormone secretion at various environmental temperatures. Endocrinology 32, 509–518 (1943).
Martelli, D. et al. The direct cooling of the preoptic-hypothalamic area elicits the release of thyroid stimulating hormone during wakefulness but not during REM sleep. PLoS One 9, e87793 (2014).
Warner, A. et al. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1. Proc. Natl Acad. Sci. USA 110, 16241–16246 (2013).
Kahl, S., Elsasser, T. H., Rhoads, R. P., Collier, R. J. & Baumgard, L. H. Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domest. Anim. Endocrinol. 52, 43–50 (2015).
Chen, W. L., Huang, W. S., Lin, Y. F. & Shieh, S. D. Changes in thyroid hormone metabolism in exertional heat stroke with or without acute renal failure. J. Clin. Endocrinol. Metab. 81, 625–629 (1996).
May, J. D. Effect of dietary thyroid hormone on survival time during heat stress. Poult. Sci. 61, 706–709 (1982).
Qi, X., Chan, W. L., Read, R. J., Zhou, A. & Carrell, R. W. Temperature-responsive release of thyroxine and its environmental adaptation in Australians. Proc. Biol. Sci. 281, 20132747 (2014).
Périard, J. D., Travers, G. J. S., Racinais, S. & Sawka, M. N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 196, 52–62 (2016).
Kosunen, K. J., Pakarinen, A. J., Kuoppasalmi, K. & Adlercreutz, H. Plasma renin activity, angiotensin II, and aldosterone during intense heat stress. J. Appl. Physiol. 41, 323–327 (1976).
Takamata, A., Mack, G. W., Stachenfeld, N. S. & Nadel, E. R. Body temperature modification of osmotically induced vasopressin secretion and thirst in humans. Am. J. Physiol. 269, R874–R880 (1995).
Noakes, T. D. et al. Three independent biological mechanisms cause exercise-associated hyponatremia: evidence from 2,135 weighed competitive athletic performances. Proc. Natl Acad. Sci. USA 102, 18550–18555 (2005).
Steiner, A. A., Carnio, E. C., Antunes-Rodrigues, J. & Branco, L. G. Role of nitric oxide in systemic vasopressin-induced hypothermia. Am. J. Physiol. 275, R937–R941 (1998).
Tang, Y. et al. Effects of arginine vasopressin on firing activity and thermosensitivity of rat PO/AH area neurons. Neuroscience 219, 10–22 (2012).
Soares, M. J. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2, 51 (2004).
Chesnokova, V. & Melmed, S. GH and senescence: a new understanding of adult GH action. J. Endocr. Soc. 6, bvab177 (2022).
Hannan, F. M., Elajnaf, T., Vandenberg, L. N., Kennedy, S. H. & Thakker, R. V. Hormonal regulation of mammary gland development and lactation. Nat. Rev. Endocrinol. 19, 46–61 (2023).
Brazaitis, M. et al. Effects of severe whole-body hyperthermia on ovarian hormone and extracellular Hsp72 responses in young adult women. Int. J. Hyperth. 36, 660–665 (2019).
Laatikainen, T., Salminen, K., Kohvakka, A. & Pettersson, J. Response of plasma endorphins, prolactin and catecholamines in women to intense heat in a sauna. Eur. J. Appl. Physiol. Occup. Physiol. 57, 98–102 (1988).
Leppaluoto, J., Tapanainen, P. & Knip, M. Heat exposure elevates plasma immunoreactive growth hormone-releasing hormone levels in man. J. Clin. Endocrinol. Metab. 65, 1035–1038 (1987).
Glasow, A. et al. Functional aspects of the effect of prolactin (PRL) on adrenal steroidogenesis and distribution of the PRL receptor in the human adrenal gland. J. Clin. Endocrinol. Metab. 81, 3103–3111 (1996).
Weber, R. F. & Calogero, A. E. Prolactin stimulates rat hypothalamic corticotropin-releasing hormone and pituitary adrenocorticotropin secretion in vitro. Neuroendocrinology 54, 248–253 (1991).
Oopik, V., Timpmann, S., Kreegipuu, K., Unt, E. & Tamm, M. Heat acclimation decreases the growth hormone response to acute constant-load exercise in the heat. Growth Horm. IGF Res. 24, 2–9 (2014).
Hasan, W. et al. The sweating apparatus in growth hormone deficiency, following treatment with r-hGH and in acromegaly. Auton. Neurosci. 89, 100–109 (2001).
Boisvert, P., Brisson, G. R. & Peronnet, F. Effect of plasma prolactin on sweat rate and sweat composition during exercise in men. Am. J. Physiol. 264, F816–F820 (1993).
Littlejohn, M. D. et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 5, 5861 (2014).
Magkos, F., Wang, X. & Mittendorfer, B. Metabolic actions of insulin in men and women. Nutrition 26, 686–693 (2010).
Gupte, A. A., Bomhoff, G. L., Touchberry, C. D. & Geiger, P. C. Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. J. Appl. Physiol. 110, 451–457 (2011).
Chung, J. et al. HSP72 protects against obesity-induced insulin resistance. Proc. Natl Acad. Sci. USA 105, 1739–1744 (2008).
Gupte, A. A., Bomhoff, G. L., Swerdlow, R. H. & Geiger, P. C. Heat treatment improves glucose tolerance and prevents skeletal muscle insulin resistance in rats fed a high-fat diet. Diabetes 58, 567–578 (2009).
Morera, P., Basirico, L., Hosoda, K. & Bernabucci, U. Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice. J. Mol. Endocrinol. 48, 129–138 (2012).
Pallubinsky, H. et al. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol. 229, e13488 (2020).
Valdes, S. et al. Ambient temperature and prevalence of diabetes and insulin resistance in the Spanish population: Di@bet.es study. Eur. J. Endocrinol. 180, 273–280 (2019).
Schliess, F. & Haussinger, D. Cell hydration and insulin signalling. Cell Physiol. Biochem. 10, 403–408 (2000).
Blauw, L. L. et al. Diabetes incidence and glucose intolerance prevalence increase with higher outdoor temperature. BMJ Open. Diabetes Res. Care 5, e000317 (2017).
Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).
Li, Y. et al. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 185, 949–966 e919 (2022).
Mandic, I. et al. The effects of exercise and ambient temperature on dietary intake, appetite sensation, and appetite regulating hormone concentrations. Nutr. Metab. 16, 29 (2019).
Yu, S. et al. Glutamatergic preoptic area neurons that express leptin receptors drive temperature-dependent body weight homeostasis. J. Neurosci. 36, 5034–5046 (2016).
Zakrzewski-Fruer, J. K., Horsfall, R. N., Cottrill, D. & Hough, J. Acute exposure to a hot ambient temperature reduces energy intake but does not affect gut hormones in men during rest. Br. J. Nutr. 125, 951–959 (2021).
Perera, F. & Nadeau, K. Climate change, fossil-fuel pollution, and children’s health. N. Engl. J. Med. 386, 2303–2314 (2022).
Watanabe, Y. G. Immunohistochemical study on the fetal rat pituitary in hyperthermia-induced exencephaly. Zool. Sci. 19, 689–694 (2002).
Mete, F., Kilic, E., Somay, A. & Yilmaz, B. Effects of heat stress on endocrine functions & behaviour in the pre-pubertal rat. Indian. J. Med. Res. 135, 233–239 (2012).
Roa, J. et al. Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc. Natl Acad. Sci. USA 115, E10758–E10767 (2018).
Aksglaede, L., Juul, A., Olsen, L. W. & Sorensen, T. I. Age at puberty and the emerging obesity epidemic. PLoS ONE 4, e8450 (2009).
Greenspan, L. C. & Lee, M. M. Endocrine disrupters and pubertal timing. Curr. Opin. Endocrinol. Diabetes Obes. 25, 49–54 (2018).
Han, S. K. et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11349–11356 (2005).
Kim, H. D. et al. Heat stress during summer attenuates expression of the hypothalamic kisspeptin, an upstream regulator of the hypothalamic–pituitary–gonadal axis, in domestic sows. Animals 12, 2967 (2022).
Plant, T. M. 60 years of neuroendocrinology: the hypothalamo-pituitary-gonadal axis. J. Endocrinol. 226, T41–T54 (2015).
Catalini, L. & Fedder, J. Characteristics of the endometrium in menstruating species: lessons learned from the animal kingdom. Biol. Reprod. 102, 1160–1169 (2020).
Han, J. et al. The damage effect of heat stress and psychological stress combined exposure on uterus in female rats. Life Sci. 286, 120053 (2021).
Tatsumi, T. et al. Age-dependent and seasonal changes in menstrual cycle length and body temperature based on big data. Obstet. Gynecol. 136, 666–674 (2020).
Notley, S. R., Dervis, S., Poirier, M. P. & Kenny, G. P. Menstrual cycle phase does not modulate whole body heat loss during exercise in hot, dry conditions. J. Appl. Physiol. 126, 286–293 (2019).
Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 86, 1307–1323 (2019).
Lin, P. H. et al. Exertional heat stroke on fertility, erectile function, and testicular morphology in male rats. Sci. Rep. 11, 3539 (2021).
Thonneau, P., Bujan, L., Multigner, L. & Mieusset, R. Occupational heat exposure and male fertility: a review. Hum. Reprod. 13, 2122–2125 (1998).
Gaskins, A. J. et al. Impact of ambient temperature on ovarian reserve. Fertil. Steril. 116, 1052–1060 (2021).
Bridges, P. J., Brusie, M. A. & Fortune, J. E. Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domest. Anim. Endocrinol. 29, 508–522 (2005).
Booth, G. L. et al. Influence of environmental temperature on risk of gestational diabetes. CMAJ 189, E682–E689 (2017).
Samuels, L. et al. Physiological mechanisms of the impact of heat during pregnancy and the clinical implications: review of the evidence from an expert group meeting. Int. J. Biometeorol. 66, 1505–1513 (2022).
Ullah, S. et al. Heat exposure affected the reproductive performance of pregnant mice: enhancement of autophagy and alteration of subcellular structure in the corpus luteum. Reprod. Biol. 19, 261–269 (2019).
Part, C. et al. How do high ambient temperatures affect infant feeding practices? A prospective cohort study of postpartum women in Bobo-Dioulasso, Burkina Faso. BMJ Open. 12, e061297 (2022).
do Amaral, B. C. et al. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domest. Anim. Endocrinol. 38, 38–45 (2010).
Tao, S. et al. Impact of heat stress on lactational performance of dairy cows. Theriogenology 150, 437–444 (2020).
Ouellet, V. et al. Endocrine signals altered by heat stress impact dairy cow mammary cellular processes at different stages of the dry period. Animals 11, 563 (2021).
Zeng, H., Li, S., Zhai, Y., Chang, H. & Han, Z. Preliminary transcriptome analysis of long noncoding RNA in hypothalamic–pituitary–mammary gland axis of dairy cows under heat stress. Biomolecules 13, 390 (2023).
Modi, M. & Dhillo, W. S. The neuroendocrinology of the preoptic area in menopause: symptoms and therapeutic strategies. Handb. Clin. Neurol. 179, 455–460 (2021).
Freeman, E. W., Sammel, M. D. & Sanders, R. J. Risk of long-term hot flashes after natural menopause: evidence from the Penn Ovarian Aging Study cohort. Menopause 21, 924–932 (2014).
Mukarram, M. et al. Menopausal symptoms in underserved and homeless women living in extreme temperatures in the Southwest. Women’s Health Rep. 2, 44–52 (2021).
GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).
Maley, M. J., Hunt, A. P., Stewart, I. B., Faulkner, S. H. & Minett, G. M. Passive heating and glycaemic control in non-diabetic and diabetic individuals: a systematic review and meta-analysis. PLoS ONE 14, e0214223 (2019).
Burkart, K. G. et al. Estimating the cause-specific relative risks of non-optimal temperature on daily mortality: a two-part modelling approach applied to the Global Burden of Disease Study. Lancet 398, 685–697 (2021).
Miyamura, K., Nawa, N., Nishimura, H., Fushimi, K. & Fujiwara, T. Association between heat exposure and hospitalization for diabetic ketoacidosis, hyperosmolar hyperglycemic state, and hypoglycemia in Japan. Env. Int. 167, 107410 (2022).
Schwartz, J. Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology 16, 67–72 (2005).
Kenny, G. P., Sigal, R. J. & McGinn, R. Body temperature regulation in diabetes. Temperature 3, 119–145 (2016).
Notley, S. R. et al. Exercise heat stress in patients with and without type 2 diabetes. JAMA 322, 1409–1411 (2019).
Parker, R. J. & Davidson, A. C. Hypothyroidism – an unexpected diagnosis following emergency treatment for heatstroke. Int. J. Clin. Pract. 59, 31–33 (2005).
Siegler, R. W. Fatal heatstroke in a young woman with previously undiagnosed Hashimoto’s thyroiditis. J. Forensic Sci. 43, 1237–1240 (1998).
Jang, W. et al. Clinical characteristics of patients with adrenal insufficiency and fever. J. Korean Med. Sci. 36, e152 (2021).
Kinoshita, H. et al. Low body temperature, a frequently observed manifestation of patients with adrenocortical insufficiency that can recover with glucocorticoid administration: case series of 15 patients. Endocrinol. Stud. 2, e2 (2012).
Hartman, F. A., Lockwood, J. E. & Lockie, L. M. Lowered resistance to heat in adrenal insufficiency. Exp. Biol. Med. 29, 409–410 (1932).
Juul, A. et al. Growth hormone deficiency and hyperthermia during exercise: a controlled study of sixteen GH-deficient patients. J. Clin. Endocrinol. Metab. 80, 3335–3340 (1995).
Behr, R., Dietrich, C. & Brück, K. in Thermal Balance in Health and Disease (eds Zeisberger, E., Schönbaum, E. & Lomax, P) 267–276 (Birkhäuser, 1994).
Karan, A. et al. A stroke of luck: central diabetes insipidus unmasked by a heat stroke. Cureus 14, e30768 (2022).
Ongphiphadhanakul, B. & Rajatanavin, R. Diabetes insipidus: another cause of hormonal hyperthermia. J. Med. Assoc. Thai 75, 127–132 (1992).
Bernhardt, J. M. et al. Development of a screening tool for assessment of climate change-related heat illness in the clinical setting. J. Am. Assoc. Nurse Pract. 35, 291–298 (2023).
Ramphal-Naley, L. Screening for heat stress in workers and athletes. Proc. (Bayl. Univ. Med. Cent.) 25, 224–228 (2012).
Hanna, E. G. & Tait, P. W. Limitations to thermoregulation and acclimatization challenge human adaptation to global warming. Int. J. Env. Res. Public. Health 12, 8034–8074 (2015).
Layton, J. B. et al. Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions. PLoS ONE 15, e0243665 (2020).
Adubofour, K. O., Kajiwara, G. T., Goldberg, C. M. & King-Angell, J. L. Oxybutynin-induced heatstroke in an elderly patient. Ann. Pharmacother. 30, 144–147 (1996).
Ahmad, S., Reyes, J. V. M. & Lieber, J. Oxybutynin-induced hyperthermia in a patient with Parkinson’s disease. Cureus 13, e14701 (2021).
O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).
Gordon, C. J. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol. Behav. 179, 55–66 (2017).
Ganeshan, K. & Chawla, A. Warming the mouse to model human diseases. Nat. Rev. Endocrinol. 13, 458–465 (2017).
Lees, A. M. et al. The impact of heat load on cattle. Animals 9, 322 (2019).
Gomez-Prado, J. et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: an overview. Front. Vet. Sci. 9, 1023294 (2022).
Cramer, T., Rosenberg, T., Kisliouk, T. & Meiri, N. Early-life epigenetic changes along the corticotropin-releasing hormone (CRH) gene influence resilience or vulnerability to heat stress later in life. Mol. Psychiatry 24, 1013–1026 (2019).
Dreiling, C. E., Carman, F. S. 3rd & Brown, D. E. Maternal endocrine and fetal metabolic responses to heat stress. J. Dairy Sci. 74, 312–327 (1991).
Itoh, F., Obara, Y., Rose, M. T., Fuse, H. & Hashimoto, H. Insulin and glucagon secretion in lactating cows during heat exposure. J. Anim. Sci. 76, 2182–2189 (1998).
Meltzer, A. Thermoneutral zone and resting metabolic rate of broilers. Br. Poult. Sci. 24, 471–476 (1983).
Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92, 2667–2679 (2002).
Habimana, V. et al. Heat stress effects on milk yield traits and metabolites and mitigation strategies for dairy cattle breeds reared in tropical and sub-tropical countries. Front. Vet. Sci. 10, 1121499 (2023).
Gourdine, J. L., Rauw, W. M., Gilbert, H. & Poullet, N. The genetics of thermoregulation in pigs: a review. Front. Vet. Sci. 8, 770480 (2021).
Ruiz-Ortega, M. et al. Thermoregulatory response of blackbelly adult ewes and female lambs during the summer under tropical conditions in Southern Mexico. Animals 12, 1860 (2022).
Epstein, Y., Albukrek, D., Kalmovitc, B., Moran, D. S. & Shapiro, Y. Heat intolerance induced by antidepressants. Ann. N. Y. Acad. Sci. 813, 553–558 (1997).
Karachristianou, S., Papamichalis, E., Sarantopoulos, A., Boura, P. & Georgiadis, G. Hypohidrosis induced by topiramate in an adult patient. Epileptic Disord. 15, 203–206 (2013).
Johannsen, D. L. et al. Effect of short-term thyroxine administration on energy metabolism and mitochondrial efficiency in humans. PLoS ONE 7, e40837 (2012).
Celi, F. S. et al. Metabolic effects of liothyronine therapy in hypothyroidism: a randomized, double-blind, crossover trial of liothyronine versus levothyroxine. J. Clin. Endocrinol. Metab. 96, 3466–3474 (2011).
Chen, Y. & Yu, T. Testosterone mediates hyperthermic response of mice to heat exposure. Life Sci. 214, 34–40 (2018).
Bodel, P. & Dillard, M. Studies on steroid fever: I. Production of leukocyte pyrogen in vitro by etiocholanolone. J. Clin. Invest. 47, 107–117 (1968).
Stachenfeld, N. S., Silva, C. & Keefe, D. L. Estrogen modifies the temperature effects of progesterone. J. Appl. Physiol. 88, 1643–1649 (2000).
Acknowledgements
F.M.H. and S.H.K. gratefully acknowledge the support of the Family Larsson-Rosenquist Foundation. R.V.T. is supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme, and has received an NIHR Senior Investigator Award (grant number NF- SI-0514–10091).
Author information
Authors and Affiliations
Contributions
F.M.H., M.K.S.L., J.K.W.L., S.K. and T.E. researched data for the article and wrote the manuscript. S.H.K. and R.V.T. reviewed and edited the manuscript. All authors made substantial contributions to discussion of the content.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Endocrinology thanks Nisha Charkoudian, Roderick Clifton-Bligh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hannan, F.M., Leow, M.K.S., Lee, J.K.W. et al. Endocrine effects of heat exposure and relevance to climate change. Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01017-4
Accepted:
Published:
DOI: https://doi.org/10.1038/s41574-024-01017-4