Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus

Abstract

Although no single animal model replicates all aspects of diabetes mellitus in humans, animal models are essential for the study of energy balance and metabolism control as well as to investigate the reasons for their imbalance that could eventually lead to overt metabolic diseases such as type 2 diabetes mellitus. The most frequently used animal models in diabetes mellitus research are small rodents that harbour spontaneous genetic mutations or that can be manipulated genetically or by other means to influence their nutrient metabolism and nutrient handling. Non-rodent species, including pigs, cats and dogs, are also useful models in diabetes mellitus research. This Review will outline the advantages and disadvantages of selected animal models of diabetes mellitus to build a basis for their most appropriate use in biomedical research.

Key points

  • A large number of rodent models are available to study the pathophysiology and consequences of, and treatment options for, diabetes mellitus.

  • Typically, a single rodent model does not recapitulate all the major pathophysiological aspects of type 2 diabetes mellitus (insulin resistance, disturbed β-cell function, pancreatic amyloid deposition).

  • The most frequently used large animal models include pigs, dogs and cats; most diabetic cats have a disease entity similar to human type 2 diabetes mellitus, whereas, in most diabetic dogs, the disease resembles human type 1 diabetes mellitus.

  • In any given animal model, the diabetic phenotype (for example, severity of hyperglycaemia) can differ depending on housing and feeding conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major organs involved in the control of energy metabolism and affected by dysregulated metabolism in diabetes mellitus in humans, rodents, pigs, dogs and cats.

Similar content being viewed by others

References

  1. Cooper, G. J. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr. Rev. 15, 163–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Rand, J. S., Fleeman, L. M., Farrow, H. A., Appleton, D. J. & Lederer, R. Canine and feline diabetes mellitus: nature or nurture? J. Nutr. 134, 2072–2080 (2004).

    Article  Google Scholar 

  3. Huang, H. J. et al. Hyperamylinemia, hyperinsulinemia, and insulin resistance in genetically obese LA/N-cp rats. Hypertension 19, 101–109 (1992).

    Article  Google Scholar 

  4. Osto, M. & Lutz, T. A. Translational value of animal models of obesity — focus on dogs and cats. Eur. J. Pharmacol. 759, 240–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y. et al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl Acad. Sci. USA 109, 14972–14976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, M.-Y. et al. Glucagon receptor antibody completely suppresses type 1 diabetes phenotype without insulin by disrupting a novel diabetogenic pathway. Proc. Natl Acad. Sci. USA 112, 2503–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Alessio, D. The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes. Metab. 13, 126–132 (2011).

    Article  PubMed  Google Scholar 

  8. Unger, R. H., Dobbs, R. E. & Orci, L. Insulin, glucagon, and somatostatin secretion in the regulation of metabolism. Annu. Rev. Physiol. 40, 307–343 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Deacon, C. F. & Ahrén, B. Physiology of incretins in health and disease. Rev. Diabet. Stud. 8, 293–306 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Drucker, D. J. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 1, 22–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Ahrén, B., Yamada, Y. & Seino, Y. Islet adaptation in GIP receptor knockout mice. Peptides 125, 170152 (2020).

    Article  PubMed  Google Scholar 

  12. Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).

    Article  PubMed  Google Scholar 

  13. Lone, I. M. & Iraqi, F. A. Genetics of murine type 2 diabetes and comorbidities. Mamm. Genome 33, 421–436 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Kahn, C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43, 1066–1084 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Hotamisligil, G. S. & Spiegelman, B. M. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes 43, 1271–1278 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Coleman, D. L. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Mayer, J., Bates, M. W. & Dickie, M. M. Hereditary diabetes in genetically obese mice. Science 113, 746–747 (1951).

    Article  CAS  PubMed  Google Scholar 

  22. O’Rahilly, S. Human genetics illuminates the paths to metabolic disease. Nature 462, 307–314 (2009).

    Article  PubMed  Google Scholar 

  23. Coleman, D. L. & Hummel, K. P. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9, 287–293 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Trayhurn, P., Thurlby, P. L. & James, W. P. Thermogenic defect in pre-obese ob/ob mice. Nature 266, 60–62 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Bray, G. A. The Zucker-fatty rat: a review. Fed. Proc. 36, 148–153 (1977).

    CAS  PubMed  Google Scholar 

  26. Bray, G. A. & York, D. A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 59, 719–809 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Chua, S. C. Jr. et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Takaya, K. et al. Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat. Genet. 14, 130–131 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Friedman, J. M. Leptin, leptin receptors and the control of body weight. Eur. J. Med. Res. 2, 7–13 (1997).

    CAS  PubMed  Google Scholar 

  30. Wu-Peng, X. S. et al. Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46, 513–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Crouse, J. A. et al. Altered cell surface expression and signaling of leptin receptors containing the fatty mutation. J. Biol. Chem. 273, 18365–18373 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. da Silva, B. A., Bjorbaek, C., Uotani, S. & Flier, J. S. Functional properties of leptin receptor isoforms containing the gln→pro extracellular domain mutation of the fatty rat. Endocrinology 139, 3681–3690 (1998).

    Article  PubMed  Google Scholar 

  33. Zierath, J. R. et al. Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARγ agonist) action. Endocrinology 139, 5034–5041 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Peterson, R. G., Shaw, W. N., Neel, M.-A., Little, L. A. & Eichberg, J. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J. 32, 16–19 (1990).

    Article  Google Scholar 

  35. Tokuyama, Y. et al. Evolution of β-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44, 1447–1457 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Kawano, K. et al. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41, 1422–1428 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Moran, T. H. Unraveling the obesity of OLETF rats. Physiol. Behav. 94, 71–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Allison, M. B. & Myers, M. G. Jr. 20 years of leptin: connecting leptin signaling to biological function. J. Endocrinol. 223, T25–T35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elias, C. F. et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23, 775–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Levin, B. E., Dunn-Meynell, A. A., Balkan, B. & Keesey, R. E. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am. J. Physiol. 273, R725–R730 (1997).

    CAS  PubMed  Google Scholar 

  42. Levin, B. E., Triscari, J. & Sullivan, A. C. Altered sympathetic activity during development of diet-induced obesity in rat. Am. J. Physiol. 244, R347–R355 (1983).

    CAS  PubMed  Google Scholar 

  43. Levin, B. E., Triscari, J. & Sullivan, A. C. Metabolic features of diet-induced obesity without hyperphagia in young rats. Am. J. Physiol. 251, R433–R440 (1986).

    CAS  PubMed  Google Scholar 

  44. Levin, B. E. & Dunn-Meynell, A. A. Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R231–R237 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Levin, B. E. & Dunn-Meynell, A. A. Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R46–R54 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Levin, B. E., Triscari, J. & Sullivan, A. C. The effect of diet and chronic obesity on brain catecholamine turnover in the rat. Pharmacol. Biochem. Behav. 24, 299–304 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Levin, B. E. et al. A new obesity-prone, glucose-intolerant rat strain (F.DIO). Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1184–R1191 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Levin, B. E., Dunn-Meynell, A. A., Ricci, M. R. & Cummings, D. E. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am. J. Physiol. Endocrinol. Metab. 285, E949–E957 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Bouret, S. G. et al. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 7, 179–185 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gorski, J. N., Dunn-Meynell, A. A. & Levin, B. E. Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1782–R1791 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Marques, C. et al. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley rat. Adipocyte 5, 11–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Schemmel, R., Mickelsen, O. & Gill, J. L. Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J. Nutr. 100, 1041–1048 (1970).

    Article  CAS  PubMed  Google Scholar 

  53. Parks, B. W. et al. Genetic architecture of insulin resistance in the mouse. Cell Metab. 21, 334–347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kahle, M. et al. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol. Metab. 2, 435–446 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peterson, R. G. et al. Characterization of the ZDSD rat: a translational model for the study of metabolic syndrome and type 2 diabetes. J. Diabetes Res. 2015, 487816 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reinwald, S., Peterson, R. G., Allen, M. R. & Burr, D. B. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am. J. Physiol. Endocrinol. Metab. 296, E765–E774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mauvais-Jarvis, F., Arnold, A. P. & Reue, K. A guide for the design of pre-clinical studies on sex differences in metabolism. Cell Metab. 25, 1216–1230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clegg, D. J., Brown, L. M., Woods, S. C. & Benoit, S. C. Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 55, 978–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. 203, 259–269 (2011).

    Article  CAS  Google Scholar 

  60. Shi, H., Seeley, R. J. & Clegg, D. J. Sexual differences in the control of energy homeostasis. Front. Neuroendocrinol. 30, 396–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bjorntorp, P. Body fat distribution, insulin resistance, and metabolic diseases. Nutrition 13, 795–803 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Christoffersen, B., Raun, K., Svendsen, O., Fledelius, C. & Golozoubova, V. Evalution of the castrated male Sprague-Dawley rat as a model of the metabolic syndrome and type 2 diabetes. Int. J. Obes. 30, 1288–1297 (2006).

    Article  CAS  Google Scholar 

  63. Asarian, L. & Geary, N. Sex differences in the physiology of eating. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R1215–R1267 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tamashiro, K. L. & Moran, T. H. Perinatal environment and its influences on metabolic programming of offspring. Physiol. Behav. 100, 560–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouret, S. G. Early life origins of obesity: role of hypothalamic programming. J. Pediatr. Gastroenterol. Nutr. 48, 31–38 (2009).

    Article  Google Scholar 

  66. Le Foll, C., Irani, B. G., Magnan, C., Dunn-Meynell, A. & Levin, B. E. Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1351–R1357 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Levin, B. E. & Dunn-Meynell, A. A. Maternal obesity alters adiposity and monoamine function in genetically predisposed offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1087–R1093 (2002).

    Article  PubMed  Google Scholar 

  68. Levin, B. E. & Govek, E. Gestational obesity accentuates obesity in obesity-prone progeny. Am. J. Physiol. 275, R1374–R1379 (1998).

    CAS  PubMed  Google Scholar 

  69. Sullivan, E. L. et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J. Neurosci. 30, 3826–3830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sullivan, E. L., Smith, M. S. & Grove, K. L. Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology 93, 1–8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tamashiro, K. L., Terrillion, C. E., Hyun, J., Koenig, J. I. & Moran, T. H. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 58, 1116–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. West, D. B., Diaz, J. & Woods, S. C. Infant gastrostomy and chronic formula infusion as a technique to overfeed and accelerate weight gain of neonatal rats. J. Nutr. 112, 1339–1343 (1982).

    Article  CAS  PubMed  Google Scholar 

  73. Leuthardt, A. S., Bayer, J., Monné Rodríguez, J. M. & Boyle, C. N. Influence of high energy diet and polygenic predisposition for obesity on postpartum health in rat dams. Front. Physiol. 12, 772707 (2021).

    Article  PubMed  Google Scholar 

  74. Gurlo, T. et al. Pregnancy in human IAPP transgenic mice recapitulates beta cell stress in type 2 diabetes. Diabetologia 62, 1000–1010 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Faust, I. M., Johnson, P. R. & Hirsch, J. Long-term effects of early nutritional experience on the development of obesity in the rat. J. Nutr. 110, 2027–2034 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt, I. et al. The effect of leptin treatment on the development of obesity in overfed suckling Wistar rats. Int. J. Obes. Relat. Metab. Disord. 25, 1168–1174 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Morris, M. J., Velkoska, E. & Cole, T. J. Central and peripheral contributions to obesity-associated hypertension: impact of early overnourishment. Exp. Physiol. 90, 697–702 (2005).

    Article  PubMed  Google Scholar 

  78. West, D. B., Diaz, J., Roddy, S. & Woods, S. C. Long-term effects on adiposity after preweaning nutritional manipulations in the gastrostomy-reared rat. J. Nutr. 117, 1259–1264 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. Asarian, L. & Geary, N. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm. Behav. 42, 461–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Thammacharoen, S., Lutz, T. A., Geary, N. & Asarian, L. Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 149, 1609–1617 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Asarian, L. & Geary, N. Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 148, 5656–5666 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Asarian, L. & Geary, N. Modulation of appetite by gonadal steroid hormones. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1251–1263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asarian, L. et al. Estradiol increases body-weight loss and gut-peptide satiation after Roux-en-Y gastric bypass in ovariectomized rats. Gastroenterology 143, 325–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Akash, M. S., Rehman, K. & Chen, S. Goto-Kakizaki rats: its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr. Diabetes Rev. 9, 387–396 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Yoshioka, M., Kayo, T., Ikeda, T. & Koizumi, A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46, 887–894 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Kalaitzoglou, E., Fowlkes, J. L. & Thrailkill, K. M. Mouse models of type 1 diabetes and their use in skeletal research. Curr. Opin. Endocrinol. Diabetes Obes. 29, 318–325 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Reed, M. J. et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390–1394 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Westermark, P., Wernstedt, C., Wilander, E. & Sletten, K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun. 140, 827–831 (1986).

    Article  CAS  PubMed  Google Scholar 

  90. Clark, A. et al. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet 2, 231–234 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Cooper, G. J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lutz, T. A. Creating the amylin story. Appetite 172, 105965 (2022).

    Article  PubMed  Google Scholar 

  93. Johnson, K. H., Hayden, D. W., O’Brien, T. D. & Westermark, P. Spontaneous diabetes mellitus-islet amyloid complex in adult cats. Am. J. Pathol. 125, 416–419 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnson, K. H. & Stevens, J. B. Light and electron microscopic studies of islet amyloid in diabetic cats. Diabetes 22, 81–90 (1973).

    Article  CAS  PubMed  Google Scholar 

  95. O’Brien, T. D., Butler, P. C., Westermark, P. & Johnson, K. H. Islet amyloid polypeptide: a review of its biology and potential roles in the pathogenesis of diabetes mellitus. Vet. Pathol. 30, 317–332 (1993).

    Article  PubMed  Google Scholar 

  96. Westermark, G. T., Krogvold, L., Dahl-Jørgensen, K. & Ludvigsson, J. Islet amyloid in recent-onset type 1 diabetes-the DiViD study. Ups. J. Med. Sci. 122, 201–203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Denroche, H. C. & Verchere, C. B. IAPP and type 1 diabetes: implications for immunity, metabolism and islet transplants. J. Mol. Endocrinol. 60, R57–R75 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Le Foll, C. & Lutz, T. A. Systemic and central amylin, amylin receptor signaling, and their physiological and pathophysiological roles in metabolism. Compr. Physiol. 10, 811–837 (2020).

    Article  PubMed  Google Scholar 

  99. Hay, D. L., Chen, S., Lutz, T. A., Parkes, D. G. & Roth, J. D. Amylin: pharmacology, physiology, and clinical potential. Pharmacol. Rev. 67, 564–600 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. O’Brien, T. D., Hayden, D. W., Johnson, K. H. & Fletcher, T. F. Immunohistochemical morphometry of pancreatic endocrine cells in diabetic, normoglycaemic glucose-intolerant and normal cats. J. Comp. Pathol. 96, 357–369 (1986).

    Article  PubMed  Google Scholar 

  101. Johnson, K. H. et al. Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am. J. Pathol. 130, 1–8 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Despa, F. & Goldstein, L. B. Amylin dyshomeostasis hypothesis: small vessel-type ischemic stroke in the setting of type-2 diabetes. Stroke 52, e244–e249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Despa, S. et al. Hyperamylinemia contributes to cardiac dysfunction in obesity and diabetes: a study in humans and rats. Circ. Res. 110, 598–608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Despa, S. et al. Cardioprotection by controlling hyperamylinemia in a “humanized” diabetic rat model. J. Am. Heart Assoc. 3, e001015 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Verma, N. et al. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int. 97, 143–155 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368, 756–760 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Donath, M. Y. When metabolism met immunology. Nat. Immunol. 14, 421–422 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Meier, D. T. et al. Islet amyloid formation is an important determinant for inducing islet inflammation in high-fat-fed human IAPP transgenic mice. Diabetologia 57, 1884–1888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raleigh, D., Zhang, X., Hastoy, B. & Clark, A. The β-cell assassin: IAPP cytotoxicity. J. Mol. Endocrinol. 59, R121–R140 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Butler, A. E. et al. Diabetes due to a progressive defect in β-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 53, 1509–1516 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Matveyenko, A. V. & Butler, P. C. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J. 47, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Hiddinga, H. J. et al. Expression of wild-type and mutant S20G hIAPP in physiologic knock-in mouse models fails to induce islet amyloid formation, but induces mild glucose intolerance. J. Diabetes Investig. 3, 138–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Templin, A. T. et al. Low concentration IL-1β promotes islet amyloid formation by increasing hIAPP release from humanised mouse islets in vitro. Diabetologia 63, 2385–2395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Blencowe, M. et al. IAPP-induced beta cell stress recapitulates the islet transcriptome in type 2 diabetes. Diabetologia 65, 173–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Hull, R. L. et al. Increased dietary fat promotes islet amyloid formation and β-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes 52, 372–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Guardado-Mendoza, R. et al. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc. Natl Acad. Sci. USA 106, 13992–13997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Renner, S. et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86, 406–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Pound, L. D., Kievit, P. & Grove, K. L. The nonhuman primate as a model for type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 21, 89–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Renner, S. et al. Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res. 380, 341–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Renner, S. et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59, 1228–1238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Umeyama, K. et al. Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res. 18, 697–706 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Renner, S. et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs. Diabetes 62, 1505–1511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lutz, T. A. & Rand, J. S. Pathogenesis of feline diabetes mellitus. Vet. Clin. North Am. Small Anim. Pract. 25, 527–552 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Martin, L. J. et al. Acute hormonal response to glucose, lipids and arginine infusion in overweight cats. J. Nutr. Sci. 3, e8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Henson, M. S. & O’Brien, T. D. Feline models of type 2 diabetes mellitus. ILAR J. 47, 234–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Zini, E. et al. Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52, 336–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Lutz, T. A., Ainscow, J. & Rand, J. S. Frequency of pancreatic amyloid deposition in cats from south-eastern Queensland. Aust. Vet. J. 71, 254–256 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Lutz, T. A. & Rand, J. S. Detection of amyloid deposition in various regions of the feline pancreas by different staining techniques. J. Comp. Pathol. 116, 157–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Yano, B. L., Hayden, D. W. & Johnson, K. H. Feline insular amyloid: association with diabetes mellitus. Vet. Pathol. 18, 621–627 (1981).

    Article  CAS  PubMed  Google Scholar 

  130. Yano, B. L., Hayden, D. W. & Johnson, K. H. Feline insular amyloid: incidence in adult cats with no clinicopathologic evidence of overt diabetes mellitus. Vet. Pathol. 18, 310–315 (1981).

    Article  CAS  PubMed  Google Scholar 

  131. Zini, E. et al. Endocrine pancreas in cats with diabetes mellitus. Vet. Pathol. 53, 136–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  132. Nelson, R. W. & Reusch, C. E. Animal models of disease: classification and etiology of diabetes in dogs and cats. J. Endocrinol. 222, T1–T9 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Ionut, V. et al. Novel canine models of obese prediabetes and mild type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 298, E38–E48 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Zheng, D., Ionut, V., Mooradian, V., Stefanovski, D. & Bergman, R. N. Portal glucose infusion-glucose clamp measures hepatic influence on postprandial systemic glucose appearance as well as whole body glucose disposal. Am. J. Physiol. Endocrinol. Metab. 298, E346–E353 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Roesti, E. S. et al. Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus. Vaccines 8, 116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361-369 https://doi.org/10.1016/s2213-8587(18)30051-2 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support of many funding sources, which have helped in conducting research using some of the animal models mentioned here: in particular, the Swiss National Science Foundation, the National Institutes of Health, the EU Seventh Framework Programme and the University of Zurich. The author gratefully acknowledges the help of Mrs Jeanne Peter, Vetsuisse Faculty University of Zurich, in preparing the first drafts of the display items.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Lutz.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Eckhard Wolf, Stephen O’Rahilly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, T.A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus. Nat Rev Endocrinol 19, 350–360 (2023). https://doi.org/10.1038/s41574-023-00818-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00818-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing