Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolism and exercise: the skeletal muscle clock takes centre stage

Abstract

Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.

Key points

  • The BMAL1–CLOCK heterodimeric transcription factor is a key regulator of clock output; partnership with MYOD1 confers muscle specificity.

  • Skeletal muscle substrate preference, storage and transport are highly regulated by the skeletal muscle molecular clock, aligning metabolism with physical activity and feeding patterns.

  • Mice with knockouts and mutations that affect the circadian clock, and behavioural misalignment in humans, as occurs in metabolic disorders such as type 2 diabetes mellitus, have severe metabolic consequences that affect insulin sensitivity and glucose handling.

  • Exercise is a potent Zeitgeber that acts to shift skeletal muscle clocks; exercising at different times of the day results in divergent transcriptional and metabolic outputs.

  • Differential time-of-day exercise might prove to be a useful chronotherapeutic strategy for the treatment and management of metabolic diseases by improving clock alignment and therefore metabolic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulation of the core clock.
Fig. 2: Clock protein modification and turnover.
Fig. 3: The skeletal muscle clock regulates muscle physiology.
Fig. 4: Myofibres are multinucleated muscle cells.
Fig. 5: Transcriptional and metabolomic consequences of muscle-specific Bmal1 knockout in mice.
Fig. 6: The effects of time-of-day exercise on muscle clock phase.

Similar content being viewed by others

References

  1. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vitaterna, M. H., Takahashi, J. S. & Turek, F. W. Overview of circadian rhythms. Alcohol Res. Health 25, 85–93 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15, R271–R277 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cox, K. H. & Takahashi, J. S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 63, R93–R102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camacho, F. et al. Human casein kinase Iδ phosphorylation of human circadian clock proteins period 1 and 2. FEBS Lett. 489, 159–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Eide, E. J., Vielhaber, E. L., Hinz, W. A. & Virshup, D. M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε. J. Biol. Chem. 277, 17248–17254 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Etchegaray, J.-P. et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell Biol. 29, 3853–3866 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Akashi, M. & Takumi, T. The orphan nuclear receptor RORα regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Guillaumond, F., Dardente, H., Giguère, V. & Cermakian, N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J. Biol. Rhythms 20, 391–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, C., Weaver, D. R. & Reppert, S. M. Direct association between mouse PERIOD and CKIε is critical for a functioning circadian clock. Mol. Cell Biol. 24, 584–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, Y. et al. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128, 59–70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reischl, S. et al. β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, G. et al. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCFβ-TrCP1 ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ohsaki, K. et al. The role of β-TrCP1 and β-TrCP2 in circadian rhythm generation by mediating degradation of clock protein PER2. J. Biochem. 144, 609–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Meng, Q.-J. et al. Setting clock speed in mammals: the CK1ɛ tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Busino, L. et al. SCF Fbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Hirano, A., Fu, Y.-H. & Ptáček, L. J. The intricate dance of post-translational modifications in the rhythm of life. Nat. Struct. Mol. Biol. 23, 1053–1060 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wheaton, K. L. et al. The phosphorylation of CREB at serine 133 is a key event for circadian clock timing and entrainment in the suprachiasmatic nucleus. J. Biol. Rhythms 33, 497–514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gau, D. et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Travnickova-Bendova, Z., Cermakian, N., Reppert, S. M. & Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl Acad. Sci. USA 99, 7728–7733 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004).

    CAS  PubMed  Google Scholar 

  28. Tischkau, S. A., Mitchell, J. W., Tyan, S.-H., Buchanan, G. F. & Gillette, M. U. Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278, 718–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Small, L. et al. Contraction influences Per2 gene expression in skeletal muscle through a calcium‐dependent pathway. J. Physiol. 598, 5739–5752 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Wolff, C. A. & Esser, K. A. Exercise sets the muscle clock with a calcium assist. J. Physiol. 598, 5591–5592 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Gabriel, B. M. et al. Disrupted circadian oscillations in type 2 diabetes are linked to altered rhythmic mitochondrial metabolism in skeletal muscle. Sci. Adv. 7, eabi9654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 1, e00011 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davis, R., Weintraub, H. & Lassar, A. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1988).

    Article  Google Scholar 

  35. Miller, B. H. et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl Acad. Sci. USA 104, 3342–3347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andrews, J. L. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl Acad. Sci. USA 107, 19090–19095 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodge, B. A. et al. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. eLife 8, e43017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dyar, K. A. et al. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol. Metab. 4, 823–833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pizarro, A., Hayer, K., Lahens, N. F. & Hogenesch, J. B. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 41, D1009–D1013 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gutierrez‐Monreal, M. A., Harmsen, J., Schrauwen, P. & Esser, K. A. Ticking for metabolic health: the skeletal‐muscle clocks. Obesity 28(Suppl. 1), 46–54 (2020).

    Google Scholar 

  41. Perrin, L. et al. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. eLife 7, e34114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai, Z., Ramesh, V. & Locasale, J. W. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimaldi, B. et al. Chromatin remodeling and circadian control: master regulator CLOCK is an enzyme. Cold Spring Harb. Symp. Quant. Biol. 72, 105–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Katada, S. & Sassone-Corsi, P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17, 1414–1421 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu, H., Wang, G. & Qian, J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 17, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Menet, J. S., Pescatore, S. & Rosbash, M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev. 28, 8–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dos Santos, M. et al. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat. Commun. 11, 5102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim, M. et al. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat. Commun. 11, 6375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeng, W. et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. Nucleic Acids Res. 44, e158 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Zitting, K.-M. et al. Human resting energy expenditure varies with circadian phase. Curr. Biol. 28, 3685–3690.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harmsen, J. et al. Circadian misalignment disturbs the skeletal muscle lipidome in healthy young men. FASEB J. 35, e21611 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Wefers, J. et al. Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc. Natl Acad. Sci. USA 115, 7789–7794 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris, C. J. et al. Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proc. Natl Acad. Sci. USA 112, E2225–E2234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morris, J. K. et al. Mild cognitive impairment and donepezil impact mitochondrial respiratory capacity in skeletal muscle. Function 2, zqab045 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hodge, B. A. et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet. Muscle 5, 17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ezagouri, S. et al. Physiological and molecular dissection of daily variance in exercise capacity. Cell Metab. 30, 78–91.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Harfmann, B. D. et al. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet. Muscle 6, 12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yin, H. et al. Metabolic‐sensing of the skeletal muscle clock coordinates fuel oxidation. FASEB J. 34, 6613–6627 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Dyar, K. A. et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol. Metab. 3, 29–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. McCarthy, J. J. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. van Moorsel, D. et al. Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Mol. Metab. 5, 635–645 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Goede, P. et al. Time-restricted feeding improves glucose tolerance in rats, but only when in line with the circadian timing system. Front. Endocrinol. 10, 554 (2019).

    Article  Google Scholar 

  65. de Goede, P. et al. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks. Neurobiol. Sleep Circadian Rhythms 4, 24–33 (2018).

    Article  PubMed  Google Scholar 

  66. Lamia, K. A., Storch, K.-F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dyar, K. A. et al. Transcriptional programming of lipid and amino acid metabolism by the skeletal muscle circadian clock. PLoS Biol. 16, e2005886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schroder, E. A. et al. Intrinsic muscle clock is necessary for musculoskeletal health. J. Physiol. 593, 5387–5404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, S. & Dong, H. H. FoxO integration of insulin signaling with glucose and lipid metabolism. J. Endocrinol. 233, R67–R79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karanth, S. et al. FOXN3 controls liver glucose metabolism by regulating gluconeogenic substrate selection. Physiol. Rep. 7, e14238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bruno, N. E. et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J. 33, 1027–1043 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bruno, N. E. et al. Activation of Crtc2/Creb1 in skeletal muscle enhances weight loss during intermittent fasting. FASEB J. 35, e21999 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pastore, S. & Hood, D. A. Endurance training ameliorates the metabolic and performance characteristics of circadian Clock mutant mice. J. Appl. Physiol. 114, 1076–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Bae, K. et al. Differential effects of two period genes on the physiology and proteomic profiles of mouse anterior tibialis muscles. Mol. Cell 22, 275–284 (2006).

    CAS  Google Scholar 

  77. Woldt, E. et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jordan, S. D. et al. CRY1/2 selectively repress PPARδ and limit exercise capacity. Cell Metab. 26, 243–255.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fan, W. et al. PPARδ promotes running endurance by preserving glucose. Cell Metab. 25, 1186–1193.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamamoto, H. et al. NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loizides-Mangold, U. et al. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc. Natl Acad. Sci. USA 114, E8565–E8574 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dibner, C. The importance of being rhythmic: living in harmony with your body clocks. Acta Physiol. 228, e13281 (2020).

    Article  CAS  Google Scholar 

  84. Vetter, C. Circadian disruption: what do we actually mean? Eur. J. Neurosci. 51, 531–550 (2020).

    Article  PubMed  Google Scholar 

  85. Harmsen, J.-F. et al. The influence of bright and dim light on substrate metabolism, energy expenditure and thermoregulation in insulin-resistant individuals depends on time of day. Diabetologia 65, 721–732 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Morris, C. J., Purvis, T. E., Mistretta, J. & Scheer, F. A. J. L. Effects of the internal circadian system and circadian misalignment on glucose tolerance in chronic shift workers. J. Clin. Endocrinol. Metab. 101, 1066–1074 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qian, J. & Scheer, F. A. Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol. Metab. 27, 282–293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eckel, R. H. et al. Morning circadian misalignment during short sleep duration impacts insulin sensitivity. Curr. Biol. 25, 3004–3010 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Karthikeyan, R. et al. Should we listen to our clock to prevent type 2 diabetes mellitus? Diabetes Res. Clin. Pract. 106, 182–190 (2014).

    Article  PubMed  Google Scholar 

  91. Hansen, J. et al. Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Sci. Rep. 6, 35047 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cardinali, D. P., Brown, G. M. & Pandi-Perumal, S. R. in The Human Hypothalamus: Anterior Region Handbook of Clinical Neurology series vol. 179 (eds Swaab, D. F., Kreier, F., Lucassen, P. J., Salehe, A. & Buijs, R. M.) 357–370 (Elsevier, 2021).

  93. Lee, Y., Field, J. M. & Sehgal, A. Circadian rhythms, disease and chronotherapy. J. Biol. Rhythms 36, 503–531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ruan, W., Yuan, X. & Eltzschig, H. K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug. Discov. 20, 287–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoo, S.-H. et al. PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolff, G. & Esser, K. A. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med. Sci. Sports Exerc. 44, 1663–1670 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kemler, D., Wolff, C. A. & Esser, K. A. Time‐of‐day dependent effects of contractile activity on the phase of the skeletal muscle clock. J. Physiol. 598, 3631–3644 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Adamovich, Y. et al. Clock proteins and training modify exercise capacity in a daytime-dependent manner. Proc. Natl Acad. Sci. USA 118, e2101115118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoffman, N. J. et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 22, 922–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vieira, E. et al. Relationship between AMPK and the transcriptional balance of clock-related genes in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 295, E1032–E1037 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Casanova-Vallve, N. et al. Daily running enhances molecular and physiological circadian rhythms in skeletal muscle. Mol. Metab. 61, 101504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sato, S. et al. Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab. 30, 92–110.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Hawley, J. A., Sassone-Corsi, P. & Zierath, J. R. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia 63, 2253–2259 (2020).

    Article  PubMed  Google Scholar 

  104. Savikj, M. et al. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia 62, 233–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Savikj, M. et al. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients — a randomized crossover trial. Metabolism 135, 155268 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Moholdt, T. et al. The effect of morning vs evening exercise training on glycaemic control and serum metabolites in overweight/obese men: a randomised trial. Diabetologia 64, 2061–2076 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mancilla, R. et al. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol. Rep. 8, e14669 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of NIH grants U01AG055137 and R01AR079220 to K.A.E. The authors also thank L. Denes, Institute for Systems Genetics, New York, for kindly providing the image of the myofibre in Fig. 4b.

Author information

Authors and Affiliations

Authors

Contributions

R.A.M. and M.R.V. researched data for the article. R.A.M, M.R.V and K.A.E. contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Karyn A. Esser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Charna Dibner, Ke Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, R.A., Viggars, M.R. & Esser, K.A. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 19, 272–284 (2023). https://doi.org/10.1038/s41574-023-00805-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00805-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing