Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy

Abstract

Breast cancer is the most common invasive malignancy in the world, with millions of survivors living today. Type 2 diabetes mellitus (T2DM) is also a globally prevalent disease that is a widely studied risk factor for breast cancer. Most breast tumours express the oestrogen receptor and are treated with systemic therapies designed to disrupt oestrogen-dependent signalling. Since the advent of targeted endocrine therapy six decades ago, the mortality from breast cancer has steadily declined; however, during the past decade, an elevated risk of T2DM after breast cancer treatment has been reported, particularly for those who received endocrine therapy. In this Review, we highlight key events in the history of endocrine therapies, beginning with the development of tamoxifen. We also summarize the sequence of reported adverse metabolic effects, which include dyslipidaemia, hepatic steatosis and impaired glucose tolerance. We discuss the limitations of determining a causal role for breast cancer treatments in T2DM development from epidemiological data and describe informative preclinical studies that suggest complex mechanisms through which endocrine therapy might drive T2DM risk and progression. We also reinforce the life-saving benefits of endocrine therapy and highlight the need for better predictive biomarkers of T2DM risk and preventive strategies for the growing population of breast cancer survivors.

Key points

  • Endocrine therapies for breast cancer might increase the risk of type 2 diabetes mellitus (T2DM) development in some patients.

  • Oestrogens and oestrogen receptor activation protect against metabolic disease and are disrupted with breast cancer treatment.

  • Tamoxifen treatment promotes dyslipidaemia and hepatic steatosis in some people and also has adipose-specific effects in preclinical and clinical studies.

  • One paradigm of T2DM development centres on dysfunctional adipose tissue expansion.

  • Preclinical studies indicate that adipose tissue might be an early target of endocrine therapies for breast cancer.

  • Endocrine therapies save lives, so an urgent need exists to understand any associated T2DM risk and offer interventions for patients with breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The vicious cycle surrounding T2DM and breast cancer.
Fig. 2: A brief history of endocrine therapy for breast cancer.
Fig. 3: ER expression in peripheral metabolic tissues.
Fig. 4: Proposed model of adipose tissue as an early target of endocrine therapy.

Similar content being viewed by others

References

  1. World Health Organization. Breast cancer. WHO https://www.who.int/news-room/fact-sheets/detail/breast-cancer (2023).

  2. Pan, H. et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mouridsen, H., Palshof, T., Patterson, J. & Battersby, L. Tamoxifen in advanced breast cancer. Cancer Treat. Rev. 5, 131–141 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Meisel, J. L., Venur, V. A., Gnant, M. & Carey, L. Evolution of targeted therapy in breast cancer: where precision medicine began. Am. Soc. Clin. Oncol. Educ. Book 38, 78–86 (2018).

    Article  PubMed  Google Scholar 

  5. Early Breast Cancer Trialists’ Collaborative Group. Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. An overview of 61 randomized trials among 28,896 women. N. Engl. J. Med. 319, 1681–1692 (1988).

    Article  Google Scholar 

  6. Fisher, B. et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N. Engl. J. Med. 320, 479–484 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Rutqvist, L. E., Johansson, H., Stockholm Breast Cancer Study Group. Long-term follow-up of the randomized Stockholm trial on adjuvant tamoxifen among postmenopausal patients with early stage breast cancer. Acta Oncol. 46, 133–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Nayfield, S. G., Karp, J. E., Ford, L. G., Dorr, F. A. & Kramer, B. S. Potential role of tamoxifen in prevention of breast cancer. J. Natl Cancer Inst. 83, 1450–1459 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Vogel, V. G. et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Santen, R. J., Brodie, H., Simpson, E. R., Siiteri, P. K. & Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev. 30, 343–375 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Coombes, R. C., Goss, P., Dowsett, M., Gazet, J. C. & Brodie, A. 4-Hydroxyandrostenedione in treatment of postmenopausal patients with advanced breast cancer. Lancet 2, 1237–1239 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Buzdar, A. U. et al. Anastrozole versus megestrol acetate in the treatment of postmenopausal women with advanced breast carcinoma: results of a survival update based on a combined analysis of data from two mature phase III trials. Arimidex Study Group. Cancer 83, 1142–1152 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Nabholtz, J. M. et al. Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J. Clin. Oncol. 18, 3758–3767 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, K. A. et al. Menopause is a determinant of breast aromatase expression and its associations with BMI, inflammation, and systemic markers. J. Clin. Endocrinol. Metab. 102, 1692–1701 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coombes, R. C. et al. A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N. Engl. J. Med. 350, 1081–1092 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Baum, M. et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359, 2131–2139 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Mouridsen, H. et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol. 19, 2596–2606 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Mouridsen, H. et al. Phase III study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J. Clin. Oncol. 21, 2101–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Goss, P. E. & Strasser, K. Aromatase inhibitors in the treatment and prevention of breast cancer. J. Clin. Oncol. 19, 881–894 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Davies, C. et al. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mamounas, E. P. et al. Ten-year update: NRG Oncology/NSABP B-42 randomized trial: extended letrozole therapy in early-stage breast cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djad078 (2023).

  23. Vergote, I. & Robertson, J. F. Fulvestrant is an effective and well-tolerated endocrine therapy for postmenopausal women with advanced breast cancer: results from clinical trials. Br. J. Cancer 90, S11–S14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bidard, F. C. et al. Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial. J. Clin. Oncol. 40, 3246–3256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pagani, O. et al. Adjuvant exemestane with ovarian suppression in premenopausal breast cancer: long-term follow-up of the combined TEXT and SOFT trials. J. Clin. Oncol. 41, 1376–1382 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Early Breast Cancer Trialists’ Collaborative Group. Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: a patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol. 23, 382–392 (2022).

    Article  Google Scholar 

  27. Bertelli, G. et al. Adjuvant tamoxifen in primary breast cancer: influence on plasma lipids and antithrombin III levels. Breast cancer Res. Treat. 12, 307–310 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Bruning, P. F. et al. Tamoxifen, serum lipoproteins and cardiovascular risk. Br. J. Cancer 58, 497–499 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Love, R. R. et al. Effects of tamoxifen therapy on lipid and lipoprotein levels in postmenopausal patients with node-negative breast cancer. J. Natl Cancer Inst. 82, 1327–1332 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Rossner, S. & Wallgren, A. Serum lipoproteins and proteins after breast cancer surgery and effects of tamoxifen. Atherosclerosis 52, 339–346 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Thangaraju, M., Kumar, K., Gandhirajan, R. & Sachdanandam, P. Effect of tamoxifen on plasma lipids and lipoproteins in postmenopausal women with breast cancer. Cancer 73, 659–663 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Montagnani, A. et al. The effects on lipid serum levels of a 2-year adjuvant treatment with exemestane after tamoxifen in postmenopausal women with early breast cancer. Eur. J. Intern. Med. 19, 592–597 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Francini, G. et al. Exemestane after tamoxifen as adjuvant hormonal therapy in postmenopausal women with breast cancer: effects on body composition and lipids. Br. J. Cancer 95, 153–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cigler, T. et al. A randomized, placebo-controlled trial (NCIC CTG MAP.2) examining the effects of exemestane on mammographic breast density, bone density, markers of bone metabolism and serum lipid levels in postmenopausal women. Breast Cancer Res. Treat. 126, 453–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Wasan, K. M. et al. Lipid concentrations in postmenopausal women on letrozole after 5 years of tamoxifen: an NCIC CTG MA.17 sub-study. Breast Cancer Res. Treat. 136, 769–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Hozumi, Y. et al. The effect of exemestane, anastrozole, and tamoxifen on lipid profiles in Japanese postmenopausal early breast cancer patients: final results of National Surgical Adjuvant Study BC 04, the TEAM Japan sub-study. Ann. Oncol. 22, 1777–1782 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. [No authors listed] CORRIGENDUM to ‘Steroidal aromatase inhibitors have a more favorable effect on lipid profiles than nonsteroidal aromatase inhibitors in postmenopausal women with early breast cancer: a prospective cohort study’. Ther. Adv. Med. Oncol. 12, 1758835920956880 (2020).

  38. Wang, X. et al. Steroidal aromatase inhibitors have a more favorable effect on lipid profiles than nonsteroidal aromatase inhibitors in postmenopausal women with early breast cancer: a prospective cohort study. Ther. Adv. Med. Oncol. 12, 1758835920925991 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boszkiewicz, K., Piwowar, A. & Petryszyn, P. Aromatase inhibitors and risk of metabolic and cardiovascular adverse effects in breast cancer patients — a systematic review and meta-analysis. J. Clin. Med. 11, 3133 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eslam, M., Sanyal, A. J., George, J. International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Pinto, H. C. et al. Tamoxifen-associated steatohepatitis — report of three cases. J. Hepatol. 23, 95–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa, Y., Murata, Y., Nishioka, A., Inomata, T. & Yoshida, S. Tamoxifen-induced fatty liver in patients with breast cancer. Lancet 351, 725 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Bruno, S. et al. Incidence and risk factors for non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in Italian tamoxifen chemoprevention trial. Br. Med. J. 330, 932 (2005).

    Article  Google Scholar 

  44. Nguyen, M. C., Stewart, R. B., Banerji, M. A., Gordon, D. H. & Kral, J. G. Relationships between tamoxifen use, liver fat and body fat distribution in women with breast cancer. Int. J. Obes. Relat. Metab. Disord. 25, 296–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Cheung, Y. M., Ramchand, S. K., Yeo, B. & Grossmann, M. Cardiometabolic effects of endocrine treatment of estrogen receptor-positive early breast cancer. J. Endocr. Soc. 3, 1283–1301 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong, N. et al. Different patterns in the risk of newly developed fatty liver and lipid changes with tamoxifen versus aromatase inhibitors in postmenopausal women with early breast cancer: a propensity score-matched cohort study. Eur. J. Cancer 82, 103–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, Y. et al. A prospective, randomized study on hepatotoxicity of anastrozole compared with tamoxifen in women with breast cancer. Cancer Sci. 105, 1182–1188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. I. et al. Aromatase inhibitors and newly developed nonalcoholic fatty liver disease in postmenopausal patients with early breast cancer: a propensity score-matched cohort study. Oncologist 24, e653–e661 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Harborg, S. et al. Obesity and breast cancer prognosis: pre-diagnostic anthropometric measures in relation to patient, tumor, and treatment characteristics. Cancer Metab. 11, 8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Camoriano, J. K. et al. Weight change in women treated with adjuvant therapy or observed following mastectomy for node-positive breast cancer. J. Clin. Oncol. 8, 1327–1334 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Kohrt, W. M. & Wierman, M. E. Preventing fat gain by blocking follicle-stimulating hormone. N. Engl. J. Med. 377, 293–295 (2017).

    Article  PubMed  Google Scholar 

  52. Sestak, I. et al. Weight change associated with anastrozole and tamoxifen treatment in postmenopausal women with or at high risk of developing breast cancer. Breast Cancer Res. Treat. 134, 727–734 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Hoskin, P. J., Ashley, S. & Yarnold, J. R. Weight gain after primary surgery for breast cancer-effect of tamoxifen. Breast Cancer Res. Treat. 22, 129–132 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Kumar, N. B. et al. Weight gain associated with adjuvant tamoxifen therapy in stage I and II breast cancer: fact or artifact? Breast Cancer Res. Treat. 44, 135–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Fisher, B. et al. Five versus more than five years of tamoxifen therapy for breast cancer patients with negative lymph nodes and estrogen receptor-positive tumors. J. Natl Cancer Inst. 88, 1529–1542 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Day, R. National Surgical Adjuvant Breast and Bowel Projet P-1 Study. Quality of life and tamoxifen in a breast cancer prevention trial: a summary of findings from the NSABP P-1 study. Ann. NY Acad. Sci. 949, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Sheean, P. M., Hoskins, K. & Stolley, M. Body composition changes in females treated for breast cancer: a review of the evidence. Breast Cancer Res. Treat. 135, 663–680 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ali, P. A., al-Ghorabie, F. H., Evans, C. J., el-Sharkawi, A. M. & Hancock, D. A. Body composition measurements using DXA and other techniques in tamoxifen-treated patients. Appl. Radiat. Isot. 49, 643–645 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. van Londen, G. J. et al. The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res. Treat. 125, 441–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Gibb, F. W. et al. Higher insulin resistance and adiposity in postmenopausal women with breast cancer treated with aromatase inhibitors. J. Clin. Endocrinol. Metab. 104, 3670–3678 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Johnson, J. D. On the causal relationships between hyperinsulinaemia, insulin resistance, obesity and dysglycaemia in type 2 diabetes. Diabetologia 64, 2138–2146 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Lipscombe, L. L., Goodwin, P. J., Zinman, B., McLaughlin, J. R. & Hux, J. E. Increased prevalence of prior breast cancer in women with newly diagnosed diabetes. Breast Cancer Res. Treat. 98, 303–309 (2006).

    Article  PubMed  Google Scholar 

  63. Bordeleau, L. et al. Diabetes and breast cancer among women with BRCA1 and BRCA2 mutations. Cancer 117, 1812–1818 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kwan, M. L. et al. Risk of cardiometabolic risk factors in women with and without a history of breast cancer: the pathways heart study. J. Clin. Oncol. 40, 1635–1646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lipscombe, L. L. et al. Association between tamoxifen treatment and diabetes: a population-based study. Cancer 118, 2615–2622 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Santorelli, M. L. et al. Hormonal therapy for breast cancer and diabetes incidence among postmenopausal women. Ann. Epidemiol. 26, 436–440 (2016).

    Article  PubMed  Google Scholar 

  67. Sun, L. M., Chen, H. J., Liang, J. A., Li, T. C. & Kao, C. H. Association of tamoxifen use and increased diabetes among Asian women diagnosed with breast cancer. Br. J. Cancer 111, 1836–1842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ng, H. S., Koczwara, B., Roder, D., Niyonsenga, T. & Vitry, A. Incidence of comorbidities in women with breast cancer treated with tamoxifen or an aromatase inhibitor: an Australian population-based cohort study. J. Comorb. 8, 16–24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ye, F. et al. The influence of hormone therapy on secondary diabetes mellitus in breast cancer: a meta-analysis. Clin. Breast Cancer 22, e48–e58 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, J. E. et al. Effects of endocrine therapy on cardiovascular diseases and type 2 diabetes among breast cancer survivors: the National Health Insurance Service Database of Korea. J. Am. Heart Assoc. 11, e026743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Choi, Y. J., Bak, K., Yeo, Y., Choi, Y. & Shin, S. Incident type 2 diabetes risk of selective estrogen receptor modulators in female patients with breast cancer. Pharmaceuticals 14, 925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waters, E. A., McNeel, T. S., Stevens, W. M. & Freedman, A. N. Use of tamoxifen and raloxifene for breast cancer chemoprevention in 2010. Breast Cancer Res. Treat. 134, 875–880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Francucci, C. M. et al. Effects of raloxifene on body fat distribution and lipid profile in healthy post-menopausal women. J. Endocrinol. Invest. 28, 623–631 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Tommaselli, G. A. et al. Serum leptin levels and body composition in postmenopausal women treated with tibolone and raloxifene. Menopause 13, 660–668 (2006).

    Article  PubMed  Google Scholar 

  75. Lee, C. C., Kasa-Vubu, J. Z. & Supiano, M. A. Differential effects of raloxifene and estrogen on insulin sensitivity in postmenopausal women. J. Am. Geriatr. Soc. 51, 683–688 (2003).

    Article  PubMed  Google Scholar 

  76. Fabian, C. J. et al. Effect of bazedoxifene and conjugated estrogen (Duavee) on breast cancer risk biomarkers in high-risk women: a pilot study. Cancer Prev. Res. 12, 711–720 (2019).

    Article  CAS  Google Scholar 

  77. Xu, B., Lovre, D. & Mauvais-Jarvis, F. The effect of selective estrogen receptor modulators on type 2 diabetes onset in women: basic and clinical insights. J. Diabetes Complicat. 31, 773–779 (2017).

    Article  Google Scholar 

  78. Lovre, D. et al. Conjugated estrogens and bazedoxifene improve beta cell function in obese menopausal women. J. Endocr. Soc. 3, 1583–1594 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, J. H. et al. Tissue-selective estrogen complexes with bazedoxifene prevent metabolic dysfunction in female mice. Mol. Metab. 3, 177–190 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rillamas-Sun, E. et al. Development of cardiometabolic risk factors following endocrine therapy in women with breast cancer. Breast Cancer Res. Treat. 201, 117–126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hamood, R., Hamood, H., Merhasin, I. & Keinan-Boker, L. Diabetes after hormone therapy in breast cancer survivors: a case-cohort study. J. Clin. Oncol. 36, 2061–2069 (2018).

    Article  PubMed  Google Scholar 

  82. Sun, H. et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article  PubMed  Google Scholar 

  83. Deutsch, A. J., Ahlqvist, E. & Udler, M. S. Phenotypic and genetic classification of diabetes. Diabetologia 65, 1758–1769 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Heilbronn, L., Smith, S. R. & Ravussin, E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 28, S12–S21 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ravussin, E. & Smith, S. R. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann. NY Acad. Sci. 967, 363–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, X. & Smith, U. Adipose tissue distribution and risk of metabolic disease: does thiazolidinedione-induced adipose tissue redistribution provide a clue to the answer. Diabetologia 50, 1127–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Elks, M. L. Fat oxidation and diabetes of obesity: the Randle hypothesis revisited. Med. Hypotheses 33, 257–260 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Iyengar, N. M. et al. Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prev. Res. 10, 235–243 (2017).

    Article  CAS  Google Scholar 

  89. Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, H. et al. The immunomodulatory effects of endocrine therapy in breast cancer. J. Exp. Clin. Cancer Res. 40, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akyol, M. et al. The effects of adjuvant endocrine treatment on serum leptin, serum adiponectin and body composition in patients with breast cancer: the Izmir Oncology Group (IZOG) study. Chemotherapy 61, 57–64 (2016).

    Article  PubMed  Google Scholar 

  92. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. White, U., Fitch, M. D., Beyl, R. A., Hellerstein, M. K. & Ravussin, E. Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial. Diabetologia 64, 159–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Giles, E. D. & Wellberg, E. A. Preclinical models to study obesity and breast cancer in females: considerations, caveats, and tools. J. Mammary Gland. Biol. Neoplasia 25, 237–253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Estrada-Meza, J. et al. Tamoxifen treatment in the neonatal period affects glucose homeostasis in adult mice in a sex-dependent manner. Endocrinology 162, bqab098 (2021).

    Article  PubMed  Google Scholar 

  96. Hesselbarth, N. et al. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice. Biochem. Biophys. Res. Commun. 464, 724–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, L. et al. Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis. 6, e1586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, Z. et al. Short-term tamoxifen treatment has long-term effects on metabolism in high-fat diet-fed mice with involvement of Nmnat2 in POMC neurons. FEBS Lett. 592, 3305–3316 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Ye, R. et al. Impact of tamoxifen on adipocyte lineage tracing: inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol. Metab. 4, 771–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao, L. et al. Even a low dose of tamoxifen profoundly induces adipose tissue browning in female mice. Int. J. Obes. 44, 226–234 (2020).

    Article  CAS  Google Scholar 

  101. Pike, S. et al. In vitro effects of tamoxifen on adipose-derived stem cells. Wound Repair Regen. 23, 728–736 (2015).

    Article  PubMed  Google Scholar 

  102. Stout, M. B., Scalzo, R. L. & Wellberg, E. A. Persistent metabolic effects of tamoxifen: considerations for an experimental tool and clinical breast cancer treatment. Endocrinology 162, bqab126 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Guillaume, M. et al. Selective activation of estrogen receptor alpha activation function-1 is sufficient to prevent obesity, steatosis, and insulin resistance in mouse. Am. J. Pathol. 187, 1273–1287 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Scalzo, R. L. et al. Breast cancer endocrine therapy promotes weight gain with distinct adipose tissue effects in lean and obese female mice. Endocrinology 162, bqab174 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Johansson, H. et al. Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer. Cancer Res. 68, 9512–9518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Butera, P. C. Estradiol and the control of food intake. Physiol. Behav. 99, 175–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 13, 397–406 (2014).

    Article  CAS  Google Scholar 

  108. Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B. & Cooke, P. S. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl Acad. Sci. USA 97, 12729–12734 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jones, M. E. et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl Acad. Sci. USA 97, 12735–12740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stubbins, R. E., Holcomb, V. B., Hong, J. & Nunez, N. P. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 51, 861–870 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Manrique, C. et al. Loss of estrogen receptor alpha signaling leads to insulin resistance and obesity in young and adult female mice. Cardiorenal Med. 2, 200–210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bryzgalova, G. et al. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. Diabetologia 49, 588–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Sharma, G. & Prossnitz, E. R. GPER/GPR30 knockout mice: effects of GPER on metabolism. Methods Mol. Biol. 1366, 489–502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sharma, G. & Prossnitz, E. R. G-protein-coupled estrogen receptor (GPER) and sex-specific metabolic homeostasis. Adv. Exp. Med. Biol. 1043, 427–453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ribas, V. et al. Skeletal muscle action of estrogen receptor alpha is critical for the maintenance of mitochondrial function and metabolic homeostasis in females. Sci. Transl Med. 8, 334ra354 (2016).

    Article  Google Scholar 

  116. Inigo, M. R. et al. Estrogen receptor-alpha in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation. Mol. Metab. 34, 1–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Zhou, Z. et al. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci. Transl Med. 12, eaax8096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu, Q. et al. Inhibitory effect of 17beta-estradiol on triglyceride synthesis in skeletal muscle cells is dependent on ESR1 and not ESR2. Mol. Med. Rep. 19, 5087–5096 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Collins, B. C. et al. Estrogen regulates the satellite cell compartment in females. Cell Rep. 28, 368–381.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kitajima, Y. & Ono, Y. Estrogens maintain skeletal muscle and satellite cell functions. J. Endocrinol. 229, 267–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Shao, X. et al. The asymmetrical ESR1 signaling in muscle progenitor cells determines the progression of adolescent idiopathic scoliosis. Cell Discov. 9, 44 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Barros, R. P., Machado, U. F., Warner, M. & Gustafsson, J. A. Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. Proc. Natl Acad. Sci. USA 103, 1605–1608 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Barros, R. P., Gabbi, C., Morani, A., Warner, M. & Gustafsson, J. A. Participation of ERalpha and ERbeta in glucose homeostasis in skeletal muscle and white adipose tissue. Am. J. Physiol. Endocrinol. Metab. 297, E124–E133 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Sharma, G. & Prossnitz, E. R. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. Endocr. Metab. Sci. 2, 100080 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hevener, A. L., Zhou, Z., Drew, B. G. & Ribas, V. The role of skeletal muscle estrogen receptors in metabolic homeostasis and insulin sensitivity. Adv. Exp. Med. Biol. 1043, 257–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Alonso-Magdalena, P. et al. Pancreatic insulin content regulation by the estrogen receptor ER alpha. PLoS ONE 3, e2069 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Balhuizen, A., Kumar, R., Amisten, S., Lundquist, I. & Salehi, A. Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol. Cell. Endocrinol. 320, 16–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Kumar, R., Balhuizen, A., Amisten, S., Lundquist, I. & Salehi, A. Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets. Endocrinology 152, 2568–2579 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Le May, C. et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc. Natl Acad. Sci. USA 103, 9232–9237 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sharma, G. & Prossnitz, E. R. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells. Endocrinology 152, 3030–3039 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tiano, J. & Mauvais-Jarvis, F. Selective estrogen receptor modulation in pancreatic β-cells and the prevention of type 2 diabetes. Islets 4, 173–176 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tiano, J. P. et al. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes. J. Clin. Invest. 121, 3331–3342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Musatov, S. et al. Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc. Natl Acad. Sci. USA 104, 2501–2506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Correa, S. M. et al. An estrogen-responsive module in the ventromedial hypothalamus selectively drives sex-specific activity in females. Cell Rep. 10, 62–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Z. et al. Estrogen receptor alpha in the brain mediates tamoxifen-induced changes in physiology in mice. eLife 10, e63333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lopez, M. et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes 55, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Wade, G. N. & Heller, H. W. Tamoxifen mimics the effects of estradiol on food intake, body weight, and body composition in rats. Am. J. Physiol. 264, R1219–R1223 (1993).

    CAS  PubMed  Google Scholar 

  138. Palmisano, B. T., Zhu, L. & Stafford, J. M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 1043, 227–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu, L. et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 62, 424–434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hart-Unger, S. et al. Hormone signaling and fatty liver in females: analysis of estrogen receptor alpha mutant mice. Int. J. Obes. 41, 945–954 (2017).

    Article  CAS  Google Scholar 

  141. Cole, L. K., Jacobs, R. L. & Vance, D. E. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology 52, 1258–1265 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Larosche, I. et al. Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and triggers steatosis in mouse liver. J. Pharmacol. Exp. Ther. 321, 526–535 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Saavedra-Pena, R. D. M., Taylor, N., Flannery, C. & Rodeheffer, M. S. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep. 42, 112390 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jeffery, E. et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 24, 142–150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the guidance of S. Wright-Hobart, a breast cancer survivor and patient advocate. Her experience with breast cancer therapy and that of her fellow survivors provide a critical perspective and inspired this line of work in our laboratories. N.S.T. acknowledges the support of the Harold Hamm Diabetes Center and Stephenson Cancer Center postdoctoral fellowship, and E.A.W. acknowledges the support of the Human Environmental Sciences Institute THRIVE grant.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elizabeth A. Wellberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Emily Gallagher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ArrayExpress: www.ebi.ac.uk/arrayexpress/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, N.S., Scalzo, R.L. & Wellberg, E.A. Diabetes mellitus in breast cancer survivors: metabolic effects of endocrine therapy. Nat Rev Endocrinol 20, 16–26 (2024). https://doi.org/10.1038/s41574-023-00899-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00899-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer