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Abstract

Oestrogens and their receptors contribute broadly to physiology and 
diseases. In premenopausal women, endogenous oestrogens protect 
against cardiovascular, metabolic and neurological diseases and are 
involved in hormone-sensitive cancers such as breast cancer. Oestrogens 
and oestrogen mimetics mediate their effects via the cytosolic and 
nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β 
(ERβ) and membrane subpopulations as well as the 7-transmembrane 
G protein-coupled oestrogen receptor (GPER). GPER, which dates back 
more than 450 million years in evolution, mediates both rapid signalling 
and transcriptional regulation. Oestrogen mimetics (such as phyto-
oestrogens and xenooestrogens including endocrine disruptors) and 
licensed drugs such as selective oestrogen receptor modulators (SERMs) 
and d  o w  nr  e g  ul  ators (SERDs) also modulate oestrogen receptor activity 
in both health and disease. Following up on our previous Review of 2011, 
we herein summarize the progress made in the field of GPER research over 
the past d e c ade. W  e w il l r ev iew molecular, cellular and pharmacological 
aspects of GPER signalling and function, its contribution to physiology, 
health and disease, and the potential of GPER to serve as a therapeutic 
target and prognostic indicator of numerous diseases. We also discuss the 
first clinical trial evaluating a GPER-selective drug and the opportunity of 
repurposing licensed drugs for the targeting of GPER in clinical medicine.
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ligands to their extracellular surface or within their transmembrane 
helices. GPER is predominantly expressed on intracellular membranes 
(the endoplasmic reticulum and Golgi apparatus), with little detected 
at the plasma membrane in many cell types14. While most investigations 
support this localization, limited expression in the plasma membrane 
in certain cell types (for example, uterine and renal epithelium), with 
constitutive internalization, has been reported17. Nuclear localization 
of GPER has also been observed and was suggested to be required for 
the GPER-mediated induction of transcription and cell migration18.

GPER signals through multiple G proteins, including Gαs
15,19 and 

Gαi
14,20 proteins, as well as via Gβγ signalling13, and possibly Gαq/11 pro-

tein21 (Fig. 1). GPER signalling involves, or possibly requires, epidermal 
growth factor (EGF) receptor transactivation13, a mechanism that, at 
the time this study was published in 2000, had only recently been 
discovered22. In addition to adenylyl cyclase19 and ERK1/2, GPER also 
activates PI3K–Akt signalling, which has been implicated in tumour 
cell survival23, activation of endothelial nitric oxide synthase (NOS3, 
also known as eNOS), nitric oxide (NO) formation and, thus, in cGMP-
dependent vasodilation24,25 (Fig. 1). GPER also regulates ion channels, 
including those for calcium26, sodium27 and potassium28, and has been 
implicated in mTOR signalling and autophagy29.

Transcriptional regulation is often a consequence of rapid sig-
nalling, yielding sustained genomic effects (Fig. 1). Rapid signalling 
pathways initiated by GPER that lead to transcriptional regulation 
include adenylyl cyclase-generated cAMP-dependent phosphorylation 
of CREB30 and MITF31 by PKA. GPER inactivates the FOXO3 transcription 
factor via Akt, promoting cell survival23. GPER-mediated ERK1 and ERK2 
activation leads to Elk1-mediated transcription, which upregulates 
FOS and subsequently CTGF, FGF2 and CYP1B1 production32,33. GPER 
can either activate or inhibit NF-κB transcriptional activity, depending  
on the cellular context34,35; GPER also γ-secretase-dependent activation 
of Notch, resulting in expression of HES1 and SNAIL36. GPER stimulation 
can activate YAP and TAZ, two homologous transcription coactiva-
tors and key effectors of the Hippo tumour suppressor pathway, via 
Gαq/11, PLCβ–PKC, ERK1/2 and the Rho–ROCK signalling pathways37 
(Fig. 1). GPER expression, and therefore function, is also regulated by 
multiple microRNAs38. Finally, basal expression and activity of GPER 
constitutively regulate expression and activity of the NADPH oxidase 
NOX1 (ref. 39) (Fig. 1), a reactive oxygen species (ROS)-producing 
enzyme implicated in many non-communicable diseases40.

Natural and synthetic ligands of GPER
Oestrogen receptors are activated by a wide range of chemical entities 
derived from diverse sources, including endogenous oestrogens, 
phytooestrogens (plant-derived oestrogens), mycooestrogens (fungus-
derived oestrogens) and xenooestrogens (synthetic molecules also known 
as ‘endocrine disruptors’) (Fig. 2). The identification and characterization 
of oestrogen receptors facilitated the development of targeted drugs, 
including selective oestrogen receptor modulators (SERMs) and selec-
tive oestrogen receptor downregulators (or degraders) (SERDs), some 
of which were, in fact, already available in the 1960s41 (Box 1). In the fol-
lowing section, we will discuss GPER-targeting steroidal ligands, xenooes-
trogens, plant-derived and fungus-derived molecules, and synthetic 
receptor-selective ligands and their activities with respect to GPER (Fig. 2).

Steroid hormones
GPER, at the time still known as the orphan receptor GPR30, was 
first linked to oestrogen-mediated signalling, in 2000, through the 
activation of ERK via transactivation of the EGF receptor13 (Box 1). 

Key points

 • Oestrogens exert multiple activities in physiology, including 
reproduction, immunity, cardiovascular and endocrine functions, 
and ageing, as well as in diseases such as hormone-sensitive cancers, 
arterial hypertension, atherosclerosis and osteoporosis.

 • Oestrogen signalling mediates both acute (non-genomic) 
and chronic (transcriptional) effects through cytosolic or nuclear 
oestrogen receptors ERα and ERβ and membrane subpopulations 
and the G protein‐coupled oestrogen receptor (GPER), which is a 
7-transmembrane protein.

 • Molecules that activate oestrogen receptors include natural 
oestrogens, phytooestrogens, mycooestrogens and synthetic 
compounds, such as selective oestrogen receptor modulators and 
downregulators and xenooestrogens (also known as endocrine 
disruptors), activate oestrogen receptors and/or GPER.

 • Research using Gper-deficient animals, GPER‐selective agonists  
and antagonists, and non-selective compounds has revealed multiple 
roles of GPER in physiology and disease, including as a constitutive 
activator of the reactive oxygen species-producing enzyme NOX1.

 • GPER holds potential to become a diagnostic, prognostic and 
therapeutic target in clinical medicine, including the repurposing of 
licensed drugs targeting GPER and the ongoing first-in-human clinical 
trial of the GPER-selective agonist G-1.

Introduction
Although actions of sex steroid hormones were described more than 
2,000 years ago1, the concept of a ‘hormone’ was first introduced in 1910 
by Starling2. It has been a hundred years since the chemical structures of 
oestro gens (and other steroids) were determined3,4 (Box 1). Identification 
and characterization of oestrogen receptors began in the 1950s by Jensen, 
Szego and others5–7, leading to the cloning of oestrogen receptor-α (ERα) 
by Chambon and associates in 1985 (ref. 8) (Box 1). In 1996, Kuiper et al.9 and 
Mosselman et al.10 cloned and identified oestrogen receptor-β (ERβ) con-
temporaneously with several reports describing the cloning of the orphan 
G protein-coupled receptor GPR30 (reviewed in refs. 7,11) (Box 1). GPR30 is 
a protein that predates the evolutionary divergence of fish and tetrapods 
more than 450 million years ago12. The discoveries that oestrogen binds to 
and activates cell signalling via GPR30 (refs. 13–15), establishing it as a trans-
membrane oestrogen receptor, resulted in its designation as the G protein- 
coupled oestro gen receptor (GPER) by the International Union of Basic and 
Clinical Pharmacology in 2008 (refs. 11,16). Following up on our previous 
article in Nature Reviews Endocrinology11, we now provide an update on 
the field of GPER research over the past decade. We will discuss advances 
made in cell signalling, molecular biology, pharmacology and genetics 
related to GPER. Special emphasis is given to the roles of GPER in patho-
physiology and human disease and as a potential diagnostic, prognostic 
and therapeutic target in numerous and diverse areas of clinical medicine.

Molecular signalling mediated by GPER
G protein-coupled receptors (GPCRs) are 7-transmembrane spanning 
proteins that conventionally reside at the plasma membrane and signal 
to heterotrimeric G proteins, among other proteins, upon binding of 
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High-affinity, competitive binding of 17β-oestradiol to GPER was 
first demonstrated in 2005 (refs. 14,15). In contrast to 17β-oestradiol, 
oestrogens, such as oestrone and oestriol, exhibit poor binding to 
GPER15. GPER shows no binding to other steroids, such as testosterone, 
progesterone, aldosterone and cortisol15,42–44, although aldosterone 
has been shown to be involved in crosstalk between the mineralocor-
ticoid receptor and GPER and between the EGF receptor and GPER43. 

The catecholoestrogen 2-methoxy-oestradiol45 and the glucuronic 
acid metabolite 17β-oestradiol-17-d-glucuronide46 act as GPER ago-
nists, whereas another catecholoestrogen, 2-hydroxy-oestradiol, is 
reported to act as an antagonist47. Dehydroepiandrosterone shows ago-
nistic behaviour towards GPER48,49, whereas its metabolite 7β-hydroxy-
epiandrosterone antagonizes GPER-mediated oestrogenic responses50. 
Most recently, 27-hydroxycholesterol, a cholesterol metabolite 

Box 1

Timeline of key discoveries in oestrogen and oestrogen receptor 
research
This timeline shows the important milestones in the discovery and 
study of oestrogen. These include oestrogen chemistry, its receptors, 
mechanisms of action and pharmacology, with particular emphasis 
on the recent advances related to the study of GPER functions in 
health, disease and drug discovery.

1920s
 • 1920s: Isolation and purification of oestrogens3,4

 • 1928: Progynon (a 16α-oestriol glucuronide extract) commercially 
produced and prescribed to treat amenorrhoea4

 • 1929: Acute vasodilatation in response to oestrogen of tissue 
transplanted into the eye277

1930s
 • 1930: Ovarian extracts containing oestrogens acutely lower 
capillary pressure278

 • 1930: Emmenin (16α-oestriol glucuronide extract) commercially 
produced and prescribed as oestrogen replacement279

 • 1938: Diethylstilbestrol (DES) discovered280

 • 1939: Acute vasodilation by oestrogens shown in humans281

1940s
 • 1941: Urine extract from pregnant mares (Premarin) marketed by 
Pfizer as an oestrogen replacement282

 • 1941: FDA approves DES for atrophic vaginitis, menopausal 
symptoms and lactation suppression283

1950s
 • 1950s: Contraceptive pill developed284

 • 1958–1960: First non-steroidal anti-oestrogen ethamoxytiphetol 
discovered285

 • 1958–1960: Radioactive tracers concentrate in reproductive 
tissues; the binding sites are called ‘oestrogen receptors’5

1960s
 • 1960s: ICI-46,474 (later named Tamoxifen) developed for use as a 
contraceptive286

 • 1966–1968: Oestrogen binding characterized in rat uterus287,288

 • 1967–1975: Rapid oestrogen effects on cAMP and intracellular 
calcium release discovered289,290

 • 1969: Purification of an oestrogen receptor from rat uterus;  
anti-receptor immunoglobulin abolishes 17β-oestradiol binding6

1970s
 • 1972: Tamoxifen repurposed for breast cancer treatment291

 • 1979: Plasma membrane oestrogen receptors identified292

1980s
 • 1985–1986: Cloning of oestrogen receptor-α (ERα)8

1990s
 • 1996: Cloning of oestrogen receptor-β (ERβ)9,10

 • 1996–1998: Cloning of GPR30 (refs. 293–299)

2000s
 • 2000–2002: The role of GPR30 in mediating rapid 17β-oestradiol 
signalling discovered13,19

 • 2005: 17β-Oestradiol binding to GPR30 demonstrated14,15

 • 2006–2009: GPR30 activation dilates human arteries and lowers 
blood pressure; 17β-oestradiol regulates human arterial GPR30 
expression; GPR30 expression prevents obesity91,121

 • 2006–2011: First GPR30-selective agonist (G-1) and antagonists 
(G15 and G36) developed67–69

 • 2008: International Union of Basic and Clinical Pharmacology 
designates GPR30 as G protein-coupled oestrogen receptor 
(GPER)16

 • 2009: Role of GPER and efficacy of G-1 treatment in multiple 
sclerosis shown119,249

2010s
 • 2010: Protective effects of GPER in myocardial reperfusion injury 
shown127

 • 2011: GPER mediates 17β-oestradiol-stimulated pancreatic β-cell 
insulin secretion26

 • 2016: GPER regulates NOX1; G36 identified as NOX1 
downregulator39,157

 • 2016: Roles of GPER in melanin production and therapeutic 
effects of G-1 in malignant melanoma shown207,228

 • 2019: Phase I clinical trial of G-1 (LNS8801) for cancer78–80

 • 2019: First ERα-selective and ERβ-selective agonist AB-1 
developed77

2020s
 • 2020: Efficacy of G-1 in obesity and diabetes mellitus treatment 
shown168
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implicated in oestrogen receptor-negative breast cancer, was reported 
to bind and activate GPER, although with relatively low affinity compared  
with its most important physiological ligand, 17β-oestradiol51.

Xenooestrogens and natural oestrogenic molecules
Xenooestrogens are a large family of chemically stable synthetic mole-
cules with oestrogenic activities often referred to as environmen-
tal oestrogens or endocrine-disrupting chemicals (EDCs). They are 
found in a wide range of consumer products and plastics, and most 
of them are toxic52. Endocrine-disrupting chemicals can be found in 
detergents, surfactants, resins, lubricants, plasticizers, fire retard-
ants and pesticides52. Xenooestrogens that bind and/or regulate the 
activity of GPER (typically acting as agonists) include bisphenol A 
(BPA), polychlorinated biphenyls (PCBs), diethylstilbestrol (DES),  

nonylphenol, dichlorodiphenyltrichloroethane (DDT) and dichlo-
rodiphenyltrichloroethylene isomers, kepone, methoxychlor and 
atrazine (Fig. 2).

Many molecules present in soy or green tea plants also target oes-
trogen receptors. Such naturally occurring phytooestrogens include 
flavonoids, isoflavonoids, chalcones, coumestans, stilbenes, lignans, gin-
senosides and tetrahydrofurandiols53. Phytooestrogens that bind and/or 
activate GPER include genistein54, daidzein55, equol56, quercetin57, resvera-
trol58, oleuropein59, icariin60 and the green tea polyphenol (-)-epicatechin61. 
The mycooestrogen zearalenone also shows agonism towards GPER54,62.

Discovery of GPER-selective ligands
Owing to the highly conserved nature of the binding sites in ERα and ERβ, 
the typical affinity difference for oestrogen receptor subtype-specific 
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compounds ranges from ~30-fold to 300-fold63. Oestrogen receptor 
subtype-biased ligands, such as propylpyrazoletriol (PPT, an ERα-
selective agonist) and diarylpropionitrile (DPN, an ERβ-selective ago-
nist) (Fig. 2), have been developed and are widely used64,65. PPT, however, 
also acts as a GPER agonist66, complicating the interpretation of its use.

The discovery and development of highly GPER-selective ligands 
were essential to facilitating research into the physiology and patho-
physiology related to this receptor. In 2006, compound library 
screening led to the identification of G-1 (1-(4-(6-bromobenzo[1,3]
dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl)- 
ethanone), a small mole cule that acts as a selective agonist of GPER67 
(Fig. 2). The discovery of GPER-selective antagonists G15 and G36 com-
plemented the use of G-1 as an agonist in understanding the roles of 
GPER in cell biology and physiology68,69. Some reports suggest that 
the activity of these compounds can vary depending on the system 
employed70,71. Other reported GPER-selective ligands include the 
agonists GPERL1 and GPERL2 (ref. 72), a series of indole-thiazole deri-
vates that act as GPER agonists73, the antagonist CIMBA (an acyclic 
analogue of G36)74, as well as the pan-oestrogen receptor and GPER 
antagonist MIBE75 (Fig. 2). Proteolysis-targeting chimaeras (PROTACs), 
which are molecules that induce degradation of specific proteins (via 
selective recruitment of E3 ubiquitin ligases and target ubiquitination 
followed by degradation in proteosomes), were developed to target 
ERα as early as 2005 (ref. 76), with a pair of 17β-oestradiol–proteolysis-
targeting chimaeras shown to degrade GPER in addition to ERα in a 
study published in 2021 (ref. 44). The 2019 discovery of AB-1, an agonist 
of ERα and ERβ that lacks affinity for GPER, should allow further dissec-
tion of the functions of ERα and/or ERβ compared with GPER in cells 
that express multiple oestrogen receptors77. Of these GPER-targeting 
ligands, only G-1 has so far entered clinical trials, specifically for use 
in combination therapy with immune checkpoint inhibitors (ICIs) in 
cancer. G-1 exhibits a favourable safety profile in these trials, either 
alone or in combination with pembrolizumab, with encouraging  
initial antitumour activity observed to date (NCT04130516)78–80.

Roles of GPER in physiology and disease
In the following sections, we will review advances in understanding the 
functions of GPER in cardiovascular and kidney disease, endocrinology 
and metabolism, gastrointestinal and liver diseases, immunity and 

immunology, neurology, and the physiological ageing process. Find-
ings are frequently based on effects due to phenotypes of Gper-deficient  
mice or the effects of GPER-selective ligands (Fig. 3). Reported pheno-
types of multiple differently derived Gper-deficient mice are not entirely 
consistent, probably due to differences in genetic background and 
other factors, including age81. The available evidence points to multiple 
roles of GPER in oestrogen-dependent and oestrogen-independent 
functions and pathologies, allowing the development of possible 
diagnostic and therapeutic approaches with regard to GPER.

Clinical genetics
Sex chromosomes, sex steroids and sex steroid receptors contrib-
ute to and determine disease risk and efficacy of pharmacological 
therapy82,83. In humans, the GPER gene maps to chromosome 7p22.3,  
a region associated with arterial hypertension in genetic linkage stud-
ies84. The GPER single-nucleotide polymorphism rs11544331, which  
results in a Pro16Leu alteration in the receptor (amino acid substitution 
of proline 16 to leucine), produces a hypofunctional variant of GPER.  
The Leu variant is associated with slightly higher blood pressure than the  
Pro variant in women but not in men, and its allele frequency is two-fold 
higher in women with hypertension compared with age-matched men85. 
The inhibitory effect of GPER on pro-inflammatory gene expression  
in induced pluripotent stem cell-derived endothelial cells is reduced in 
the GPER Leu variant compared with the Pro variant86. Moreover, GPER 
activation induces LDL receptor expression, in part by downregulating 
proprotein convertase subtilisin–kexin type 9 (PCSK9) resulting in 
increased plasma levels of LDL cholesterol in Pro16Leu variant carriers87. 
Finally, expression of the Pro16Leu variant of GPER in cancer-associated 
fibroblasts increases secretion of paracrine factors promoting migration 
of breast cancer cells88. Together, these genetic observations support 
potentially important roles for GPER for human diseases.

Cardiovascular and kidney diseases
Endogenous oestrogens in premenopausal women protect against 
cardiovascular diseases in general, and particularly against arterial 
hypertension, coronary heart disease (including myocardial infarction) 
and heart failure11,89,90. GPER is widely expressed in the cardiovascu-
lar system in mammals, including the arterial wall and the heart11. 
In the cardiovascular system, physiological functions of GPER include 

Fig. 1 | Cellular signalling pathways activated by ERα, ERβ and GPER. Non-
genomic and genomic signalling pathways are activated by oestrogen and 
oestrogenic ligands (in yellow) through binding to the three known oestrogen 
receptors, oestrogen receptor-α (ERα), oestrogen receptor-β (ERβ) and the G protein-
coupled oestrogen receptor (GPER). 17β-Oestradiol (E2), selective agonists such as 
G-1, or selective oestrogen receptor modulators (SERMs) and selective oestrogen 
receptor downregulators and/or degraders (SERDs) activate GPER (1), which is 
localized predominantly intracellularly at the endoplasmic reticulum. GPER activates 
several heterotrimeric G proteins (2), leading to multiple downstream cascades, 
including cAMP production (3) and activation of PKA (3) and CREB (3). G protein 
activation also leads to calcium (Ca2+) mobilization from intracellular stores, which 
activates PKC and leads to activation of plasma membrane calcium channels. GPER 
activation can also lead to regulation of gene expression via activation of the YAP–TAZ 
transcription factors via Rho–ROCK signalling (4). Activation of SRC via G proteins 
can also lead to activation of matrix metalloproteinases (MMPs) (5) that cleave pro-
heparin-binding epidermal growth factor (HB-EGF) (5), releasing free HB-EGF. HB-
EGF then transactivates the EGF receptor (5), which in turn activates MAPK (ERK1/2), 
Akt and other pathways. These induce additional, rapid (non-genomic) effects such 
as activation of the l-arginine–endothelial nitric oxide synthase (NOS3)–NO–cGMP  

pathway (in combination with mobilization of calcium stores). Akt causes 
phosphorylation of endothelial NOS3 (6), which releases nitric oxide (NO) and leads 
to juxtacrine signalling from endothelial to vascular smooth muscle cells (7), and 
activation of PKG. Activation of MAPK and Akt signalling also causes genomic effects 
regulating gene transcription such as FOXO3 phosphorylation and degradation (8). 
In the classic, genomic oestrogen receptor pathway, 17β-oestradiol binds cytosolic 
and nuclear oestrogen receptors (9), inducing receptor dimerization and binding 
to the promoters of target genes. Alternatively, activated oestrogen receptors 
modulate the function of other classes of transcription factors (TF) through protein–
protein interactions (10). Subpopulations of membrane-bound oestrogen receptors 
(mER) are present at the plasma membrane (11). Once activated, these oestrogen 
receptors interact with adaptor proteins (adaptor) and signalling molecules, such 
as SRC, which mediate rapid signalling events (for example, PI3K–Akt and MAPK 
signalling) (11). Oestrogen receptor ERα, potentially following transactivation of 
EGFR by GPER, is regulated by phosphorylation through kinases (such as MAPK 
and Akt), resulting in the regulation of gene expression (12). HIF1α, following 
GPER activation, induces γ-secretase-dependent activation of NOTCH (13) and 
VEGF signalling (13). Basal expression and/or activity of GPER constitutively 
induces expression of the NADPH oxidase NOX1 (14).
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the regulation of arterial blood pressure, angiogenesis, myocardial 
contractility and suppression of inflammation11. Activation of GPER 
results in acute vasodilatation of human, pig, rat and mouse arteries91–93. 
The underlying mechanisms include direct effects on vascular smooth 
muscle91,92,94 and activation of the endothelial l-arginine–NOS3–NO–
cGMP pathway24,95,96 (Fig. 1). GPER-mediated vasodilatation also involves 
cAMP-dependent97 and Rho kinase-dependent mechanisms98 as well 
as inhibiting contractile factors such as endothelial vasoconstrictor 
prostanoids99 and endothelin-1 (refs. 92,100). GPER-dependent 
vasodilation is augmented during pregnancy101 and is reduced by 
ageing39,102,103. Systemic deletion of Gper prevents age-dependent, 
endothelium-dependent dysfunction, probably due to a reduction in 
NOX1 abundance39,103; the main effects are summarized in Fig. 3.

Blood pressure and arterial hypertension. Endothelium-derived 
contracting factors, such as cyclooxygenase-derived vasoconstrictor 
prostanoids and endothelin 1, are involved in the pathogenesis of arterial 
hypertension89; their activity is suppressed by constitutive GPER activity 
and augmented by systemic deletion of Gper99. Similarly, acute (seconds 
to minutes)91 and chronic treatment (hours to days) with the GPER agonist 
G-1, via its nitric oxide (NO)-liberating and antioxidant effects24,95, induces 
vasodilation and lowers blood pressure. Interestingly, deletion of Gper 
prevents angiotensin II-induced elevations of blood pressure, which are 
also markedly lowered by the GPER antagonist and NOX1 downregula-
tor G36 (refs. 39,40). These data suggest that either agonist-dependent 
activation (through increased NO bioactivity) or chronic antagonism 
of GPER (via NOX1 downregulation) could be suitable for the treatment of 
different forms of arterial hypertension and related diseases such as 
atherosclerosis, stroke and chronic kidney disease (CKD).

The GPER agonist G-1 prevents hypertension in intrauterine growth-
restricted female rat offspring later in life, suggesting a potential role  
in embryonic priming of adult hypertension104. Arterial blood pressure in 
Gper-deficient animals is normal91,105 or slightly reduced compared with 
animals expressing GPER106. Crosstalk between GPER and endothelin 
receptors has been described, resulting in natriuretic effects107. Aldos-
terone, which also has natriuretic effects, has been implicated in the 
actions of GPER, yet there is no evidence of aldosterone binding to 
GPER42–44,108,109. Consistent with this, deletion of Gper has no effect on the 
hypertensive effects induced by aldosterone110; however, GPER does reg-
ulate autocrine aldosterone synthesis in the renal medulla111. In addition, 
crosstalk between the mineralocorticoid receptor and GPER has been 
reported43. Correspondingly, mineralocorticoid receptor antagonists 
downregulate the expression of GPER112. Moreover, aldosterone triggers 
both direct interactions between the mineralocorticoid receptor and 
GPER involving the EGF receptor, which is abrogated by GPER gene silenc-
ing in endothelial and SkBr3 breast cancer cells in vitro43. Such interac-
tions between the mineralocorticoid receptor and GPER might also 
contribute to aldosterone-mediated regulation of the sodium–chloride  
cotransporter, which is reduced in male mice lacking Gper113.

Atherosclerosis and coronary artery disease. Atherosclerosis is a 
chronic systemic inflammatory vascular disease89 and the underlying 

cause of coronary artery disease (CAD), peripheral artery disease and 
stroke. The main complications of CAD are myocardial infarction, fatal 
ventricular arrhythmias following reperfusion injury after infarction, 
and heart failure89. Natural or surgical menopause accelerates CAD 
progression and can be alleviated by oestrogen therapy, which acti-
vates all three oestrogen receptors89. In mice of both sexes fed either 
a regular diet or a high-calorie diet rich in fat and sugars, deletion 
of Gper results in moderate dyslipidaemia114,115. In endothelial cells, 
oestrogen-mediated activation of GPER attenuates transcytosis of 
LDL cholesterol into endothelial cells, compatible with an indirect 
vasculoprotective effect116. G-1 also reduces cardiac lipid accumulation 
and PPARα expression in surgically postmenopausal rats with type 2 
diabetes mellitus (T2DM)117. In human monocytes, which contribute 
to the earliest stages of atherogenesis118, the anti-inflammatory effects 
of oestrogen might involve both direct effects via GPER119 as well as 
crosstalk between ERα and GPER120.

In the arteries of patients with coronary artery disease, GPER 
expression is sensitive to 17β-oestradiol regulation121. Activation of 
GPER by G-1 or green tea polyphenols inhibits the growth of coronary 
vascular smooth muscle cells61,91,118,122–124, a crucial step during atherogen-
esis. Deletion of Gper increases both perivascular adipose tissue growth 
and the production of cyclooxygenase-dependent adipose-derived con-
tracting factor (ADCF), suggesting that endogenous GPER activity nega-
tively regulates these processes125. In ovariectomized, that is, surgically 
postmenopausal, ApoE-deficient mice or in surgically postmenopausal 
C57BL/6J mice fed a cholate-containing atherogenic diet, G-1 reduces 
inflammation and atherosclerosis126. G-1 also reduces steady-state mRNA 
levels of the angiotensin AT1 receptor in ApoE-deficient mice123, a recep-
tor protein that mediates angiotensin II-dependent vasoconstriction, 
vascular cell growth, inflammation and oxidative stress.

Myocardial disease and heart failure. GPER activation attenuates 
reperfusion injury following myocardial infarction through pathways 
involving GSK3β, mitophagy and mechanisms regulating mitochon-
drial permeability127–129. Arterial hypertension, T2DM and the resulting 
coronary artery disease and loss of myocardial tissue from myocardial 
infarction are the most frequent causes of heart failure. While heart 
failure with reduced ejection fraction (HFrEF) is often due to the loss of 
contractile tissue following myocardial infarction, heart failure with pre-
served ejection fraction (HFpEF) is a consequence of diabetes mellitus, 
arterial hypertension and ageing, all resulting in myocardial fibrosis and 
stiffening89,90. Patients with HFpEF are primarily perimenopausal or early 
postmenopausal women, suggesting that the cessation of endogenous 
oestrogen production contributes to the pathogenesis of HFpEF.

In experimental models of HFrEF, oestrogen therapy can reverse 
heart failure-induced myocardial fibrosis130. ERα and ERβ, as well as 
GPER, are all involved in the inhibitory effects of oestrogen on cardio-
myocyte proliferation131,132. Interestingly, SERMs and SERDs, which 
are also GPER agonists, also inhibit cardiomyocyte proliferation133. 
Hypoxia and/or hypoxaemia, which occur during myocardial ischae-
mia and heart failure, upregulate GPER134. GPER controls myocardial 
contractility involving crosstalk between GPER and β1 adrenoceptors135. 

Fig. 2 | Chemical structures of compounds that act as ligands for ERα,  
ERβ and/or GPER. Shown are examples of natural steroids, phytooestrogens, 
xenooestrogens/endocrine disrupting chemicals (EDCs), therapeutic agents 
and experimental compounds that display varying activities towards oestrogen 
receptor-α (ERα), oestrogen receptor-β (ERβ) and the G protein-coupled  

oestrogen receptor (GPER) but are generally non-selective. Also shown 
are synthetic experimental compounds that exhibit selectivity for 
ERα and/or ERβ, such as propylpyrazoletriol (PPT), diarylpropionitrile 
(DPN) and AB-1, or for GPER, such as G-1, G15, G36 and CIMBA. p,p′-DDT, 
p,p′-dichlorodiphenyltrichloroethane.
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In a model of ageing-associated HFpEF, systemic deletion of Gper in 
male mice prevents the development of heart failure and myocardial 
fibrosis, an effect that is related to downregulation of NOX1 protein 
expression and associated reduction of NOX1 function39. In vitro stud-
ies using Nox1-knock-in experiments in aortic vascular smooth muscle 

cells from Gper-deficient mice further underscored that constitutive 
NOX1 expression and activity require GPER expression, which, probably 
through ligand-independent or basal activity, enables ROS formation, 
inflammation and myocardial fibrosis39. By contrast, in young female 
mice, cardiomyocyte-specific deletion of Gper worsens cardiomyocyte 
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function compared with wild-type mice both in vitro and in vivo, which 
can be partly rescued by inhibiting cardiac NLRP3 inflammatory path-
ways136. G-1 reduces diastolic dysfunction in experimental HFpEF137 
and in rats with hypertensive cardiomyopathy137,138; G-1 treatment also 
improves cardiac function and reduces cardiac fibrosis in surgically 
postmenopausal rats139. Taken together, either reducing constitutive 
NOX1-dependent production of ROS by blocking GPER or increasing 
NO bioactivity by activating GPER, holds potential for pharmacological  
intervention in heart failure, possibly in a sex-dependent manner.

Renal physiology and disease. Loss of functional kidney tissue, par-
ticularly due to CKD, facilitates the development of arterial hyperten-
sion and cardiovascular disease. Similar to cardiovascular diseases, 
CKD displays sex differences with premenopausal women being largely 
protected from CKD development compared with age-matched men, 
implicating a role for oestrogens and oestrogen receptors140. GPER 
regulates renal artery and intrarenal vascular tone103,141, and its activa-
tion increases Ca2+ flux and H+-ATPase activity in renal tubular cells142; 
GPER also regulates natriuresis107 via crosstalk with endothelin ETA 
and ETB receptors143. Deletion of Gper counteracts the development 
of focal segmental glomerulosclerosis (FSGS) and the resulting pro-
teinuria144 and tubulo-interstitial injury caused by inflammation and 
oxidative stress, by reducing NOX1 upregulation145. Activation of GPER 
also reduces glomerular mesangial cell proliferation induced by hyper-
glycaemia in vitro (which is associated with oxidative stress)60, and 
Gper silencing in these cells markedly reduces NOX1 abundance144. 
The GPER antagonist and NOX1 downregulator G36 reduces mRNA 
expression of podocyte injury markers NPHS1 (coding for nephrin), 
COL4A1 (collagen IV) and WT1 (Wilms-tumour 1) in human podocytes 
in vitro144. Protective effects of GPER signalling on podocytes have also 
been demonstrated for treatment with GPER agonists, probably via 
activation of the l-arginine–NOS–nitric oxide pathway146. In a model of 
hypertensive nephropathy, GPER activation reduces proteinuria as well 
as tubular injury but not glomerular injury via pressure-independent 
mechanisms147,148. Possibly, the stimulating effect of G-1 on tubular 
epithelial cell proliferation could contribute to this effect149. Protective 
effects of GPER signalling have also been reported for methotrexate-
induced human renal epithelial cell injury in vitro150 and for acute renal 
endothelial cell injury following renal ischaemia in female mice151.

Pulmonary diseases
Pulmonary arterial hypertension (PAH) is a chronic fibroproliferative 
disorder of the pulmonary vasculature, ultimately leading to right-heart 
failure. Four out of five patients are women, suggesting a role for sex 
chromosomes, sex steroids, or sex steroid receptors. In experimental rat 
models of PAH, ovariectomy increases mortality152, while 17β-oestradiol 
(a non-selective oestrogen receptor and GPER agonist)153 or the GPER 
agonists G-1 (ref. 154) or 2-ME152 partially reduce or even reverse estab-
lished cardiopulmonary injury. G-1 also improves skeletal muscle 
function and exercise intolerance in rats with PAH, possibly through 
normalization of SERCA2a and phospholamban expression154,155. Finally, 
in experimental hypoxia-induced PAH in rats, blocking GPER using G36 
improves cardiac function by lowering right ventricular pressure, prob-
ably involving the downregulation of NOX1 (refs. 156,157). Thus, both 
agonists and antagonists of GPER might aid in the treatment of PAH.

Endocrinology and metabolism
Metabolic homeostasis is differentially regulated in men and women, 
with the metabolic actions of oestrogens mediated through both 

ERα158–160 and GPER; discussed later in this section. Premenopausal 
women exhibit lower incidences of obesity and T2DM compared with 
age-matched men; these protective effects are lost following meno-
pause, with similar effects seen in rodents. Oestrogen therapy can allevi-
ate weight gain and its associated adverse metabolic effects present in 
postmenopausal women and in surgically postmenopausal mice161–163.

Obesity and diabetes mellitus. Since the first reports demonstrating 
roles of endogenous GPER in the regulation of body weight, adipose tis-
sue growth, obesity and insulin function in 2009 (refs. 91,164), studies 
in mice lacking Gper have found that these mice develop dyslipidaemia 
and show reduced energy expenditure compared with wild-type mice. 
These effects are probably responsible for the observed increases in 
visceral and subcutaneous adipose tissue depots, given that food intake 
and locomotor activity remain unaffected in Gper-deficient mice114,115,165. 
Compared with males, female ovary-intact Gper-deficient mice exhibit 
a lower sensitivity to acute leptin-stimulated food intake and short-
term cholecystokinin-stimulated satiety signals165. The expression of 
thermogenic genes, such as those encoding uncoupling protein 1 (Ucp1) 
and the β3-adrenergic receptor, is reduced in brown adipose tissue of 
Gper-deficient mice consistent with the decreased energy expenditure.

17β-Oestradiol treatment protects β-cells from apoptosis and 
prevents diabetes mellitus in mice166. The severity of diabetes mel-
litus in mice lacking both ERα and ERβ worsens following surgical 
menopause167. 17β-Oestradiol supplementation improves glucose 
homeostasis in these mice, suggesting alternative mechanisms of oes-
trogen action other than signalling through ERα or ERβ, for example, 
through GPER167. Indeed, in mice lacking Gper, plasma levels of glucose 
are increased and these animals exhibit glucose intolerance, defec-
tive glucose-stimulated and oestrogen-stimulated insulin secretion, 
and insulin resistance114,164,165. Insulin secretion in response to both 
17β-oestradiol and G-1 in healthy islets is reduced by pharmacological 
GPER inhibition and is absent in mouse islets lacking Gper26. In a mouse 
model of streptozotocin-induced diabetes mellitus, deletion of Gper 
results in greater loss of pancreatic β-cells, reduced pancreatic insulin 
content and, consequently, abnormally increased plasma levels of 
glucose compared with wild-type mice167.

GPER as a therapeutic target in obesity and diabetes mellitus. 
Therapeutic targeting of GPER in glucose homeostasis and lipid metab-
olism has been studied in models of Western diet-induced obesity in 
male mice and in models of surgical menopause in female mice, both 
of which result in obesity and metabolic dysfunction. G-1 treatment 
over a period of 6–8 weeks reduced overall body weight, adiposity 
and circulating levels of lipids compared with vehicle-treated mice, 
without affecting lean mass or bone density, via increased basal energy 
expenditure168. No changes in either daily food consumption or loco-
motion were observed in this study although, in surgically postmeno-
pausal obese rats, G-1 treatment acutely and transiently decreased food 
intake169. G-1 treatment in surgically postmenopausal mice increased 
the expression of genes involved in mitochondrial biogenesis and fatty 
acid oxidation in brown and white adipose tissue and in skeletal mus-
cle, while reducing the expression of genes involved in inflammation, 
hypoxia and angiogenesis168.

In line with previous results69,126, G-1 treatment of surgically 
postmenopausal obese mice was devoid of the feminizing effects of 
17β-oestradiol as indicated by the absence of uterine imbibition168. In 
addition to weight loss and improved lipid profiles, G-1 also improved 
glucose homeostasis at the level of glucose and insulin tolerance tests, 
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and reduced fasting blood levels of glucose and insulin168. In post-
menopausal rats with streptozotocin-induced diabetes G-1 treatment 
reduced disease-induced weight loss to a comparable degree as did 
17β-oestradiol treatment, and similarly improved glucose homeosta-
sis and lipid profiles compared with vehicle-treated diabetic rats170. 
While surgically postmenopausal obese mice show improved glucose 
homeostasis in response to acute or chronic 17β-oestradiol treatment, 
deletion of Gper abrogates this response, indicating a key role of GPER 
in 17β-oestradiol-mediated glucose homeostasis in vivo164,165. Moreover, 
G-1 amplifies glucose-stimulated insulin secretion ex vivo in pancreatic 
islets obtained from patients with T2DM, while also suppressing gluca-
gon and somatostatin secretion171,172. Thus, selective GPER agonists 
hold potential for the treatment of obesity and associated diseases 
such as diabetes mellitus.

Gastrointestinal and liver diseases
Oestrogens modulate multiple gastrointestinal and hepatic functions 
via their receptors173, including via GPER173. GPER is a cell-specific 
marker of gastric epithelium chief cells174 and also controls lower 
oesophageal sphincter tone175, colonic motility and severity of vis-
ceral pain176,177. In human Crohn’s disease178, ulcerative colitis179 and 
irritable bowel syndrome (IBS)180–182, the majority of studies found 
intestinal GPER expression to be increased compared with healthy 
individuals. GPER activation reduces inflammation, tissue injury 
and mortality in a mouse model of Crohn’s disease178 and G-1 reduces 
colonic crypt cell injury related to reperfusion injury following intes-
tinal ischaemia183. Finally, intestinal inflammation in a mouse model 
of acute colitis induced by dextran sulfate sodium is reduced by GPER 
activation, improving intestinal mucosal barrier function184.

GPER regulates liver in zebrafish185 and contributes to oestrogen-
dependent proliferation and lipid metabolism in human hepato-
cytes185,186. In addition, both GPER or ERα protect hepatocytes from fatty  
degeneration, a predisposing factor propagating non-alcoholic 
fatty liver disease and steatohepatitis187.

Obesity in premenopausal women is associated with an increased 
risk of developing gallstones, which are formed via GPER-dependent 
mechanisms188. Oestrogen-dependent cholesterol crystallization 
pathways differ markedly between those involving ERα or GPER189, 
yet deletion of Gper190 or its pharmacological inhibition74 completely 
prevents gallstone formation in female mice.

Cancer biology and oncology
GPER is expressed in tumours and tumour cells of cancer patients, 
including the mammary gland191–195, endometrium66,196, ovaries197, pros-
tate198, pancreas199, thyroid200, colon201 and lung202. Increased GPER 
expression correlates with a worse outcome in breast191–193, endo-
metrial196 and ovarian197 cancer. Although pharmacological activa-
tion of GPER can increase proliferation and associated signalling in 
breast203, endometrial204, thyroid200 and ovarian205 cancer cells, inhi-
bition of proliferation due to GPER signalling has also been reported 
in breast206, pancreatic199 and melanoma207 cancer cells. With these — 
sometimes — opposing results in different cell lines, the role of GPER  
in cancer in vivo appears to be more complex than anticipated. Indeed, in  
certain forms of cancer, endogenous GPER activity might be protective, 
possibly through anti-inflammatory effects208.

Breast cancer. Much has been published regarding GPER and breast 
cancer due to obvious questions arising from the well-documented 
importance of presence or absence of ER for the efficacy of 

anti-oestrogen therapies in cancer treatment209. The fact that SERMs, 
such as tamoxifen14 and raloxifene66, as well as SERDs, such as fulves-
trant13, act as GPER agonists to activate growth and survival pathways 
has led to the suggestion that GPER expression and/or activity could 
contribute to breast cancer recurrence194. This complex pharmacol-
ogy has also led to a search for ERα-selective compounds that do not 
cross-react with GPER77.

Supporting roles for GPER in breast cancer recurrence and meta-
stasis, GPER expression is elevated in metastases of patients with breast 
cancer compared with matched primary tumours210,211. However, this 
elevated GPER expression, where assessed, is only observed in women 
originally treated with tamoxifen211. Aromatase inhibitors are more 
effective than tamoxifen at inhibiting tumour growth in primary breast 
tumours that are both ERα-positive and GPER-positive, with this differ-
ence in treatment efficacy being absent in primary ERα-positive and 
GPER-negative breast tumours192. Moreover, aromatase inhibition 
resulted in better disease-free progression for patients with breast can-
cer compared with a tamoxifen-based therapy, consistent with a role 
for GPER in recurrence and metastasis193. Using a genetic mouse model 
of mammary gland tumorigenesis, systemic Gper deficiency resulted 
in reduced tumour size and metastasis compared with wild-type mice, 
consistent with a pro-tumorigenic role for GPER in vivo212.

In vitro, tamoxifen induces proliferation of tamoxifen-resistant 
MCF-7 cells through a GPER-dependent pathway210,213. This prolifera-
tion can be blocked by GPER knockdown or co-treatment with the 
GPER-selective antagonist G15 (refs. 69,210) as tamoxifen binds to and 
cross-activates GPER15,66,214. Breast cancer cell survival in the presence 
of tamoxifen might be mediated by Akt-induced inactivation of the 
pro-apoptotic transcription factor FOXO3, suggesting a mechanism 
to enhance eventual tamoxifen resistance23. Tamoxifen-mediated 
cross-activation of GPER also induces breast cancer cell migration215, 
potentially via the YAP–TAZ pathway37 (Fig. 1), and increases aromatase 
expression in tamoxifen-resistant (ERα-positive) cells216. In vivo, 
GPER also contributes to tamoxifen resistance in MCF-7 cells, with 
tamoxifen-resistant xenografts derived from MCF-7 cells regaining 
sensitivity to tamoxifen in female mice upon treatment with a com-
bination of tamoxifen and G15, where neither alone had an effect210. 
GPER downregulation and G15 treatment also sensitize breast cancer 
cells to doxorubicin by inhibiting epithelial-to-mesenchymal tran-
sition217. Lastly, G-1 (as well as tamoxifen and fulvestrant) increases 
natural killer cell-mediated growth inhibition of both ERα-negative and  
ERα-positive breast cancer cells, suggesting a novel role for GPER in 
cancer therapy218.

Cancer-associated fibroblasts (CAFs) express GPER, with most 
studies to date employing breast CAFs, which have previously described 
roles supporting breast tumour progression18,219,220. In breast CAFs, 
GPER mediates expression of HIF1α and VEGF195 and has been impli-
cated in promoting tumour progression by increasing migration and 
invasion221–223. Tamoxifen and G-1 induce increased aromatase expres-
sion in breast CAFs, resulting in increased oestrogen production219, 
potentially leading to tamoxifen resistance216.

The tumour microenvironment also contains adipocytes, par-
ticularly in adipose-rich tissues such as the breast. Obesity has been 
clinically established as an important contributor to multiple can-
cers224. Adipocytes not only express aromatase, resulting in intracrine 
oestrogen synthesis, but also adipokines and other (pro-inflammatory) 
cytokines and hormones that can promote tumorigenesis. The actions 
of GPER in reducing obesity and mitigating metabolic dysfunction168, 
inflammation194 and chemotherapy-associated cardiotoxicity225 could, 
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in part, reduce the incidence of and improve outcomes in breast cancer 
and other cancers.

Malignant melanoma. Female patients with malignant melanoma 
have a better clinical outcome than male patients226, although ICIs, an 
effective treatment for melanoma, show better therapeutic efficacy 
in men than in women227. A role for GPER activity in melanoma was 
first suggested by the observation that GPER (but not ERα) mediates 
oestrogen-induced melanogenesis (melanocyte differentiation and 
melanin production)31,228. Treatment of mouse melanoma cells with G-1 
or tamoxifen, interestingly, inhibits proliferation in vitro229. Combining 
ICIs (specifically an anti-PD1 antibody) with G-1 not only reduces tumour 
growth but also improves survival of melanoma-bearing female mice, 
far more than either anti-PD1 antibodies or G-1 treatment alone. Com-
bination therapy utilizing immune checkpoint inhibition and G-1 can 
result in long-term clearance of tumours, indicating immunological 
memory207, with similar results in pancreatic cancer mouse xenograft 
models199. This effect is potentially mediated through lowering Myc lev-
els, which results in decreased expression of PDL1 and increased expres-
sion of HLA class I in melanoma tumour cells, which together could 
lead to improved immune recognition of melanoma tumour cells207. In 
2019, these results led to the initiation of the first Phase 1 clinical trial of  
G-1 for the treatment of malignant melanoma (NCT04130516)78.

Other forms of cancer. The type of cancer might determine whether 
GPER activity promotes or inhibits carcinogenesis and/or metasta-
sis. Pharmacological activation of GPER reduces liver tumorigene-
sis, at least in part, through inhibiting inflammation and fibrosis208. 
In mouse models of non-small-cell lung cancer (urethane-induced 
adenocarcinoma), tumour burden increases following treatment with 
17β-oestradiol or G-1, and decreases upon treatment with G15 (ref. 202), 
possibly with the involvement of NOTCH-dependent pathways230. GPER 
expression is increased in castration-resistant prostate cancer231, and 
its activation is associated with sustained cytotoxic ERK activation198. 
In a prostate cancer mouse xenograft model, chronic treatment with 
G-1 for several weeks inhibits cancer progression but only following 
cancer recurrence after castration231, suggesting the potential for  
GPER-targeted therapies in castration-resistant prostate cancer.

GPER expression and function have also been implicated in gastric 
epithelial metaplasia and gastric cancer173,174,232,233 as well as in colon 
cancer173,234. In mouse syngeneic pancreatic cancer xenograft models, 
G-1, alone or in combination with ICIs improves survival compared 
with vehicle only or ICIs alone, respectively, resulting in a substantial 
cure rate199. In line with the beneficial effects of G-1 on pancreatic can-
cer, tamoxifen, also acting as a GPER agonist, inhibits the recruitment 
and polarization of tumour-associated macrophages and interferes 
with myofibroblastic differentiation of pancreatic stellate cells in the 
tumour microenvironment235. This reduces the cells’ ability to remodel 
the extracellular matrix and to promote cancer cell invasion235. GPER 
is highly overexpressed in Waldenström macroglobulinaemia, yet 
G-1 treatment, both in vitro and in vivo, induces apoptosis of tumour 
cells, even in the protective bone marrow milieu236. In this study, G-1 
treatment improved survival in a murine xenograft model but had no 
effect on B cells transplanted from healthy donors236.

Immune system and immunology
Regulation of fish granulocyte functions by oestrogens through 
GPER predates the evolutionary divergence of fish and tetrapods 
more than 450 million years ago, which indicates that oestrogens 

are modulators of the immune response and that GPER have played a 
pivotal role in immunity throughout evolution12. Sex plays an impor-
tant role in immune responses with oestrogens frequently exerting 
anti-inflammatory effects, traditionally through ERα and, to a lesser 
extent, through ERβ237. However, 17β-oestradiol also mediates part of 
its anti-inflammatory effects through GPER, which is widely expressed 
in white blood cells, (including neutrophils, eosinophils, monocytes 
and lymphocytes) as well as in macrophages238.

Regulation of immune cells by GPER. GPER regulates apoptosis in 
eosinophils239, suggesting a role for GPER in allergic immune responses. 
Indeed, in a model of allergic pulmonary inflammation, G-1 attenu-
ates airway hyper-responsiveness, reducing bronchoalveolar levels 
of inflammatory cells and the T helper 2 (TH2) cell cytokines IL-5 and 
IL-13, while increasing the frequency of splenic regulatory T cells (which 
produce the anti-inflammatory cytokine IL-10), thus establishing cross-
talk between GPER and IL-10 (ref. 240). Moreover, G-1 treatment also 
promotes the formation of IL-10 in pro-inflammatory TH17 cells241,242. 
In macrophages, G-1 inhibits the production of lipopolysaccharide-
induced cytokines, such as TNF and IL-6 (ref. 119), through the inhibition 
of NF-κB120, while also downregulating TLR4 expression243. Neutrophils 
show complex responses to G-1 in vitro, with G-1 treatment causing 
activation of human neutrophils244 and increased cell death-associated 
neutrophil extracellular trap formation245. In fish granulocytes, G-1 has 
multiple effects245, including suppression of ROS production12.

Regulation of inflammation by GPER. Deletion of Gper in mice increases 
circulating levels of pro-inflammatory cytokines, with a concomitant 
decrease in adiponectin levels compared with the wild type114,165. In a 
mouse model of diethylnitrosamine-induced liver cancer, deletion of Gper 
increases inflammation, fibrosis and tumorigenesis208. Consistent with 
this, GPER activation reduces expression of fibrosis markers in hepatic 
stellate cells in vitro, suggesting a possible role for GPER in counteracting 
liver inflammation and liver cancer208. In a mouse model of atherosclerosis,  
G-1 treatment reduces the increased number of CD68+ macrophages but 
not of CD3+ T cells, whereas deletion of Gper has the opposite effect126.

Modulation of GPER activity in immunity, inflammation and infec-
tion. In surgically postmenopausal mice with diet-induced obesity, 
chronic treatment with G-1 reduces levels of TNF, MCP1 and IL-6 as 
well as the expression of inflammatory genes in multiple metabolic 
tissues168. GPER may also play a role in inflammatory bowel diseases; in 
a model of Crohn’s disease, G-1 treatment reduces mortality, improves 
macroscopic and microscopic injury scores, and lowers C-reactive 
protein levels173,178. In a mouse model of Staphylococcus aureus skin 
and soft tissue infection, G-1 reduces dermonecrosis and increases 
bacterial clearance, indicating a role of GPER for the innate immune 
system246,247. These effects are more pronounced in females, suggest-
ing a sex-specific response, and are absent in Gper-deficient mice, 
confirming the selectivity of G-1 for its target GPER247.

Clinical data suggest a sex bias in COVID-19 severity following 
SARS-CoV-2 infection, with men exhibiting increased hospitaliza-
tion and mortality compared with women. A role for GPER in this 
sex bias is suggested based on experimental models of both overex-
pression of GPER and treatment with G-1, each of which (similar to 
17β-oestradiol treatment) leads to reduced SARS-CoV-2 viral load in 
infected bronchial cells in vitro compared with uninfected cells. These 
reductions in viral load caused by 17β-oestradiol and G-1 treatment are 
reversed by treatment with G15 (ref. 248). GPER activation also results 

http://www.nature.com/nrendo


Nature Reviews Endocrinology | Volume 19 | July 2023 | 407–424 418

Review article

in anti-inflammatory immune responses in numerous neurological 
diseases249–251. Lastly, in a genome-wide CRISPR–Cas9 screen, GPER 
was identified as a downregulator of type I interferon252. GPER expres-
sion during pregnancy is both necessary and sufficient to suppress 
IFNγ signalling, which is elevated in reproductive and fetal tissues in 
influenza A virus-infected female mice. During virus-induced maternal 
inflammation, blocking GPER with G15 delays fetal development and 
promotes fetal demise compared with vehicle-treated mice252. Thus, 
GPER expression and activity are required to protect the fetus dur-
ing maternal infection. Taken together, pharmacological activation 
of GPER holds promise for the treatment of diseases and conditions 
that are associated with activation of inflammation (due to infectious 
pathogens such as bacteria or viruses) and of conditions associated 
with an abnormal immune response.

Ageing and neurological diseases
Cardiovascular and renal ageing. Physiological ageing is an unmodi-
fiable risk factor for arterial hypertension, myocardial disease and 
atherosclerotic vascular disease. In addition, vascular ageing is further 
accelerated by modifiable risk factors, including obesity (which is 
often associated with hypertension and diabetes) and smoking89. 
Endogenous Gper expression is associated with suppresion of the age-
dependent increases in endothelin ETB receptors, and endothelin-
converting enzyme-2 in the heart253. Moreover, Gper deficiency 
abrogates age-dependent impairment of vasodilatation by interfer-
ing with NOX1-dependent ROS formation, specifically by reducing 
NOX1 expression, which is induced by GPER39,103. Accordingly, Gper 
deficiency prevents ageing-induced myocardial fibrosis and the associ-
ated development of diastolic heart failure (HFpEF) and for the most 
part prevents angiotensin-induced hypertension39. In addition, Gper 
deficiency is associated with a supression of development of age-
dependent CKD due to FSGS144. The effect of Gper deficiency could be 
partly recapitulated pharmacologically by reducing NOX1 abundance 
and the associated production of ROS with G36, the first NOX1 down-
regulator39. Thus, blocking the GPER–NOX1 axis holds therapeutic 
opportunities for ageing-associated non-communicable diseases, 
including arterial hypertension.

Neurological diseases. In premenopausal women, endogenous oes-
trogens protect against stroke and dementia254. GPER, like ERα and 
ERβ, regulates arterial tone of the cerebral vasculature255. Antisense 
oligonucleotide knockdown of Gper in vivo largely abrogates the pro-
tective effects of oestrogen on cerebral ischaemia256, whereas activa-
tion of GPER with G-1 reduces reperfusion injury following cerebral 
ischaemia in both male and female mice257,258. This involves inhibition of 
both apoptosis259 and inflammatory pathways, such as TLR4 (ref. 258), 
with concomitant activation of anti-inflammatory pathways260. GPER-
dependent protective effects have been demonstrated in rodent 
models of ischaemic261 and haemorrhagic stroke262. G-1-dependent 
protection from ischaemic stroke is completely abrogated by systemic 
deletion of Gper, while only partial protection was observed in animals 
with astrocyte- or neuronal cell-specific Gper deletion261. Activation of 
GPER by G-1 also attenuates blood–brain barrier injury263 and improves 
immunoprotection following stroke264. GPER also might play a role 
in psychiatric disorders such as anxiety265, depression266 and addic-
tion267. Systemic deletion of Gper increases anxiety in rats265; accord-
ingly, activation of GPER by G-1 has anxiolytic and also antidepressant 
effects in rodents69,266. Finally, deletion of Gper or GPER antagonism 
enhances morphine analgesia and reduces pain involving µ-type opioid 

receptors, suggesting the potential of GPER blockade for the treatment 
of pain, substance addiction, and opioid tolerance268.

Ageing is the main risk factor for Parkinson disease and Alzhei-
mer disease as well as for vascular dementia. Studies in neurotoxic 
mouse models of Parkinson disease have shown that 17β-oestradiol-
dependent, ERα-mediated protective effects on dopaminergic neurons 
require crosstalk with GPER and that GPER also has independent pro-
tective effects against Parkinson disease267. In a mouse model of Par-
kinson disease, G-1 treatment reduces the release of pro-inflammatory 
cytokines251 and also mediates part of the neuroprotective effects of 
IGF1 on dopaminergic neuronal injury269. G-1 treatment also reduces 
microglial activation and decreases pro-inflammatory cytokine pro-
duction251. GPER is important for maintaining long-term memory, 
and G-1 enhances object recognition and long-term memory in male 
mice270. Accordingly, in a mouse model of Alzheimer disease and after 
traumatic brain injury in rats, improvements in neuropsychological 
functions are observed upon G-1 treatment271–273. GPER also mediates 
the anti-inflammatory effects of genistein in microglia250.

Elevated levels of 17β-oestradiol present in pregnant women 
are associated with reduced severity of multiple sclerosis274, and 
17β-oestradiol supplementation reduces symptom severity and immune  
infiltration in a mouse model of MS (experimental autoimmune 
encephalomyelitis) in mice of both sexes275. In this model, female Gper-
deficient mice exhibit reduced 17β-oestradiol-mediated protection 
against multiple sclerosis disease severity and reduced protective 
effects of 17β-oestradiol on white matter damage compared with 
wild-type mice119,249,276. Conversely, GPER activation by G-1 reduces 
multiple sclerosis severity, an effect absent in female Gper-deficient 
mice. Mechanistically, G-1 reduced inflammatory cytokine produc-
tion in macrophages and upregulated PD1 to enhance the activity of 
T regulatory cells249.

Conclusions
Progress made in the past decade in the field of GPER has broadened 
our understanding of the multiple functions of this receptor at the cell, 
tissue and organismal level, including in humans. Widely expressed, 
GPER mediates both rapid and genomic effects in all main organs, being 
involved in multiple aspects of health and disease (Fig. 3). In addition to 
oestrogens, many natural and synthetic molecules target GPER, either 
as selective or combined oestrogen receptor agonists or antagonists. 
Importantly, clinically approved ERα antagonists, such as the SERMS 
tamoxifen and raloxifene or the SERD fulvestrant, licensed for the treat-
ment of breast cancer209, show agonistic activity towards GPER13,14,66. 
Diverse molecules present in plants (such as genistein, daidzein and 
green tea polyphenols) and EDCs also activate GPER; further study is 
required to determine how their effects on health or disease involve 
GPER. Utilizing GPER expression as a diagnostic marker in tissues or 
in circulating cells provides new opportunities to further characterize 
pathological conditions at different stages during disease progression 
or even before diseases develop. Targeting GPER pharmacologically 
could provide new opportunities to treat diseases for which no or 
only a few effective therapies exist (such as malignant melanoma and 
other cancers), including inhibition of the constitutive inducing effect 
of GPER on NOX1 activity. Clinical studies that should also consider 
sex, genetics and hormonal status are needed to determine whether 
utilizing or targeting GPER could improve diagnosis, prognosis, therapy 
and the clinical course of human diseases and thus overall health82.
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