Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases

Abstract

Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell–β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell–β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.

Key points

  • Glucagon is a 29-amino acid peptide hormone mainly secreted from pancreatic α-cells and has primarily been recognized for its role in glucose homeostasis.

  • Glucagon secretion seems to be partly regulated by the direct effect of glucose on α-cells; however, paracrine regulation from neighbouring β-cells and δ-cells is also important.

  • Several amino acids are glucagonotropic, and glucagon increases hepatic uptake and turnover of amino acids and stimulates ureagenesis — a feedback cycle referred to as the liver–α-cell axis.

  • The importance of α-cell–β-cell crosstalk is increasingly recognized; studies suggest that α-cells are necessary for β-cell function (insulin secretion) and might preserve β-cell mass.

  • Fasting hyperglucagonaemia in diabetes mellitus might be both a pathophysiological trait in glucose metabolism and a helpful metabolic adaptation in hepatic lipid and amino acid metabolism.

  • Glucagon receptor antagonism improves glycaemic control in type 1 diabetes mellitus and type 2 diabetes mellitus but with adverse effects; future strategies targeting obesity and type 2 diabetes mellitus might involve glucagon co-agonism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue-specific proglucagon processing and measurement of glucagon by antibodies.
Fig. 2: The liver–α-cell axis.
Fig. 3: Classical direct and indirect stimulators and inhibitors of glucagon secretion.
Fig. 4: Intra-islet endocrine cell crosstalk.

Similar content being viewed by others

References

  1. Banting, F. G., Best, C. H., Collip, J. B., Campbell, W. R. & Fletcher, A. A. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12, 141–146 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kimball, C. & Murlin, J. R. Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J. Biol. Chem. 58, 337–346 (1923).

    Article  CAS  Google Scholar 

  3. Sutherland, E. W. & Cori, C. F. Purification of the hyperglycemic-glycogenolytic factor from insulin and from gastric mucosa. J. Biol. Chem. 180, 825–837 (1949).

    Article  CAS  PubMed  Google Scholar 

  4. Unger, R. & Orci, L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet 305, 14–16 (1975).

    Article  Google Scholar 

  5. Cherrington, A. D., Williams, P. E., Shulman, G. I. & Lacy, W. W. Differential time course of glucagon’s effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes 30, 180–187 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Magnusson, I., Rothman, D. L., Gerard, D. P., Katz, L. D. & Shulman, G. I. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes 44, 185–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bonner-Weir, S., Sullivan, B. A. & Weir, G. C. Human islet morphology revisited: human and rodent islets are not so different after all. J. Histochem. Cytochem. 63, 604–612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Unger, R. H., Eisentraut, A. M., McCall, M. S. & Madison, L. L. Glucagon antibodies and an immunoassay for glucagon. J. Clin. Invest. 40, 1280–1289 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holst, J. J. & Albrechtsen, N. J. W. Methods and guidelines for measurement of glucagon in plasma. Int. J. Mol. Sci. 20, 5416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller, W., Faloona, G., Aguilar-Parada, E. & Unger, R. Abnormal alpha-cell function in diabetes — response to carbohydrate and protein ingestion. N. Engl. J. Med. 283, 109–115 (1970).

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki, H. et al. Identification of glucagon in the gastrointestinal tract. J. Clin. Invest. 56, 135–145 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wewer Albrechtsen, N. J. et al. Circulating glucagon 1-61 regulates blood glucose by increasing insulin secretion and hepatic glucose production. Cell Rep. 21, 1452–1460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holst, J. J., Albrechtsen, N. J. W., Gabe, M. B. N. & Rosenkilde, M. M. Oxyntomodulin: actions and role in diabetes. Peptides 100, 48–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Lund, A. et al. Evidence of extrapancreatic glucagon secretion in man. Diabetes 65, 585–597 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Jorsal, T. et al. Investigating intestinal glucagon after Roux-en-Y gastric bypass surgery. J. Clin. Endocrinol. Metab. 104, 6403–6416 (2019).

    Article  PubMed  Google Scholar 

  16. Lund, A. & Knop, F. K. Extrapancreatic glucagon: present status. Diabetes Res. Clin. Pract. 147, 19–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Kilimnik, G., Kim, A., Steiner, D. F., Friedman, T. C. & Hara, M. Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic α-cells in mouse models of β-cell regeneration. Islets 2, 149–155 (2010).

    Article  PubMed  Google Scholar 

  18. Marchetti, P. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55, 3262–3272 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Knop, F. K. Resolution of type 2 diabetes following gastric bypass surgery: involvement of gut-derived glucagon and glucagonotropic signalling? Diabetologia 52, 2270–2276 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Jorsal, T. et al. Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61, 284–294 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Thim, L. & Moody, A. J. The amino acid sequence of porcine glicentin. Peptides 2, 37–39 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Bataille, D. et al. Bioactive enteroglucagon (oxyntomodulin): present knowledge on its chemical structure and its biological activities. Peptides 2, 41–44 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Holst, J. J. Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33-69) of glicentin. Biochem. J. 207, 381–388 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wewer Albrechtsen, N. J. et al. Hyperglucagonaemia analysed by glucagon sandwich ELISA: nonspecific interference or truly elevated levels? Diabetologia 57, 1919–1926 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Wewer Albrechtsen, N. J. et al. Inability of some commercial assays to measure suppression of glucagon secretion. J. Diabetes Res. 2016, 8352957 (2016).

    Article  PubMed  Google Scholar 

  26. Svoboda, M., Tastenoy, M., Vertongen, P. & Robberecht, P. Relative quantitative analysis of glucagon receptor mRNA in rat tissues. Mol. Cell. Endocrinol. 105, 131–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Hansen, L. H., Abrahamsen, N. & Nishimura, E. Glucagon receptor mRNA distribution in rat tissues. Peptides 16, 1163–1166 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe, M., Hayasaki, H., Tamayama, T. & Shimada, M. Insulin and glucagon receptor distribution. Braz. J. Med. Biol. Res. 31, 243–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. van der Woning, B. et al. DNA immunization combined with scFv phage display identifies antagonistic GCGR specific antibodies and reveals new epitopes on the small extracellular loops. mAbs 8, 1126–1135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jiang, G. & Zhang, B. B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 284, 671–678 (2003).

    Article  Google Scholar 

  31. Müller, T. D., Finan, B., Clemmensen, C., DiMarchi, R. D. & Tschöp, M. H. The new biology and pharmacology of glucagon. Physiol. Rev. 97, 721–766 (2017).

    Article  PubMed  Google Scholar 

  32. Galsgaard, K. D., Pedersen, J., Knop, F. K., Holst, J. J. & Albrechtsen, N. J. W. Glucagon receptor signaling and lipid metabolism. Front. Physiol. 10, 413 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Richter, W. O., Robl, H. & Schwandt, P. Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro. Peptides 10, 333–335 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, M. S. et al. Does glucagon increase plasma free fatty acid concentration in humans with normal glucose tolerance? J. Clin. Endocrinol. Metab. 70, 410–416 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Jensen, M. D., Heiling, V. J. & Miles, J. M. Effects of glucagon on free fatty acid metabolism in humans. J. Clin. Endocrinol. Metab. 72, 308–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Højbjerg Gravholt, C., Møller, N., Jensen, M. D., Christiansen, J. S. & Schmitz, O. Physiological levels of glucagon do not influence lipolysis in abdominal adipose tissue as assessed by microdialysis. J. Clin. Endocrinol. Metab. 86, 2085–2089 (2001).

    Google Scholar 

  37. Xiao, C., Pavlic, M., Szeto, L., Patterson, B. W. & Lewis, G. F. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes 60, 383–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Longuet, C. et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359–371 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stephens, F. B., Constantin-Teodosiu, D. & Greenhaff, P. L. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 581, 431–444 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peng, I. C. et al. Glucagon regulates ACC activity in adipocytes through the CAMKK β/AMPK pathway. Am. J. Physiol. Endocrinol. Metab. 302, E1560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parilla, R., Goodman, M. N. & Toews, C. J. Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes 23, 725–731 (1974).

    Article  Google Scholar 

  42. Perry, R. J. et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petersen, K. F., Hansen, B. A. & Vilstrup, H. Time dependent stimulating effect of glucagon on the capacity of urea-N synthesis in rats. Horm. Metab. Res. 19, 53–56 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Boden, G., Rezvani, I. & Owen, O. E. Effects of glucagon on plasma amino acids. J. Clin. Invest. 73, 785–793 (1983).

    Article  Google Scholar 

  45. Hamberg, O. & Vilstrup, H. Regulation of urea synthesis by glucose and glucagon in normal man. Clin. Nutr. 13, 183–191 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Pegorier, J. P., Salvado, J., Forestier, M. & Girard, J. Dominant role of glucagon in the initial induction of phosphoenolpyruvate carboxykinase mRNA in cultured hepatocytes from fetal rats. Eur. J. Biochem. 210, 1053–1059 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Watanabe, C. et al. Remodeling of hepatic metabolism and hyperaminoacidemia in mice deficient in proglucagon-derived peptides. Diabetes 61, 74–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Heibel, S. K. et al. Transcriptional regulation of N-acetylglutamate synthase. PLoS One 7, 29527 (2012).

    Article  Google Scholar 

  49. Wewer Albrechtsen, N. J. et al. The liver-α-cell axis and type 2 diabetes. Endocr. Rev. 40, 1353–1366 (2019).

    Article  PubMed  Google Scholar 

  50. De Chiara, F. et al. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol. 69, 905–915 (2018).

    Article  PubMed  Google Scholar 

  51. Sands, J. M. Regulation of renal urea transporters. J. Am. Soc. Nephrol. 10, 635–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Le Cam, A. & Freychet, P. Glucagon stimulates the A system for neutral amino acid transport in isolated hepatocytes of adult rat. Biochem. Biophys. Res. Commun. 72, 893–901 (1976).

    Article  PubMed  Google Scholar 

  53. Richter, M. M. et al. The liver–α-cell axis in health and in disease. Diabetes 71, 1852–1861 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davidson, I. W. F., Salter, J. M. & Best, C. H. Calorigenic action of glucagon. Nature 180, 1124 (1957).

    Article  CAS  PubMed  Google Scholar 

  55. Nair, K. S. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J. Clin. Endocrinol. Metab. 64, 896–901 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Calles-Escandón, J. Insulin dissociates hepatic glucose cycling and glucagon-induced thermogenesis in man. Metabolism 43, 1000–1005 (1994).

    Article  PubMed  Google Scholar 

  57. Al-Massadi, O., Fernø, J., Diéguez, C., Nogueiras, R. & Quiñones, M. Glucagon control on food intake and energy balance. Int. J. Mol. Sci. 20, 3905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heppner, K. M. et al. Glucagon regulation of energy metabolism. Physiol. Behav. 100, 545–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le Sauter, J. & Geary, N. Hepatic portal glucagon infusion decreases spontaneous meal size in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 261, R154–R161 (1991).

    Article  Google Scholar 

  61. Langhans, W., Zieger, U., Scharrer, E. & Geary, N. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science 218, 894–896 (1982).

    Article  CAS  PubMed  Google Scholar 

  62. Le Sauter, J., Noh, U. & Geary, N. Hepatic portal infusion of glucagon antibodies increases spontaneous meal size in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 261, R162–R165 (1991).

    Article  Google Scholar 

  63. Geary, N., Kissileff, H. R., Pi-Sunyer, F. X. & Hinton, V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 262, R975–R980 (1992).

    Article  CAS  Google Scholar 

  64. Feczko, P. J., Simms, S. M., Iorio, J. & Halpert, R. Gastroduodenal response to low-dose glucagon. Am. J. Roentgenol. 140, 935–940 (1983).

    Article  CAS  Google Scholar 

  65. Patel, G. K., Whalen, G. E., Soergel, K. H., Wu, W. C. & Meade, R. C. Glucagon effects on the human small intestine. Dig. Dis. Sci. 24, 501–508 (1979).

    Article  CAS  PubMed  Google Scholar 

  66. Unger, R. H. & Orci, L. Physiology and pathophysiology of glucagon. Physiol. Rev. 56, 778–826 (1976).

    Article  CAS  PubMed  Google Scholar 

  67. Mukharji, A., Drucker, D. J., Charron, M. J. & Swoap, S. J. Oxyntomodulin increases intrinsic heart rate through the glucagon receptor. Physiol. Rep. 1, 112 (2013).

    Article  Google Scholar 

  68. Petersen, K. M., Bøgevig, S., Holst, J. J., Knop, F. K. & Christensen, M. B. Hemodynamic effects of glucagon: a literature review. J. Clin. Endocrinol. Metab. 103, 1804–1812 (2018).

    Article  PubMed  Google Scholar 

  69. Kazda, C. M. et al. Treatment with the glucagon receptor antagonist LY2409021 increases ambulatory blood pressure in patients with type 2 diabetes. Diabetes Obes. Metab. 19, 1071–1077 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13, 95–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Braun, M. et al. Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes 59, 1694–1701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johansson, H., Gylfe, E. & Hellman, B. Cyclic AMP raises cytoplasmic calcium in pancreatic α2-cells by mobilizing calcium incorporated in response to glucose. Cell Calcium 10, 205–211 (1989).

    Article  CAS  PubMed  Google Scholar 

  73. Pipeleers, D. G., Schuit, F. C., Van Schravendijk, C. F. H. & Van De Winkel, M. Interplay of nutrients and hormones in the regulation of glucagon release. Endocrinology 117, 817–823 (1985).

    Article  CAS  PubMed  Google Scholar 

  74. Gromada, J., Franklin, I. & Wollheim, C. B. α-Cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev. 28, 84–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gromada, J., Chabosseau, P. & Rutter, G. A. The α-cell in diabetes mellitus. Nat. Rev. Endocrinol. 14, 694–704 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Rorsman, P. & Hellman, B. Voltage-activated currents in guinea pig pancreatic α2 cells: evidence for Ca2+-dependent action potentials. J. Gen. Physiol. 91, 223–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Berts, A., Gylfe, E. & Hellman, B. Ca2+ oscillations in pancreatic islet cells secreting glucagon and somatostatin. Biochem. Biophys. Res. Commun. 208, 644–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Berts, A., Ball, A., Gylfe, E. & Hellman, B. Suppression of Ca2+ oscillations in glucagon-producing α2-cells by insulin/glucose and amino acids. Biochim. Biophys. Acta Mol. Cell Res. 1310, 212–216 (1996).

    Article  Google Scholar 

  79. Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B. & Schuit, F. Differences in glucose transporter gene expression between rat pancreatic α- and β-cells are correlated to differences in glucose transport but not in glucose utilization. J. Biol. Chem. 270, 8971–8975 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Gromada, J. et al. Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J. Gen. Physiol. 110, 217–228 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. MacDonald, P. E. et al. A KATP channel-dependent pathway within α cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol. 5, 1236–1247 (2007).

    Article  CAS  Google Scholar 

  82. Zhang, Q. et al. Role of K ATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gilon, P. The role of α-cells in islet function and glucose homeostasis in health and type 2 diabetes. J. Mol. Biol. 432, 1367–1394 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Elliott, A. D., Ustione, A. & Piston, D. W. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am. J. Physiol. Endocrinol. Metab. 308, E130–E143 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Yu, Q., Shuai, H., Ahooghalandari, P., Gylfe, E. & Tengholm, A. Glucose controls glucagon secretion by directly modulating cAMP in alpha cells. Diabetologia 62, 1212–1224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gylfe, E. Glucose control of glucagon secretion — ‘there’s a brand-new gimmick every year’. Upsala J. Med. Sci. 121, 120–132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gromada, J. et al. ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse α-cells. Diabetes 53, S181–S189 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Ravier, M. A. & Rutter, G. A. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic α-cells. Diabetes 54, 1789–1797 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Bosco, D. et al. Unique arrangement of α- and β-cells in human islets of Langerhans. Diabetes 59, 1202–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franklin, I., Gromada, J., Gjinovci, A., Theander, S. & Wollheim, C. B. β-Cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54, 1808–1815 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Kawamori, D. et al. Insulin signaling in α cells modulates glucagon secretion in vivo. Cell Metab. 9, 350–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maruyama, H., Hisatomi, A., Orci, L., Grodsky, G. M. & Unger, R. H. Insulin within islets is a physiologic glucagon release inhibitor. J. Clin. Invest. 74, 2296–2299 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gerich, J. E. et al. Comparison of the suppressive effects of elevated plasma glucose and free fatty acid levels on glucagon secretion in normal and insulin dependent diabetic subjects. Evidence for selective alpha cell insensitivity to glucose in diabetes mellitus. J. Clin. Invest. 58, 320–325 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gerich, J. E., Charles, M. A. & Grodsky, G. M. Regulation of pancreatic insulin and glucagon secretion. Annu. Rev. Physiol. 38, 353–388 (1976).

    Article  CAS  PubMed  Google Scholar 

  95. Weir, G. C., Knowlton, S. D., Atkins, R. F., McKennan, K. X. & Martin, D. B. Glucagon secretion from the perfused pancreas of streptozotocin treated rats. Diabetes 25, 275–282 (1976).

    Article  CAS  PubMed  Google Scholar 

  96. Kawamori, D., Akiyama, M., Hu, J., Hambro, B. & Kulkarni, R. N. Growth factor signalling in the regulation of α-cell fate. Diabetes Obes. Metab. 13, 21–30 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Knop, F. K. et al. Impaired incretin effect and fasting hyperglucagonaemia characterizing type 2 diabetic subjects are early signs of dysmetabolism in obesity. Diabetes Obes. Metab. 14, 500–510 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Hare, K. J., Vilsbøll, T., Holst, J. J. & Knop, F. K. Inappropriate glucagon response after oral compared with isoglycemic intravenous glucose administration in patients with type 1 diabetes. Am. J. Physiol. Metab. 298, E832–E837 (2010).

    CAS  Google Scholar 

  99. Knop, F. K. EJE PRIZE 2018: a gut feeling about glucagon. Eur. J. Endocrinol. 178, R267–R280 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Knop, F. K., Vilsbøll, T., Madsbad, S., Holst, J. J. & Krarup, T. Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 50, 797–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Gylfe, E. & Gilon, P. Glucose regulation of glucagon secretion. Diabetes Res. Clin. Pract. 103, 1–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Blundell, T. L. et al. The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. Quant. Biol. 36, 233–241 (1972).

    Article  CAS  PubMed  Google Scholar 

  103. Ehrlich, J. C. & Ratner, I. M. Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am. J. Pathol. 38, 49–59 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Westermark, P. Amyloid of human islets of Langerhans — II. Electron microscopic analysis of isolated amyloid. Virchows Arch. A Pathol. Anat. Histol. 373, 161–166 (1977).

    Article  CAS  PubMed  Google Scholar 

  105. Cooper, G. J. S. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Silvestre, R. A., Peiró, E., Dégano, P., Miralles, P. & Marco, J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul. Pept. 31, 23–31 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Gedulin, B. R., Rink, T. J. & Young, A. A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism 46, 67–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Gedulin, B. R., Jodka, C. M., Herrmann, K. & Young, A. A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept. 137, 121–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Ryan, G. J., Jobe, L. J. & Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther. 27, 1500–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Kong, M. F. et al. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 40, 82–88 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Levetan, C. et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Nyholm, B. et al. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism 48, 935–941 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Broderick, C. L., Brooke, G. S., DiMarchi, R. D. & Gold, G. Human and rat amylin have no effects on insulin secretion in isolated rat pancreatic islets. Biochem. Biophys. Res. Commun. 177, 932–938 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Inoue, K., Hiramatsu, S., Hisatomi, A., Umeda, F. & Nawata, H. Effects of amylin on the release of insulin and glucagon from the perfused rat pancreas. Horm. Metab. Res. 25, 135–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Olsen, H. L. et al. Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in β-cells. Endocrinology 146, 4861–4870 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Gilon, P., Bertrand, G., Loubatières-Mariani, M. M., Remacle, C. & Henquin, J. C. The influence of 7-aminobutyric acid on hormone release by the mouse and rat endocrine pancreas. Endocrinology 129, 2521–2529 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Wendt, A. et al. Glucose inhibition of glucagon secretion from Rat α-cells is mediated by GABA released from neighboring β-cells. Diabetes 53, 1038–1045 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Rorsman, P. et al. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341, 233–236 (1989).

    Article  CAS  PubMed  Google Scholar 

  119. Quoix, N. et al. Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse α-cells. Diabetes 58, 412–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vieira, E., Salehi, A. & Gylfe, E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50, 370–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Hjortoe, G. M., Hagel, G. M., Terry, B. R., Thastrup, O. & Arkhammar, P. O. G. Functional identification and monitoring of individual α and β cells in cultured mouse islets of Langerhans. Acta Diabetol. 41, 185–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Patel, Y. C., Wheatley, T. & Ning, C. Multiple forms of immunoreactive somatostatin: comparison of distribution in neural and nonneural tissues and portal plasma of the rat. Endocrinology 109, 1943–1949 (1981).

    Article  CAS  PubMed  Google Scholar 

  123. Hauge-Evans, A. C. et al. Somatostatin secreted by islet δ-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Orci, L., Stefan, Y., Bonner-Weir, S., Perrelet, A. & Unger, R. ‘Obligatory’ association between A and D cells demonstrated by bipolar islets in neonatal pancreas. Diabetologia 21, 73–74 (1981).

    Article  CAS  PubMed  Google Scholar 

  125. Arrojo e Drigo, R. et al. Structural basis for delta cell paracrine regulation in pancreatic islets. Nat. Commun. 10, 3700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rorsman, P. & Huising, M. O. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat. Rev. Endocrinol. 14, 404–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gromada, J. et al. Gi2 proteins couple somatostatin receptors to low-conductance K+ channels in rat pancreatic α-cells. Pflug. Arch. Eur. J. Physiol. 442, 19–26 (2001).

    Article  CAS  Google Scholar 

  128. Schuit, F. C., Derde, M. P. & Pipeleers, D. G. Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32, 207–212 (1989).

    Article  CAS  PubMed  Google Scholar 

  129. Holst, J. J., Vilsbøll, T. & Deacon, C. F. The incretin system and its role in type 2 diabetes mellitus. Mol. Cell. Endocrinol. 297, 127–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Bagger, J. I. et al. Glucagonostatic potency of GLP-1 in patients with type 2 diabetes, patients with type 1 diabetes, and healthy control subjects. Diabetes 70, 1347–1356 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, Y. et al. GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 68, 34–44 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Ørgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 60, 1731–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Creutzfeldt, W. O. C. et al. Glucagonostatic actions reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19, 580–586 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Hare, K. J. et al. The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59, 1765–1770 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Junker, A. E. et al. Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 908–915 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Plamboeck, A. et al. The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R544–R551 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Schirra, J. et al. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J. Clin. Invest. 101, 1421–1430 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gasbjerg, L. S., Bari, E. J., Christensen, M. & Knop, F. K. Exendin(9-39)NH2: recommendations for clinical use based on a systematic literature review. Diabetes Obes. Metab. 23, 2419–2436 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Christensen, M., Vedtofte, L., Holst, J. J., Vilsbøll, T. & Knop, F. K. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 60, 3103–3109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pederson, R. A. & Brown, J. C. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology 103, 610–615 (1978).

    Article  CAS  PubMed  Google Scholar 

  141. Christensen, M. B., Calanna, S., Holst, J. J., Vilsbløll, T. & Knop, F. K. Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 99, 418–426 (2014).

    Article  Google Scholar 

  142. Christensen, M. et al. Glucose-dependent insulinotropic polypeptide augments glucagon responses to hypoglycemia in type 1 diabetes. Diabetes 64, 72–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Lund, A., Vilsboll, T., Bagger, J. I., Holst, J. J. & Knop, F. K. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 300, 1038–1046 (2011).

    Article  Google Scholar 

  144. Mathiesen, D. S. et al. The effects of dual GLP-1/GIP receptor agonism on glucagon secretion — a review. Int. J. Mol. Sci. 20, 4092 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chia, C. W. et al. Exogenous glucose-dependent insulinotropic polypeptide worsens postprandial hyperglycemia in type 2 diabetes. Diabetes 58, 1342–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bergmann, N. C. et al. No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-like peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care 43, 588–596 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Gasbjerg, L. S. et al. GIP and GLP-1 receptor antagonism during a meal in healthy individuals. J. Clin. Endocrinol. Metab. 105, 725–738 (2020).

    Article  Google Scholar 

  148. Stensen, S. et al. Effects of endogenous GIP in patients with type 2 diabetes. Eur. J. Endocrinol. 185, 33–45 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Assan, R., Attali, J. R., Ballerio, G., Boillot, J. & Girard, J. R. Glucagon secretion induced by natural and artificial amino acids in the perfused rat pancreas. Diabetes 26, 300–307 (1977).

    Article  CAS  PubMed  Google Scholar 

  150. Galsgaard, K. D. et al. Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-α-cell axis in female mice. Am. J. Physiol. Endocrinol. Metab. 318, E920–E929 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Rocha, D. M., Faloona, G. R. & Unger, R. H. Glucagon-stimulating activity of 20 amino acids in dogs. J. Clin. Invest. 51, 2346–2351 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kuhara, T., Ikeda, S., Ohneda, A. & Sasaki, Y. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep. Am. J. Physiol. Endocrinol. Metab. 260, E21–E26 (1991).

    Article  CAS  Google Scholar 

  153. Ohneda, A., Parada, E., Eisentraut, A. M. & Unger, R. H. Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. J. Clin. Invest. 47, 2305–2322 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Marliss, E. B., Aoki, T. T., Unger, R. H., Soeldner, J. S. & Cahill, G. F. Glucagon levels and metabolic effects in fasting man. J. Clin. Invest. 49, 2256–2270 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dean, E. D. A primary role for α-cells as amino acid sensors. Diabetes 69, 542–549 (2020).

    Article  PubMed  Google Scholar 

  156. Finan, B., Capozzi, M. E. & Campbell, J. E. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 69, 532–541 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Zmazek, J., Grubelnik, V., Markovič, R. & Marhl, M. Modeling the amino acid effect on glucagon secretion from pancreatic alpha cells. Metabolites 12, 348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Müller, W. A., Faloona, G. R. & Unger, R. H. The effect of alanine on glucagon secretion. J. Clin. Invest. 50, 2215–2218 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Madison, L. L., Seyffert, W. A., Unger, R. H. & Barker, B. Effect of plasma free fatty acids on plasma glucagon and serum insulin concentrations. Metabolism 17, 301–304 (1968).

    Article  CAS  PubMed  Google Scholar 

  160. Luyckx, A. S. & Lefebvre, P. J. Arguments for a regulation of pancreatic glucagon secretion by circulating plasma free fatty acids (34511). Proc. Soc. Exp. Biol. Med. 133, 524–528 (1970).

    Article  CAS  PubMed  Google Scholar 

  161. Gerich, J. E., Langlois, M. & Schneider, V. Effects of alterations of plasma free fatty acid levels on pancreatic glucagon secretion in man. J. Clin. Invest. 53, 1284–1289 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gross, R. & Mialhe, P. Free fatty acids and pancreatic function in the duck. Acta Endocrinol. 112, 100–104 (1986).

    CAS  Google Scholar 

  163. Collins, S. C., Salehi, A., Eliasson, L., Olofsson, C. S. & Rorsman, P. Long-term exposure of mouse pancreatic islets to oleate or palmitate results in reduced glucose-induced somatostatin and oversecretion of glucagon. Diabetologia 51, 1689–1693 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Radulescu, A., Gannon, M. C. & Nuttall, F. Q. The effect on glucagon, glucagon-like peptide-1, total and acyl-ghrelin of dietary fats ingested with and without potato. J. Clin. Endocrinol. Metab. 95, 3385–3391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Raben, A., Holst, J. J., Madsen, J. & Astrup, A. Diurnal metabolic profiles after 14 d of an ad libitum high-starch, high-sucrose, or high-fat diet in normal-weight never-obese and postobese women. Am. J. Clin. Nutr. 73, 177–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Mandøe, M. J. et al. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans1. Am. J. Clin. Nutr. 102, 548–555 (2015).

    Article  PubMed  Google Scholar 

  167. Rodriguez-Diaz, R., Tamayo, A., Hara, M. & Caicedo, A. The local paracrine actions of the pancreatic α-cell. Diabetes 69, 550–558 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Konstantinova, I. et al. EphA-Ephrin-A-mediated β cell communication regulates insulin secretion from pancreatic islets. Cell 129, 359–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Samols, E., Stagner, J. I., Ewart, R. B. L. & Marks, V. The order of islet microsvascular cellular perfusion is B → A → D in the perfused rat pancreas. J. Clin. Invest. 82, 350–353 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Almaça, J. & Caicedo, A. Blood flow in the pancreatic islet: not so isolated anymore. Diabetes 69, 1336–1338 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kieffer, T. J., Heller, R. S., Unson, C. G., Weir, G. C. & Habener, J. F. Distribution of glucagon receptors on hormone-specific endocrine cells of rat pancreatic islets. Endocrinology 137, 5119–5125 (1996).

    Article  CAS  PubMed  Google Scholar 

  173. Kedees, M. H., Grigoryan, M., Guz, Y. & Teitelman, G. Differential expression of glucagon and glucagon-like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia. Mol. Cell. Endocrinol. 311, 69–76 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ishihara, H., Maechler, P., Gjinovci, A., Herrera, P. L. & Wollheim, C. B. Islet β-cell secretion determines glucagon release from neigbouring α-cells. Nat. Cell Biol. 5, 330–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  175. Rodriguez-Diaz, R. et al. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab. 27, 549–558.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wojtusciszyn, A., Armanet, M., Morel, P., Berney, T. & Bosco, D. Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia 51, 1843–1852 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Huypens, P., Ling, Z., Pipeleers, D. & Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43, 1012–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Zhu, L. et al. Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, e127994 (2019).

    Article  PubMed  Google Scholar 

  180. Capozzi, M. E. et al. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4, e126742 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ahrén, B., Yamada, Y. & Seino, Y. The mediation by GLP-1 receptors of glucagon-induced insulin secretion revisited in GLP1- receptor knockout mice. Peptides 135, 170434 (2021).

    Article  PubMed  Google Scholar 

  182. Rodriguez-Diaz, R. et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 17, 888–892 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fujita, Y. et al. Human pancreatic α- to β-cell area ratio increases after type 2 diabetes onset. J. Diabetes Investig. 9, 1270–1282 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hædersdal, S., Lund, A., Knop, F. K. & Vilsbøll, T. The role of glucagon in the pathophysiology and treatment of type 2 diabetes. Mayo Clin. Proc. 93, 217–239 (2018).

    Article  PubMed  Google Scholar 

  185. Kelly, R. P. et al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type 2 diabetes. Diabetes Obes. Metab. 17, 414–422 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Kazda, C. M. et al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type 2 diabetes: 12- and 24-week phase 2 studies. Diabetes Care 39, 1241–1249 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Yabe, D. et al. Effects of DPP-4 inhibitor linagliptin and GLP-1 receptor agonist liraglutide on physiological response to hypoglycaemia in Japanese subjects with type 2 diabetes: a randomized, open-label, 2-arm parallel comparative, exploratory trial. Diabetes Obes. Metab. 19, 442–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Ahré́n, B. et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 94, 1236–1243 (2009).

    Article  PubMed  Google Scholar 

  189. Haedersdal, S. et al. Individual and combined glucose-lowering effects of glucagon receptor antagonism and dipeptidyl peptidase-4 inhibition. Diabetes 67, 274-LB (2018).

    Article  Google Scholar 

  190. Kramer, C. K., Zinman, B., Choi, H., Connelly, P. W. & Retnakaran, R. The impact of chronic liraglutide therapy on glucagon secretion in type 2 diabetes: insight from the LIBRA trial. J. Clin. Endocrinol. Metab. 100, 3702–3709 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Hansen, L., Iqbal, N., Ekholm, E., Cook, W. & Hirshberg, B. Postprandial dynamics of plasma glucose, insulin, and glucagon in patients with type 2 diabetes treated with saxagliptin plus dapagliflozin add-on to metformin therapy. Endocr. Pract. 20, 1187–1197 (2014).

    Article  PubMed  Google Scholar 

  192. Okamoto, A., Yokokawa, H., Sanada, H. & Naito, T. Changes in levels of biomarkers associated with adipocyte function and insulin and glucagon kinetics during treatment with dapagliflozin among obese type 2 diabetes mellitus patients. Drugs R. D. 16, 255–261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Daniele, G. et al. Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes. Diabetes Care 39, 2036–2041 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Merovci, A. et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest. 124, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hædersdal, S. et al. The role of glucagon in the acute therapeutic effects of SGLT2 inhibition. Diabetes 69, 2619–2629 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bagger, J. I., Knop, F. K., Lund, A., Holst, J. J. & Vilsbøll, T. Glucagon responses to increasing oral loads of glucose and corresponding isoglycaemic intravenous glucose infusions in patients with type 2 diabetes and healthy individuals. Diabetologia 57, 1720–1725 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Baron, A. D., Schaeffer, L., Shragg, P. & Kolterman, O. G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 36, 274–283 (1987).

    Article  CAS  PubMed  Google Scholar 

  199. Basu, R., Schwenk, W. F. & Rizza, R. A. Both fasting glucose production and disappearance are abnormal in people with ‘mild’ and ‘severe’ type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 287, 55–62 (2004).

    Article  Google Scholar 

  200. Reaven, G. M., Chen, Y.-D. I., Golay, A., Swislocki, A. L. M. & Jaspan, J. B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 106–110 (1987).

    Article  CAS  PubMed  Google Scholar 

  201. Lund, A. et al. Higher endogenous glucose production during OGTT vs isoglycemic intravenous glucose infusion. J. Clin. Endocrinol. Metab. 101, 4377–4384 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Muscelli, E. et al. Separate impact of obesity and glucose tolerance on the patients. Diabetes 57, 1340–1348 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Shah, P., Basu, A, Basu, R. & Rizza, R. Impact of lack of suppression of glucagon on glucose tolerance in humans. Am. J. Physiol. 277, E283–E290 (1999).

    CAS  PubMed  Google Scholar 

  204. Shah, P. et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetees mellitus. J. Clin. Endocrinol. Metab. 85, 4053–4059 (2000).

    CAS  PubMed  Google Scholar 

  205. Unger, R. H., Aguilar-Parada, E., Müller, W. A. & Eisentraut, A. M. Studies of pancreatic alpha cell function in normal and diabetic subjects. J. Clin. Invest. 49, 837–848 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Knop, F. K. et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56, 1951–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Meier, J. J., Deacon, C. F., Schmidt, W. E., Holst, J. J. & Nauck, M. A. Suppression of glucagon secretion is lower after oral glucose administration than during intravenous glucose administration in human subjects. Diabetologia 50, 806–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Holst, J. et al. Regulation of glucagon secretion by incretins. Diabetes Obes. Metab. 13, 89–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Juel, C. T. B. et al. 53 rd EASD annual meeting of the European Association for the Study of Diabetes. Diabetologia 60, 1–608 (2017).

    Article  Google Scholar 

  210. Wali, J. & Thomas, H. Pancreatic alpha cells hold the key to survival. eBioMedicine 2, 368–369 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Grøndahl, M. F. G. et al. Glucagon clearance is preserved in type 2 diabetes. Diabetes 71, 73–82 (2022).

    Article  Google Scholar 

  212. Wewer Albrechtsen, N. J. et al. Hyperglucagonemia correlates with plasma levels of non-branched-chain amino acids in patients with liver disease independent of type 2 diabetes. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G91–G96 (2018).

    Article  PubMed  Google Scholar 

  213. Suppli, M. P., Lund, A., Bagger, J. I., Vilsbøll, T. & Knop, F. K. Involvement of steatosis-induced glucagon resistance in hyperglucagonaemia. Med. Hypotheses 86, 100–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  214. Suppli, M. P. et al. Glucagon resistance at the level of amino acid turnover in obese subjects with hepatic steatosis. Diabetes 69, 1090–1099 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Wewer Albrechtsen, N. J. et al. Evidence of a liver–alpha cell axis in humans: hepatic insulin resistance attenuates relationship between fasting plasma glucagon and glucagonotropic amino acids. Diabetologia 61, 671–680 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Holst, J. J., Albrechtsen, N. J. W., Pedersen, J. & Knop, F. K. G. Glucagon and amino acids are linked in a mutual feedback cycle: the liver-α-cell axis. Diabetes 66, 235–240 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Galsgaard, K. D. et al. Disruption of glucagon receptor signaling causes hyperaminoacidemia exposing a possible liver-alpha-cell axis. Am. J. Physiol. Endocrinol. Metab. 314, E93–E103 (2018).

    Article  PubMed  Google Scholar 

  218. Hædersdal, S. et al. 1952-P: Glucagon receptor antagonism increases plasma amino acids and glucagon. Diabetes 68, 1952-P (2019).

    Article  Google Scholar 

  219. Solloway, M. J. et al. Glucagon couples hepatic amino acid catabolism to mTOR-dependent regulation of α-cell mass. Cell Rep. 12, 495–510 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Dean, E. D. et al. Interrupted glucagon signaling reveals hepatic α cell axis and role for L-glutamine in α cell proliferation. Cell Metab. 25, 1362–1373.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kim, J. et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic α cell hyperplasia in mice. Cell Metab. 25, 1348–1361.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lee, Y. H., Wang, M.-Y., Yu, X.-X. & Unger, R. H. Glucagon is the key factor in the development of diabetes. Diabetologia 59, 1372–1375 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Ellingsgaard, H. et al. Interleukin-6 regulates pancreatic α-cell mass expansion. Proc. Natl Acad. Sci. USA 105, 13163–13168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Marroqui, L. et al. Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. eBioMedicine 2, 378–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Pettus, J. et al. Glucagon receptor antagonist LGD-6972 significantly lowers HbA1c and is well tolerated after 12-week treatment in patients with type 2 diabetes mellitus (T2DM) on metformin. Diabetes 67, 73-OR (2018).

    Article  Google Scholar 

  226. Kazierad, D. J., Chidsey, K., Somayaji, V. R., Bergman, A. J. & Calle, R. A. Efficacy and safety of the glucagon receptor antagonist PF-06291874: a 12-week, randomized, dose-response study in patients with type 2 diabetes mellitus on background metformin therapy. Diabetes Obes. Metab. 20, 2608–2616 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Pettus, J. et al. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: a randomized controlled trial. Diabetes Obes. Metab. 20, 1302–1305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pettus, J. et al. Glucagon receptor antagonist volagidemab in type 1 diabetes: a 12-week, randomized, double-blind, phase 2 trial. Nat. Med. 28, 2092–2099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Pearson, M. J., Unger, R. H. & Holland, W. L. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care 39, 1075–1077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ambery, P. et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet 391, 2607–2618 (2018).

    Article  CAS  PubMed  Google Scholar 

  231. Tillner, J. et al. A novel dual glucagon-like peptide and glucagon receptor agonist SAR425899: Results of randomized, placebo-controlled first-in-human and first-in-patient trials. Diabetes Obes. Metab. 21, 120–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Alba, M., Yee, J., Frustaci, M. E., Samtani, M. N. & Fleck, P. Efficacy and safety of glucagon‐like peptide‐1/glucagon receptor co‐agonist JNJ ‐64565111 in individuals with obesity without type 2 diabetes mellitus: a randomized dose‐ranging study. Clin. Obes. 11, e12432 (2021).

    Article  PubMed  Google Scholar 

  233. Linong, J. et al. Safety and efficacy of a GLP-1 and glucagon receptor dual agonist mazdutide (IBI362) 9 mg and 10 mg in Chinese adults with overweight or obesity: a randomised, placebo-controlled, multiple-ascending-dose phase 1b trial. Lancet 54, 101691 (2022).

    Google Scholar 

  234. Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  235. Knerr, P. J. et al. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol. Metab. 63, 101533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Coskun, T. et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol. Metab. 18, 3–14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Frias, J. P. et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392, 2180–2193 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Cegla, J. et al. Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63, 3711–3720 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.H. and A.A. researched data for the article. All authors contributed substantially to discussion of the content. S.H. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Sofie Hædersdal or Tina Vilsbøll.

Ethics declarations

Competing interests

S.H. has served as a consultant for Novo Nordisk. F.K.K. has served on scientific advisory panels, been part of speakers bureaus, served as a consultant to and/or received research support from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Carmot Therapeutics, Eli Lilly, Gubra, MedImmune, MSD/Merck, Mundipharma, Norgine, Novo Nordisk, Sanofi, ShouTi, Zealand Pharma and Zucara, and is a minority shareholder in Antag Therapeutics. T.V. has served on scientific advisory panels, been part of speakers bureaus, and served as a consultant to and/or received research support from Amgen, AstraZeneca, Boehringer Ingelheim, BMS, Eli Lilly, Gilead, GSK, Mundipharma, MSD/Merck, Novo Nordisk, Sanofi and Sun Pharmaceuticals. A.A. has no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Nigel Irwin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hædersdal, S., Andersen, A., Knop, F.K. et al. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 19, 321–335 (2023). https://doi.org/10.1038/s41574-023-00817-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00817-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing