Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of ChREBP in carbohydrate sensing and NAFLD development

Abstract

Excessive sugar consumption and defective glucose sensing by hepatocytes contribute to the development of metabolic diseases including type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD). Hepatic metabolism of carbohydrates into lipids is largely dependent on the carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses intracellular carbohydrates and activates many different target genes, through the activation of de novo lipogenesis (DNL). This process is crucial for the storage of energy as triglycerides in hepatocytes. Furthermore, ChREBP and its downstream targets represent promising targets for the development of therapies for the treatment of NAFLD and T2DM. Although lipogenic inhibitors (for example, inhibitors of fatty acid synthase, acetyl-CoA carboxylase or ATP citrate lyase) are currently under investigation, targeting lipogenesis remains a topic of discussion for NAFLD treatment. In this Review, we discuss mechanisms that regulate ChREBP activity in a tissue-specific manner and their respective roles in controlling DNL and beyond. We also provide in-depth discussion of the roles of ChREBP in the onset and progression of NAFLD and consider emerging targets for NAFLD therapeutics.

Key points

  • In nonalcoholic fatty liver disease (NAFLD), lipids accumulate in the liver from both hepatic (de novo lipogenesis) and extra-hepatic pathways (adipose tissue lipolysis and diet-derived chylomicrons).

  • Carbohydrate-responsive element binding protein (ChREBP), a transcription factor that senses carbohydrates, acts as a hub for lipid synthesis in the liver.

  • The study of the ChREBPβ isoform is an emerging field in the comprehension of ChREBP metabolic functions.

  • Expression of ChREBP is altered in the liver of individuals with NAFLD.

  • Several ChREBP targets are under clinical investigation for NAFLD treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Direct and indirect regulation of ChREBP activity.
Fig. 2: ChREBP-regulated therapeutic candidates for NAFLD and NASH.

Similar content being viewed by others

References

  1. Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).

    Article  PubMed  Google Scholar 

  2. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Meex, R. C. R. & Watt, M. J. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nat. Rev. Endocrinol. 13, 509–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Montagner, A. et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Régnier, M. et al. Insights into the role of hepatocyte PPARα activity in response to fasting. Mol. Cell Endocrinol. 471, 75–88 (2018).

    Article  PubMed  Google Scholar 

  8. Souza-Mello, V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 7, 1012–1019 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142, 711–725.e6 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fraulob, J. C., Souza-Mello, V., Aguila, M. B. & Mandarim-de-Lacerda, C. A. Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin. Sci. 123, 259–270 (2012).

    Article  CAS  Google Scholar 

  12. Shih, H. M., Liu, Z. & Towle, H. C. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol. Chem. 270, 21991–21997 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Girard, J., Ferré, P. & Foufelle, F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17, 325–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Towle, H. C., Kaytor, E. N. & Shih, H. M. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu. Rev. Nutr. 17, 405–433 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, L., Robinson, L. N. & Towle, H. C. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281, 28721–28730 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Poungvarin, N. et al. Genome-wide analysis of ChREBP binding sites on male mouse liver and white adipose chromatin. Endocrinology 156, 1982–1994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeong, Y.-S. et al. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS ONE 6, e22544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D. & Uyeda, K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281–7286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J.-M. & Lustig, R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7, 251–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. & Wollheim, C. B. ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells. J. Biol. Chem. 277, 32746–32752 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Takao, K. et al. Effects of ChREBP deficiency on adrenal lipogenesis and steroidogenesis. J. Endocrinol. 248, 317–324 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Richards, P. et al. MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology. Metabolism 70, 133–151 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Ahn, B. et al. MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling. J. Clin. Invest. 126, 3567–3579 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Foufelle, F. et al. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J. Biol. Chem. 267, 20543–20546 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita, H. et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl Acad. Sci. USA 98, 9116–9121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koo, H.-Y., Miyashita, M., Cho, B. H. S. & Nakamura, M. T. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem. Biophys. Res. Commun. 390, 285–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Arden, C. et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 443, 111–123 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Lanaspa, M. A. et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver. J. Biol. Chem. 287, 40732–40744 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, M. V., Chang, B., Imamura, M., Poungvarin, N. & Chan, L. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179–1189 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kabashima, T., Kawaguchi, T., Wadzinski, B. E. & Uyeda, K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl Acad. Sci. USA 100, 5107–5112 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dentin, R. et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J. Hepatol. 56, 199–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. McFerrin, L. G. & Atchley, W. R. A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS ONE 7, e34803 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawaguchi, T., Takenoshita, M., Kabashima, T. & Uyeda, K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc. Natl Acad. Sci. USA 98, 13710–13715 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leclerc, I., Rutter, G. A., Meur, G. & Noordeen, N. Roles of Ca2+ ions in the control of ChREBP nuclear translocation. J. Endocrinol. 213, 115–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Vineeth Daniel, P. et al. Chronic exposure to Pb2+ perturbs ChREBP transactivation and coerces hepatic dyslipidemia. FEBS Lett. 593, 3084–3097 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Abdul-Wahed, A., Guilmeau, S. & Postic, C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 26, 324–341 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Zeidan, Q. & Hart, G. W. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci. 123, 13–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Nie, H. & Yi, W. O-GlcNAcylation, a sweet link to the pathology of diseases. J. Zhejiang Univ. Sci. B 20, 437–448 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guinez, C. et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60, 1399–1413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lane, E. A. et al. HCF-1 regulates de novo lipogenesis through a nutrient-sensitive complex with ChREBP. Mol. Cell 75, 357–371.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herman, M. A. et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Herman, M. A. & Kahn, B. B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116, 1767–1775 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, P. et al. Induction of the ChREBPβ isoform is essential for glucose-stimulated β-cell proliferation. Diabetes 64, 4158–4170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang, Y. et al. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat. Commun. 7, 11365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Katz, L. S. et al. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat. Commun. 13, 4423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jois, T. et al. Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice. Mol. Metab. 6, 1381–1394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, M. et al. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight 2, e96703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Recazens, E. et al. ChREBPβ is dispensable for the control of glucose homeostasis and energy balance. JCI Insight 7, e153431 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Herman, M. A. & Samuel, V. T. The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol. Metab. 27, 719–730 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, M.-S. et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J. Clin. Invest. 126, 4372–4386 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Poungvarin, N. et al. Carbohydrate response element-binding protein (ChREBP) plays a pivotal role in beta cell glucotoxicity. Diabetologia 55, 1783–1796 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Samuel, V. T., Petersen, K. F. & Shulman, G. I. Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375, 2267–2277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Musso, G., Cassader, M., Paschetta, E. & Gambino, R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology 155, 282–302.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Dentin, R. et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159–2170 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Benhamed, F. et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J. Clin. Invest. 122, 2176–2194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6, 69–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Gluchowski, N. L. et al. Hepatocyte deletion of triglyceride-synthesis enzyme acyl CoA: diacylglycerol acyltransferase 2 reduces steatosis without increasing inflammation or fibrosis in mice. Hepatology 70, 1972–1985 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Kulozik, P. et al. Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. Cell Metab. 13, 389–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Alkhouri, N., Dixon, L. J. & Feldstein, A. E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert. Rev. Gastroenterol. Hepatol. 3, 445–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Leamy, A. K., Egnatchik, R. A. & Young, J. D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 52, 165–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Semova, I. & Biddinger, S. B. Triglycerides in nonalcoholic fatty liver disease: guilty until proven innocent. Trends Pharmacol. Sci. 42, 183–190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Magkos, F. et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444–1446.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Rhee, E. P. et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 121, 1402–1411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dentin, R. et al. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Invest. 115, 2843–2854 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pedersen, K. B. et al. The promoter for the gene encoding the catalytic subunit of rat glucose-6-phosphatase contains two distinct glucose-responsive regions. Am. J. Physiol. Endocrinol. Metab. 292, E788–E801 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Aiston, S., Trinh, K. Y., Lange, A. J., Newgard, C. B. & Agius, L. Glucose-6-phosphatase overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation. Evidence against feedback inhibition of glucokinase. J. Biol. Chem. 274, 24559–24566 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Argaud, D., Kirby, T. L., Newgard, C. B. & Lange, A. J. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J. Biol. Chem. 272, 12854–12861 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Grefhorst, A. et al. Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor α (LXRα) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type 1. Biochem. J. 432, 249–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Abdul-Wahed, A. et al. A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol. Metab. 3, 531–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cho, J.-H. et al. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia. PLoS Genet. 13, e1006819 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lei, Y. et al. Hepatic carbohydrate response element binding protein activation limits nonalcoholic fatty liver disease development in a mouse model for glycogen storage disease type 1a. Hepatology 72, 1638–1653 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Rajas, F. et al. The absence of hepatic glucose-6 phosphatase/ChREBP couple is incompatible with survival in mice. Mol. Metab. 43, 101108 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Velázquez-Villegas, L. et al. ChREBP downregulates SNAT2 amino acid transporter expression through interactions with SMRT in response to a high-carbohydrate diet. Am. J. Physiol. Endocrinol. Metab. 320, E102–E112 (2021).

    Article  PubMed  Google Scholar 

  76. Girousse, A. et al. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol. 11, e1001485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morigny, P. et al. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat. Metab. 1, 133–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Vijayakumar, A. et al. Absence of carbohydrate response element binding protein in adipocytes causes systemic insulin resistance and impairs glucose transport. Cell Rep. 21, 1021–1035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wei, C. et al. ChREBP-β regulates thermogenesis in brown adipose tissue. J. Endocrinol. 245, 343–356 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Sakiyama, H. et al. A lack of ChREBP inhibits mitochondrial cristae formation in brown adipose tissue. Mol. Cell Biochem. 476, 3577–3590 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Wei, C. et al. ChREBP-regulated lipogenesis is not required for the thermogenesis of brown adipose tissue. Int. J. Obes. 46, 1068–1075 (2022).

    Article  CAS  Google Scholar 

  83. Noblet, B. et al. Dual regulation of TxNIP by ChREBP and FoxO1 in liver. iScience 24, 102218 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thielen, L. & Shalev, A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr. Opin. Endocrinol. Diabetes Obes. 25, 75–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Minn, A. H., Hafele, C. & Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146, 2397–2405 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Waldhart, A. N. et al. Excess dietary carbohydrate affects mitochondrial integrity as observed in brown adipose tissue. Cell Rep. 36, 109488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. von Holstein-Rathlou, S. et al. FGF21 Mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23, 335–343 (2016).

    Article  Google Scholar 

  88. Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Kliewer, S. A. & Mangelsdorf, D. J. A dozen years of discovery: insights into the physiology and pharmacology of FGF21. Cell Metab. 29, 246–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iroz, A. et al. A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Rep. 21, 403–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iizuka, K., Takeda, J. & Horikawa, Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett. 583, 2882–2886 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Fisher, F. M. et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol. Metab. 6, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Neuschwander-Tetri, B. A. Carbohydrate intake and nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 16, 446–452 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Tiniakos, D. G., Vos, M. B. & Brunt, E. M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol. 5, 145–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwarz, J.-M. et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100, 2434–2442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Oh, A.-R. et al. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 85, 286–297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kato, T. et al. ChREBP-knockout mice show sucrose intolerance and fructose malabsorption. Nutrients 10, 340 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Petersen, A., Steinmann, B. & Gitzelmann, R. Essential fructosuria: increased levels of fructose 3-phosphate in erythrocytes. Enzyme 46, 319–323 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Steinmann, B., Baerlocher, K. & Gitzelmann, R. [Hereditary disorders of fructose metabolism. Loading tests with fructose, sorbitol and dihydroxyacetone]. Nutr. Metab. 18, 115–132 (1975).

    Article  PubMed  Google Scholar 

  102. Ishimoto, T. et al. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 109, 4320–4325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Andres-Hernando, A. et al. Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight 6, e140848 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jang, C. et al. The small intestine shields the liver from fructose-induced steatosis. Nat. Metab. 2, 586–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Softic, S. et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J. Clin. Invest. 127, 4059–4074 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, D. et al. Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. J. Clin. Invest. 127, 2855–2867 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Erion, D. M. et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology 154, 36–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, W. et al. Fat and carbohydrate in western diet contribute differently to hepatic lipid accumulation. Biochem. Biophys. Res. Commun. 461, 681–686 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Yu, S., Li, C., Ji, G. & Zhang, L. The contribution of dietary fructose to non-alcoholic fatty liver disease. Front. Pharmacol. 12, 783393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Puri, P. et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67, 534–548 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Arab, J. P., Karpen, S. J., Dawson, P. A., Arrese, M. & Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 65, 350–362 (2017).

    Article  PubMed  Google Scholar 

  113. Min, H.-K. et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15, 665–674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694.e3 (2017).

    Article  PubMed  Google Scholar 

  115. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Musso, G., Gambino, R. & Cassader, M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52, 175–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Raselli, T. et al. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J. Lipid Res. 60, 1270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Horn, C. L. et al. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol. Commun. 6, 12–35 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Bricambert, J. et al. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat. Commun. 9, 2092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hoogerland, J. A. et al. Glucose-6-phosphate regulates hepatic bile acid synthesis in mice. Hepatology 70, 2171–2184 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Sarrazy, V. et al. Maintenance of macrophage redox status by ChREBP limits inflammation and apoptosis and protects against advanced atherosclerotic lesion formation. Cell Rep. 13, 132–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Dubuquoy, C. et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J. Hepatol. 55, 145–153 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Haslam, D. E. et al. Sugar-sweetened beverage consumption may modify associations between genetic variants in the CHREBP (carbohydrate responsive element binding protein) locus and HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. Circ. Genom. Precis. Med. 14, e003288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bray, G. A. & Popkin, B. M. Dietary sugar and body weight: have we reached a crisis in the epidemic of obesity and diabetes?: Health be damned! Pour on the sugar. Diabetes Care 37, 950–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ishii, S., Iizuka, K., Miller, B. C. & Uyeda, K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl Acad. Sci. USA 101, 15597–15602 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kursawe, R. et al. Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes. Diabetes 62, 837–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Eissing, L. et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat. Commun. 4, 1528 (2013).

    Article  PubMed  Google Scholar 

  129. Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet. 17, 535–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Wehmeyer, M. H. et al. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine 95, e3887 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cortez-Pinto, H. et al. How different is the dietary pattern in non-alcoholic steatohepatitis patients? Clin. Nutr. 25, 816–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. de Wit, N. J. W., Afman, L. A., Mensink, M. & Müller, M. Phenotyping the effect of diet on non-alcoholic fatty liver disease. J. Hepatol. 57, 1370–1373 (2012).

    Article  PubMed  Google Scholar 

  133. Taskinen, M.-R. et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J. Intern. Med. 282, 187–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Hebbard, L. & George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 8, 35–44 (2011).

    Article  PubMed  Google Scholar 

  135. Parlati, L., Régnier, M., Guillou, H. & Postic, C. New targets for NAFLD. JHEP Rep. 3, 100346 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Smati, S. et al. Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut 71, 807–821 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Nakamura, A. et al. Protection from non-alcoholic steatohepatitis and liver tumourigenesis in high fat-fed insulin receptor substrate-1-knockout mice despite insulin resistance. Diabetologia 55, 3382–3391 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Sánchez, J., Palou, A. & Picó, C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 150, 5341–5350 (2009).

    Article  PubMed  Google Scholar 

  139. Ronis, M. J. J. et al. Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition. Physiol. Genomics 44, 1073–1089 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Nuotio-Antar, A. M. et al. FABP4-Cre mediated expression of constitutively active ChREBP protects against obesity, fatty liver, and insulin resistance. Endocrinology 156, 4020–4032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    Article  PubMed  Google Scholar 

  142. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Iizuka, K., Miller, B. & Uyeda, K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am. J. Physiol. Endocrinol. Metab. 291, E358–E364 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Kim, K. E. et al. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci. Rep. 6, 30111 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, D. et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 29, 236–248.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Postic, C., Dentin, R., Denechaud, P.-D. & Girard, J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu. Rev. Nutr. 27, 179–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Al-Oanzi, Z. H. et al. Opposite effects of a glucokinase activator and metformin on glucose-regulated gene expression in hepatocytes. Diabetes Obes. Metab. 19, 1078–1087 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Hu, D. et al. New insight into metformin-induced cholesterol-lowering effect crosstalk between glucose and cholesterol homeostasis via ChREBP (carbohydrate-responsive element-binding protein)-mediated PCSK9 (proprotein convertase subtilisin/kexin Type 9) regulation. Arterioscler. Thromb. Vasc. Biol. 41, e208–e223 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Iizuka, K., Takao, K., Kato, T., Horikawa, Y. & Takeda, J. ChREBP reciprocally regulates liver and plasma triacylglycerol levels in different manners. Nutrients 10, E1699 (2018).

    Article  Google Scholar 

  150. Dushay, J. R. et al. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4, 51–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Badman, M. K. et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Camporez, J. P. G. et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154, 3099–3109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Inagaki, T. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Park, J.-G. et al. CREBH–FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci. Rep. 6, 27938 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Charles, E. D. et al. Pegbelfermin (BMS-986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: results from a randomized phase 2 study. Obesity 27, 41–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Sanyal, A. et al. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet 392, 2705–2717 (2019).

    Article  PubMed  Google Scholar 

  159. Harrison, S. A. et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat. Med. 27, 1262–1271 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Rader, D. J. et al. LLF580, an FGF21 analog, reduces triglycerides and hepatic fat in obese adults with modest hypertriglyceridemia. J. Clin. Endocrinol. Metab. 107, e57–e70 (2022).

    Article  PubMed  Google Scholar 

  161. Sargsyan, A. et al. HGFAC is a ChREBP regulated hepatokine that enhances glucose and lipid homeostasis. JCI Insight 8, e153740 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kucukoglu, O., Sowa, J.-P., Mazzolini, G. D., Syn, W.-K. & Canbay, A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J. Hepatol. 74, 442–457 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Ma, J. et al. A novel humanized model of NASH and its treatment with META4, a potent agonist of MET. Cell Mol. Gastroenterol. Hepatol. 13, 565–582 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Schirmacher, P., Geerts, A., Pietrangelo, A., Dienes, H. P. & Rogler, C. E. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. Hepatology 15, 5–11 (1992).

    Article  CAS  PubMed  Google Scholar 

  165. Qayyum, N., Haseeb, M., Kim, M. S. & Choi, S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int. J. Mol. Sci. 22, 2754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Thielen, L. A. et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 32, 353–365.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xu, G. et al. Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nat. Commun. 13, 1159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ovalle, F. et al. Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nat. Med. 24, 1108–1112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, X. et al. New insight into metformin action: regulation of ChREBP and FOXO1 activities in endothelial cells. Mol. Endocrinol. 29, 1184–1194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gutierrez, J. A. et al. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol. Metab. 48, 101196 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kazierad, D. J. et al. Inhibition of ketohexokinase in adults with NAFLD reduces liver fat and inflammatory markers: a randomized phase 2 trial. Med 2, 800–813.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Shepherd, E. L. et al. Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. JHEP Rep. 3, 100217 (2021).

    Article  PubMed  Google Scholar 

  173. Oh, A.-R. et al. Hepatocyte Kctd17 inhibition ameliorates glucose intolerance and hepatic steatosis caused by obesity-induced Chrebp stabilization. Gastroenterology https://doi.org/10.1053/j.gastro.2022.11.019 (2022).

    Article  PubMed  Google Scholar 

  174. Gross, B., Pawlak, M., Lefebvre, P. & Staels, B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36–49 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Mayerson, A. B. et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51, 797–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Musso, G., Cassader, M., Paschetta, E. & Gambino, R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern. Med. 177, 633–640 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  178. Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    Article  CAS  PubMed  Google Scholar 

  179. Medicines and Healthcare Products Regulatory Agency. Rosiglitazone: Recommended Withdrawal from Clinical Use https://www.gov.uk/drug-safety-update/rosiglitazone-recommended-withdrawal-from-clinical-use (2014).

  180. Tølbøl, K. S. et al. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J. Gastroenterol. 24, 179–194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Newsome, P. et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 50, 193–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gimeno, R. E., Briere, D. A. & Seeley, R. J. Leveraging the gut to treat metabolic disease. Cell Metab. 31, 679–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Müller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.P. acknowledges the support of grants from the National Agency for Research (ANR) (ANR-17-CE14-0015-HepAdialogue; ANR-20-CE14-0038 IMAGINE; ANR-20-CE14-HEPATOMORPHIC, ANR-HEPATOLOGIC, ANR RHU QUID NASH).

Author information

Authors and Affiliations

Authors

Contributions

M.R. and C.P. researched data for the article. All authors contributed substantially to discussion of the content. M.R. and C.P. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Marion Régnier or Catherine Postic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Stephan Herzig, Katsumi Iizuka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Metabolic Disorders Knowledge Portal: https://hugeamp.org/region.html?chr=7&end=73088873&phenotype=TG&start=72957524

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Régnier, M., Carbinatti, T., Parlati, L. et al. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 19, 336–349 (2023). https://doi.org/10.1038/s41574-023-00809-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00809-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing