Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A perspective on treating type 1 diabetes mellitus before insulin is needed

An Author Correction to this article was published on 03 April 2023

This article has been updated

Abstract

Type 1 diabetes mellitus (T1DM) is a progressive autoimmune disease that starts long before a clinical diagnosis is made. The American Diabetes Association recognizes three stages: stage 1 (normoglycaemic and positive for autoantibodies to β-cell antigens); stage 2 (asymptomatic with dysglycaemia); and stage 3, which is defined by glucose levels consistent with the definition of diabetes mellitus. This Perspective focuses on the management of the proportion of individuals with early stage 3 T1DM who do not immediately require insulin; a stage we propose should be termed stage 3a. To date, this period of non-insulin-dependent T1DM has been largely unrecognized. Importantly, it represents a window of opportunity for intervention, as remaining at this stage might delay the need for insulin by months or years. Extending the insulin-free period and/or avoiding unnecessary insulin therapy are important goals, as there is no risk of hypoglycaemia during this period and the adherence burden on patients of glycaemic monitoring and daily adjustments for diet and exercise is substantially reduced. Recognizing the pressing need for guidance on adequate management of children and adults with stage 3a T1DM, we present our perspective on the subject, which needs to be tested in formal and adequately powered clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Management of stage 3a T1DM.
Fig. 2: Relationship between insulin secretion and insulin sensitivity.
Fig. 3: Sites of action of therapeutic interventions for β-cell preservation.

Similar content being viewed by others

Change history

References

  1. Greenbaum, C. J. et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 61, 2066–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oram, R. A., Sims, E. K. & Evans-Molina, C. Beta cells in type 1 diabetes: mass and function; sleeping or dead? Diabetologia 62, 567–577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Powers, A. C. Type 1 diabetes mellitus: much progress, many opportunities. J. Clin. Invest. 131, e142242 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carr, A. L. J. et al. Circulating C-peptide levels in living children and young people and pancreatic β-cell loss in pancreas donors across type 1 diabetes disease duration. Diabetes 71, 1591–1596 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tatovic, D. & Dayan, C. M. Replacing insulin with immunotherapy: time for a paradigm change in type 1 diabetes. Diabet. Med. 38, e14696 (2021).

    Article  PubMed  Google Scholar 

  6. Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. One hundred years of insulin therapy. Nat. Rev. Endocrinol. 17, 715–725 (2021).

    Article  PubMed  Google Scholar 

  7. Russell-Jones, D. & Herring, R. 100 years of physiology, discrimination and wonder. Diabet. Med. 38, e14642 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sims, E. K., Carr, A. L. J., Oram, R. A., DiMeglio, L. A. & Evans-Molina, C. 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nat. Med. 27, 1154–1164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, K. M. et al. Current state of type 1 diabetes treatment in the US: updated data from the T1D Exchange clinic registry. Diabetes Care 38, 971–978 (2015).

    Article  PubMed  Google Scholar 

  10. McKnight, J. A. et al. Glycaemic control of type 1 diabetes in clinical practice early in the 21st century: an international comparison. Diabet. Med. 32, 1036–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wasag, D. R., Gregory, J. W., Dayan, C., Harvey, J. N. & Brecon, G. Excess all-cause mortality before age 30 in childhood onset type 1 diabetes: data from the Brecon Group Cohort in Wales. Arch. Dis. Child. 103, 44–48 (2018).

    Article  PubMed  Google Scholar 

  12. Foster, N. C. et al. State of type 1 diabetes management and outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 21, 66–72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderzen, J. et al. International benchmarking in type 1 diabetes: large difference in childhood HbA1c between eight high-income countries but similar rise during adolescence – a quality registry study. Pediatr. Diabetes 21, 621–627 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Prigge, R. et al. International comparison of glycaemic control in people with type 1 diabetes: an update and extension. Diabet. Med. 39, e14766 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Jones, A. G. & Hattersley, A. T. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet. Med. 30, 803–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tatovic, D. et al. Diagnosing type 1 diabetes in adults: guidance from the UK T1D immunotherapy consortium. Diabet. Med. 39, e14862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Food and Drug Administration. FDA approves first drug that can delay onset of type 1 diabetes. FDA https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-can-delay-onset-type-1-diabetes (2022).

  18. Couper, J. J. et al. ISPAD clinical practice consensus guidelines 2018: stages of type 1 diabetes in children and adolescents. Pediatr. Diabetes 19, 20–27 (2018).

    Article  PubMed  Google Scholar 

  19. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes — 2021. Diabetes Care 44, S15–S33 (2021).

    Article  Google Scholar 

  20. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309, 2473–2479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Insel, R. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38, 1964–1974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cherubini, V. et al. Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia 63, 1530–1541 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ng, S. M. et al. Presentation of newly diagnosed type 1 diabetes in children and young people during COVID-19: a national UK survey. BMJ Paediatr. Open 4, e000884 (2020).

    Article  PubMed  Google Scholar 

  24. Karges, B. et al. A comparison of familial and sporadic type 1 diabetes among young patients. Diabetes Care 44, 1116–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Atkinson, M. A., Campbell-Thompson, M., Kusmartseva, I. & Kaestner, K. H. Organisation of the human pancreas in health and in diabetes. Diabetologia 63, 1966–1973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bingley, P. J. & Williams, A. J. Islet autoantibody testing: an end to the trials and tribulations? Diabetes 62, 4009–4011 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wyatt, R. & Williams, A. J. Islet autoantibody analysis: radioimmunoassays. Methods Mol. Biol. 1433, 57–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Lampasona, V. & Liberati, D. Islet autoantibodies. Curr. Diab Rep. 16, 53 (2016).

    Article  PubMed  Google Scholar 

  29. Williams, C. L. & Long, A. E. What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia 62, 1969–1976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. So, M. et al. Advances in type 1 diabetes prediction using islet autoantibodies: beyond a simple count. Endocr. Rev. 42, 584–604 (2021).

    Article  PubMed  Google Scholar 

  31. Besser, R. E. J., Ng, S. M. & Robertson, E. J. Screening children for type 1 diabetes. BMJ 375, e067937 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Besser, R. E. J. et al. General population screening for childhood type 1 diabetes: is it time for a UK strategy? Arch. Dis. Child. 107, 790–795 (2022).

    Article  PubMed  Google Scholar 

  33. Sims, E. K. et al. Screening for type 1 diabetes in the general population: a status report and perspective. Diabetes 71, 610–623 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinn, L. M. et al. EarLy surveillance for autoimmune diabetes: protocol for a qualitative study of general population and stakeholder perspectives on screening for type 1 diabetes in the UK (ELSA 1). BMJ Open Diabetes Res. Care 10, e002750 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ziegler, A. G. et al. Yield of a public health screening of children for islet autoantibodies in Bavaria, Germany. JAMA 323, 339–351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diabetes Prevention Trial – Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

    Article  Google Scholar 

  37. Mahon, J. L. et al. The TrialNet natural history study of the development of type 1 diabetes: objectives, design, and initial results. Pediatr. Diabetes 10, 97–104 (2009).

    Article  PubMed  Google Scholar 

  38. Gale, E. A., Bingley, P. J., Emmett, C. L. & Collier, T. European Nicotinamide Diabetes Intervention Trial (ENDIT) Group.European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 363, 925–931 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Malkani, S. & Kotwal, A. Frequency and predictors of self-reported hypoglycemia in insulin-treated diabetes. J. Diabetes Res. 2017, 7425925 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Flatt, A. J. S., Greenbaum, C. J., Shaw, J. A. M. & Rickels, M. R. Pancreatic islet reserve in type 1 diabetes. Ann. NY Acad. Sci. 1495, 40–54 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Barker, J. M. et al. Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care 27, 1399–1404 (2004).

    Article  PubMed  Google Scholar 

  42. Steck, A. K. et al. Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: the environmental determinants of diabetes in the young (TEDDY). Diabetes Care 38, 808–813 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Steck, A. K. et al. Residual beta-cell function in diabetes children followed and diagnosed in the TEDDY study compared to community controls. Pediatr. Diabetes 18, 794–802 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herold, K. C. et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N. Engl. J. Med. 381, 603–613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foteinopoulou, E. et al. Impact of routine clinic measurement of serum C-peptide in people with a clinician-diagnosis of type 1 diabetes. Diabet. Med. 38, e14449 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Greenbaum, C. J. et al. Mixed-meal tolerance test versus glucagon stimulation test for the assessment of β-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 31, 1966–1971 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Willemsen, R. H. et al. Frequent monitoring of C-peptide levels in newly diagnosed type 1 subjects using dried blood spots collected at home. J. Clin. Endocrinol. Metab. 103, 3350–3358 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marren, S. M. et al. Persistent C-peptide is associated with reduced hypoglycaemia but not HbA1c in adults with longstanding type 1 diabetes: evidence for lack of intensive treatment in UK clinical practice? Diabet. Med. 36, 1092–1099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taylor, G. S. et al. Capturing the real-world benefit of residual β-cell function during clinically important time-periods in established type 1 diabetes. Diabet. Med. 39, e14814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buzzetti, R. et al. Management of latent autoimmune diabetes in adults: a consensus statement from an international expert panel. Diabetes 69, 2037–2047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeyam, A. et al. Clinical impact of residual C-peptide secretion in type 1 diabetes on glycemia and microvascular complications. Diabetes Care 44, 390–398 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Yki-Jarvinen, H. & Koivisto, V. A. Natural course of insulin resistance in type I diabetes. N. Engl. J. Med. 315, 224–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Sosenko, J. M. et al. Glucose and C-peptide changes in the perionset period of type 1 diabetes in the diabetes prevention trial-type 1. Diabetes Care 31, 2188–2192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hao, W. et al. Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care 39, 1664–1670 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weiss, A. et al. Progression likelihood score identifies substages of presymptomatic type 1 diabetes in childhood public health screening. Diabetologia 65, 2121–2131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mortensen, H. B. et al. Multinational study in children and adolescents with newly diagnosed type 1 diabetes: association of age, ketoacidosis, HLA status, and autoantibodies on residual beta-cell function and glycemic control 12 months after diagnosis. Pediatr. Diabetes 11, 218–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Ludvigsson, J. et al. C-peptide in the classification of diabetes in children and adolescents. Pediatr. Diabetes 13, 45–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, T. H. et al. The clinical measures associated with C-peptide decline in patients with type 1 diabetes over 15 years. J. Korean Med. Sci. 28, 1340–1344 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Govan, L. et al. Achieved levels of HbA1c and likelihood of hospital admission in people with type 1 diabetes in the Scottish population: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetes Care 34, 1992–1997 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Thunander, M. et al. Levels of C-peptide, body mass index and age, and their usefulness in classification of diabetes in relation to autoimmunity, in adults with newly diagnosed diabetes in Kronoberg, Sweden. Eur. J. Endocrinol. 166, 1021–1029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Z. H., Kihl-Selstam, E. & Eriksson, J. W. Ketoacidosis occurs in both type 1 and type 2 diabetes – a population-based study from Northern Sweden. Diabet. Med. 25, 867–870 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Fourlanos, S., Narendran, P., Byrnes, G. B., Colman, P. G. & Harrison, L. C. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47, 1661–1667 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Besser, R. E. J. et al. ISPAD clinical practice consensus guidelines 2022: stages of type 1 diabetes in children and adolescents. Pediatr. Diabetes 23, 1175–1187 (2022).

    Article  PubMed  Google Scholar 

  64. Ooi, E. et al. Clinical and biochemical profile of 786 sequential episodes of diabetic ketoacidosis in adults with type 1 and type 2 diabetes mellitus. BMJ Open Diabetes Res. Care 9, e002451 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cavero-Redondo, I., Peleteiro, B., Alvarez-Bueno, C., Rodriguez-Artalejo, F. & Martinez-Vizcaino, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: a systematic review and meta-analysis. BMJ Open 7, e015949 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Steck, A. K. et al. CGM metrics predict imminent progression to type 1 diabetes: autoimmunity screening for kids (ASK) study. Diabetes Care 45, 365–371 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Dhatariya, K. K., Joint British Diabetes Societies for Inpatient Care. The management of diabetic ketoacidosis in adults – an updated guideline from the Joint British Diabetes Society for Inpatient Care. Diabet. Med. 39, e14788 (2022).

    Article  PubMed  Google Scholar 

  68. Garg, S. K., Peters, A. L., Buse, J. B. & Danne, T. Strategy for mitigating DKA risk in patients with type 1 diabetes on adjunctive treatment with SGLT inhibitors: a STICH protocol. Diabetes Technol. Ther. 20, 571–575 (2018).

    Article  PubMed  Google Scholar 

  69. Goldenberg, R. M., Gilbert, J. D., Hramiak, I. M., Woo, V. C. & Zinman, B. Sodium-glucose co-transporter inhibitors, their role in type 1 diabetes treatment and a risk mitigation strategy for preventing diabetic ketoacidosis: the STOP DKA protocol. Diabetes Obes. Metab. 21, 2192–2202 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Danne, T. et al. International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors. Diabetes Care 42, 1147–1154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Teng, R. et al. Comparison of protocols to reduce diabetic ketoacidosis in patients with type 1 diabetes prescribed a sodium-glucose cotransporter 2 inhibitor. Diabetes Spectr. 34, 42–51 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dashora, U. et al. Association of British Clinical Diabetologists (ABCD) and Diabetes UK joint position statement and recommendations on the use of sodium-glucose cotransporter inhibitors with insulin for treatment of type 1 diabetes (updated October 2020). Diabet. Med. 38, e14458 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Biolo, G., Declan Fleming, R. Y. & Wolfe, R. R. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. J. Clin. Invest. 95, 811–819 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Narendran, P. et al. Exercise to preserve β-cell function in recent-onset type 1 diabetes mellitus (EXTOD) – a randomized controlled pilot trial. Diabet. Med. 34, 1521–1531 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Chetan, M. R. et al. The type 1 diabetes ‘honeymoon’ period is five times longer in men who exercise: a case-control study. Diabet. Med. 36, 127–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  77. Carr, A. L. J. et al. Measurement of peak C-peptide at diagnosis informs glycemic control but not hypoglycemia in adults with type 1 diabetes. J. Endocr. Soc. 5, bvab127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chimen, M. et al. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 55, 542–551 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Musil, F. et al. Effect of low calorie diet and controlled fasting on insulin sensitivity and glucose metabolism in obese patients with type 1 diabetes mellitus. Physiol. Res. 62, 267–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt, S. et al. Low versus high carbohydrate diet in type 1 diabetes: a 12-week randomized open-label crossover study. Diabetes Obes. Metab. 21, 1680–1688 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Seckold, R., Fisher, E., de Bock, M., King, B. R. & Smart, C. E. The ups and downs of low-carbohydrate diets in the management of type 1 diabetes: a review of clinical outcomes. Diabet. Med. 36, 326–334 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Ma, M. et al. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis. 19, 121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pursey, K. M., Hart, M., Jenkins, L., McEvoy, M. & Smart, C. E. Screening and identification of disordered eating in people with type 1 diabetes: a systematic review. J. Diabetes Complicat. 34, 107522 (2020).

    Article  Google Scholar 

  84. Cree-Green, M. et al. Metformin improves peripheral insulin sensitivity in youth with type 1 diabetes. J. Clin. Endocrinol. Metab. 104, 3265–3278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vella, S. et al. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia 53, 809–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Tandon, S., Ayis, S., Hopkins, D., Harding, S. & Stadler, M. The impact of pharmacological and lifestyle interventions on body weight in people with type 1 diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab. 23, 350–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. von Herrath, M. et al. Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 212–224 (2021).

    Article  Google Scholar 

  88. Wentworth, J. M., Fourlanos, S., Colman, P. G. & Harrison, L. C. A pilot study of the feasibility of empagliflozin in recent-onset type 1 diabetes. Metab. Open 5, 100021 (2020).

    Article  Google Scholar 

  89. Garg, S. K. et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377, 2337–2348 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Rosenstock, J. et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care 41, 2560–2569 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Buse, J. B. et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the North American inTandem1 Study. Diabetes Care 41, 1970–1980 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perkins, B. A. et al. Exploring patient preferences for adjunct-to-insulin therapy in type 1 diabetes. Diabetes Care 42, 1716–1723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ervin, C. et al. Insights into patients’ experience with type 1 diabetes: exit interviews from phase III studies of sotagliflozin. Clin. Ther. 41, 2219–2230.e6 (2019).

    Article  PubMed  Google Scholar 

  94. Ehrmann, D. et al. Risk factors and prevention strategies for diabetic ketoacidosis in people with established type 1 diabetes. Lancet Diabetes Endocrinol. 8, 436–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Rao, L., Ren, C., Luo, S., Huang, C. & Li, X. Sodium-glucose cotransporter 2 inhibitors as an add-on therapy to insulin for type 1 diabetes mellitus: meta-analysis of randomized controlled trials. Acta Diabetol. 58, 869–880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Phillip, M. et al. Long-term efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: pooled 52-week outcomes from the DEPICT-1 and -2 studies. Diabetes Obes. Metab. 23, 549–560 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Seufert, J. et al. Real-world data of 12-month adjunct sodium-glucose co-transporter-2 inhibitor treatment in type 1 diabetes from the German/Austrian DPV registry: improved HbA1c without diabetic ketoacidosis. Diabetes Obes. Metab. 24, 742–746 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Herring, R. A. et al. Metabolic effects of an SGLT2 inhibitor (dapagliflozin) during a period of acute insulin withdrawal and development of ketoacidosis in people with type 1 diabetes. Diabetes Care 43, 2128–2136 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Hampp, C. et al. Use of sodium-glucose cotransporter 2 inhibitors in patients with type 1 diabetes and rates of diabetic ketoacidosis. Diabetes Care 43, 90–97 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Musso, G., Sircana, A., Saba, F., Cassader, M. & Gambino, R. Assessing the risk of ketoacidosis due to sodium-glucose cotransporter (SGLT)-2 inhibitors in patients with type 1 diabetes: a meta-analysis and meta-regression. PLoS Med. 17, e1003461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimoda, M. et al. Efficacy and safety of adding ipragliflozin to insulin in Japanese patients with type 1 diabetes mellitus: a retrospective study. Endocr. J. 68, 1455–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Curran, M. et al. The benefits of physical exercise for the health of the pancreatic β-cell: a review of the evidence. Exp. Physiol. 105, 579–589 (2020).

    Article  PubMed  Google Scholar 

  103. Choi, S. B., Jang, J. S., Hong, S. M., Jun, D. W. & Park, S. Exercise and dexamethasone oppositely modulate β-cell function and survival via independent pathways in 90% pancreatectomized rats. J. Endocrinol. 190, 471–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Kiraly, M. A. et al. Attenuation of type 2 diabetes mellitus in the male Zucker diabetic fatty rat: the effects of stress and non-volitional exercise. Metabolism 56, 732–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Paula, F. M. M. et al. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. FASEB J. 32, 1524–1536 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Choi, S. B., Jang, J. S. & Park, S. Estrogen and exercise may enhance β-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 146, 4786–4794 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Huang, H. H. et al. Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Exp. Diabetes Res. 2011, 481427 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. AbouAssi, H. et al. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial. J. Appl. Physiol. 118, 1474–1482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Coomans de Brachène, A. et al. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes. Diabetologia 66, 450–460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jackness, C. et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes 62, 3027–3032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Allen, L. A. & Dayan, C. M. Immunotherapy for type 1 diabetes. Br. Med. Bull. 140, 76–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Jacobsen, L. M. et al. Comparing beta cell preservation across clinical trials in recent-onset type 1 diabetes. Diabetes Technol. Ther. 22, 948–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sims, E. K. et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci. Transl Med. 13, eabc8980 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Orban, T. et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care 37, 1069–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ovalle, F. et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu, G. et al. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat. Commun. 13, 1159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Quattrin, T. et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N. Engl. J. Med. 383, 2007–2017 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Hopkinson, H. E., White, A. D., Nightingale, P. & Narendran, P. A novel approach to basal-bolus insulin initiation in adults with newly diagnosed type 1 diabetes: an observational cohort study of a service redesign. Br. J. Diabetes 18, 71–75 (2018).

    Article  Google Scholar 

  119. Boughton, C. K. et al. Closed-loop therapy and preservation of C-peptide secretion in type 1 diabetes. N. Engl. J. Med. 387, 882–893 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Roberts, C. K., Hevener, A. L. & Barnard, R. J. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol. https://doi.org/10.1002/cphy.c110062 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Colin M. Dayan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Olga Kordonouri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatovic, D., Narendran, P. & Dayan, C.M. A perspective on treating type 1 diabetes mellitus before insulin is needed. Nat Rev Endocrinol 19, 361–370 (2023). https://doi.org/10.1038/s41574-023-00816-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00816-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing