Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hormonal regulation of mammary gland development and lactation

Abstract

Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.

Key points

  • Reproductive and metabolic hormones coordinate the transformation of the mammary gland from a rudimental ductal structure at the onset of puberty into a milk-secreting organ by the end of pregnancy.

  • Lactation onset is mediated by a combination of progesterone withdrawal, circulating and mammary gland-derived prolactin, and glucocorticoids; delayed lactation onset is a major cause of early breastfeeding cessation.

  • Established lactation requires prolactin and oxytocin for milk synthesis and let-down and involves mammary autocrine and paracrine mechanisms triggered by breast emptying; these local mechanisms remain to be elucidated.

  • The mammary gland is an endocrine organ that secretes hormones into the maternal circulation and milk; hormones in milk influence infant development, body composition and the microbiome.

  • Lactation insufficiency is caused by genetic and acquired endocrine disturbances; maternal factors with potential endocrine effects on lactation include primiparity, obesity, preterm birth, Caesarean section and retained placental fragments.

  • Endocrine-disrupting chemicals are environmental pollutants that might affect lactation by altering hormone secretion or mammary gland hormone responsiveness; epidemiological studies highlight potential population-wide effects on breastfeeding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reproductive and metabolic hormones involved in mammary gland development, lactation and involution.
Fig. 2: Hormones involved in secretory activation and the establishment of lactation.
Fig. 3: Prolactin signalling in MECs.
Fig. 4: Mammary gland PTHrP secretion and effects on maternal calcium mobilization.
Fig. 5: EDCs affect organs that support lactation as well as the developing fetus.

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

References

  1. Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387, 475–490 (2016).

    Article  Google Scholar 

  2. Sankar, M. J. et al. Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr. 104, 3–13 (2015).

    Article  Google Scholar 

  3. Gunderson, E. P. et al. Lactation duration and progression to diabetes in women across the childbearing years: the 30-year CARDIA study. JAMA Intern. Med. 178, 328–337 (2018).

    Article  Google Scholar 

  4. Kotsopoulos, J. et al. Breastfeeding and the risk of epithelial ovarian cancer among women with a BRCA1 or BRCA2 mutation. Gynecol. Oncol. 159, 820–826 (2020).

    Article  CAS  Google Scholar 

  5. Bach, K. et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat. Commun. 8, 2128 (2017).

    Article  Google Scholar 

  6. Fleming, J. M. et al. Interlobular and intralobular mammary stroma: genotype may not reflect phenotype. BMC Cell Biol. 9, 46 (2008).

    Article  CAS  Google Scholar 

  7. Khan, Y. S. & Sajjad, H. Anatomy, thorax, mammary gland. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK547666/ (2021).

  8. Schedin, P. & Keely, P. J. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).

    Article  Google Scholar 

  9. Brenot, A., Hutson, I. & Harris, C. Epithelial-adipocyte interactions are required for mammary gland development, but not for milk production or fertility. Dev. Biol. 458, 153–163 (2020).

    Article  CAS  Google Scholar 

  10. Zhao, C. et al. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science 356, eaal3485 (2017).

    Article  Google Scholar 

  11. Scheele, C. L. et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313–317 (2017).

    Article  CAS  Google Scholar 

  12. Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res. 8, 201 (2006).

    Article  Google Scholar 

  13. Buchmann, B. et al. Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nat. Commun. 12, 2759 (2021).

    Article  CAS  Google Scholar 

  14. Akhtar, N. & Streuli, C. H. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat. Cell Biol. 15, 17–27 (2013).

    Article  CAS  Google Scholar 

  15. Howard, B. A. & Gusterson, B. A. Human breast development. J. Mammary Gland. Biol. Neoplasia 5, 119–137 (2000).

    Article  CAS  Google Scholar 

  16. McNally, S. & Stein, T. Overview of mammary gland development: a comparison of mouse and human. Methods Mol. Biol. 1501, 1–17 (2017).

    Article  CAS  Google Scholar 

  17. Richert, M. M., Schwertfeger, K. L., Ryder, J. W. & Anderson, S. M. An atlas of mouse mammary gland development. J. Mammary Gland. Biol. Neoplasia 5, 227–241 (2000).

    Article  CAS  Google Scholar 

  18. Oakes, S. R., Hilton, H. N. & Ormandy, C. J. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 8, 207 (2006).

    Article  Google Scholar 

  19. Wang, Q. A. & Scherer, P. E. Remodeling of murine mammary adipose tissue during pregnancy, lactation, and involution. J. Mammary Gland. Biol. Neoplasia 24, 207–212 (2019).

    Article  Google Scholar 

  20. Lemay, D. G. et al. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One 8, e67531 (2013).

    Article  CAS  Google Scholar 

  21. Rios, A. C. et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat. Commun. 7, 11400 (2016).

    Article  CAS  Google Scholar 

  22. Neville, M. C. et al. Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. Am. J. Clin. Nutr. 54, 81–92 (1991).

    Article  CAS  Google Scholar 

  23. Anderson, S. M., Rudolph, M. C., McManaman, J. L. & Neville, M. C. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res. 9, 204 (2007).

    Article  Google Scholar 

  24. Nyquist, S. K. et al. Cellular and transcriptional diversity over the course of human lactation. Proc. Natl Acad. Sci. USA 119, e2121720119 (2022).

    Article  CAS  Google Scholar 

  25. Li, M. et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl Acad. Sci. USA 94, 3425–3430 (1997).

    Article  CAS  Google Scholar 

  26. Watson, C. J. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8, 203 (2006).

    Article  Google Scholar 

  27. Nissan, N., Furman-Haran, E., Shapiro-Feinberg, M., Grobgeld, D. & Degani, H. Monitoring in-vivo the mammary gland microstructure during morphogenesis from lactation to post-weaning using diffusion tensor MRI. J. Mammary Gland. Biol. Neoplasia 22, 193–202 (2017).

    Article  Google Scholar 

  28. Ruan, W. & Kleinberg, D. L. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140, 5075–5081 (1999).

    Article  CAS  Google Scholar 

  29. Vandenberg, L. N. et al. The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization. J. Steroid Biochem. Mol. Biol. 101, 263–274 (2006).

    Article  CAS  Google Scholar 

  30. Asselin-Labat, M. L. et al. Control of mammary stem cell function by steroid hormone signalling. Nature 465, 798–802 (2010).

    Article  CAS  Google Scholar 

  31. Loladze, A. V. et al. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 147, 5412–5423 (2006).

    Article  CAS  Google Scholar 

  32. Ruan, W., Monaco, M. E. & Kleinberg, D. L. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology 146, 1170–1178 (2005).

    Article  CAS  Google Scholar 

  33. Zinser, G., Packman, K. & Welsh, J. Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development 129, 3067–3076 (2002).

    Article  CAS  Google Scholar 

  34. Johnson, A. L., Zinser, G. M. & Waltz, S. E. Loss of vitamin D receptor signaling from the mammary epithelium or adipose tissue alters pubertal glandular development. Am. J. Physiol. Endocrinol. Metab. 307, E674–E685 (2014).

    Article  CAS  Google Scholar 

  35. Yamaji, D., Kang, K., Robinson, G. W. & Hennighausen, L. Sequential activation of genetic programs in mouse mammary epithelium during pregnancy depends on STAT5A/B concentration. Nucleic Acids Res. 41, 1622–1636 (2013).

    Article  CAS  Google Scholar 

  36. Hu, Y., Ding, Y., Yang, M. & Xiang, Z. Serum prolactin levels across pregnancy and the establishment of reference intervals. Clin. Chem. Lab. Med. 56, 838–842 (2018).

    Article  Google Scholar 

  37. Cox, D. B., Kent, J. C., Casey, T. M., Owens, R. A. & Hartmann, P. E. Breast growth and the urinary excretion of lactose during human pregnancy and early lactation: endocrine relationships. Exp. Physiol. 84, 421–434 (1999).

    Article  CAS  Google Scholar 

  38. Brisken, C. et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol. 210, 96–106 (1999).

    Article  CAS  Google Scholar 

  39. Ormandy, C. J. et al. Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog. Horm. Res. 58, 297–323 (2003).

    Article  CAS  Google Scholar 

  40. Pang, W. W. & Hartmann, P. E. Initiation of human lactation: secretory differentiation and secretory activation. J. Mammary Gland. Biol. Neoplasia 12, 211–221 (2007).

    Article  Google Scholar 

  41. Bernard, V., Young, J. & Binart, N. Prolactin — a pleiotropic factor in health and disease. Nat. Rev. Endocrinol. 15, 356–365 (2019).

    Article  CAS  Google Scholar 

  42. Woodside, B. Prolactin and the hyperphagia of lactation. Physiol. Behav. 91, 375–382 (2007).

    Article  CAS  Google Scholar 

  43. Augustine, R. A. et al. Prolactin regulation of oxytocin neurone activity in pregnancy and lactation. J. Physiol. 595, 3591–3605 (2017).

    Article  CAS  Google Scholar 

  44. Joshi, P. A. et al. Progesterone induces adult mammary stem cell expansion. Nature 465, 803–807 (2010).

    Article  CAS  Google Scholar 

  45. Mulac-Jericevic, B., Lydon, J. P., DeMayo, F. J. & Conneely, O. M. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl Acad. Sci. USA 100, 9744–9749 (2003).

    Article  CAS  Google Scholar 

  46. Beleut, M. et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc. Natl Acad. Sci. USA 107, 2989–2994 (2010).

    Article  CAS  Google Scholar 

  47. Rajaram, R. D. et al. Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk. EMBO J. 34, 641–652 (2015).

    Article  CAS  Google Scholar 

  48. Horigan, K. C. et al. Hormone interactions confer specific proliferative and histomorphogenic responses in the porcine mammary gland. Domest. Anim. Endocrinol. 37, 124–138 (2009).

    Article  CAS  Google Scholar 

  49. Lain, A. R., Creighton, C. J. & Conneely, O. M. Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis. Mol. Endocrinol. 27, 1743–1761 (2013).

    Article  CAS  Google Scholar 

  50. Yamaji, D. et al. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev. 23, 2382–2387 (2009).

    Article  CAS  Google Scholar 

  51. Feng, Y., Manka, D., Wagner, K. U. & Khan, S. A. Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc. Natl Acad. Sci. USA 104, 14718–14723 (2007).

    Article  CAS  Google Scholar 

  52. Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201–209 (2007).

    Article  CAS  Google Scholar 

  53. Oakes, S. R. et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 22, 581–586 (2008).

    Article  CAS  Google Scholar 

  54. Lee, H. J. et al. Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development 140, 1397–1401 (2013).

    Article  CAS  Google Scholar 

  55. Cattini, P. A., Jin, Y., Jarmasz, J. S., Noorjahan, N. & Bock, M. E. Obesity and regulation of human placental lactogen production in pregnancy. J. Neuroendocrinol. 32, e12859 (2020).

    Article  CAS  Google Scholar 

  56. Herman, A. et al. Functional heterodimerization of prolactin and growth hormone receptors by ovine placental lactogen. J. Biol. Chem. 275, 6295–6301 (2000).

    Article  CAS  Google Scholar 

  57. Thomas, E. et al. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cell 30, 1255–1264 (2012).

    Article  CAS  Google Scholar 

  58. Gaede, P., Trolle, D. & Pedersen, H. Extremely low placental lactogen hormone (hPL) values in an otherwise uneventful pregnancy preceding delivery of a normal baby. Acta Obstet. Gynecol. Scand. 57, 203–209 (1978).

    Article  CAS  Google Scholar 

  59. Neville, M. C. et al. The insulin receptor plays an important role in secretory differentiation in the mammary gland. Am. J. Physiol. Endocrinol. Metab. 305, E1103–E1114 (2013).

    Article  CAS  Google Scholar 

  60. Wintermantel, T. M., Bock, D., Fleig, V., Greiner, E. F. & Schutz, G. The epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol. Endocrinol. 19, 340–349 (2005).

    Article  CAS  Google Scholar 

  61. Mills, E. S. & Topper, Y. J. Some ultrastructural effects of insulin, hydrocortisone, and prolactin on mammary gland explants. J. Cell Biol. 44, 310–328 (1970).

    Article  CAS  Google Scholar 

  62. Sornapudi, T. R. et al. Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells. Sci. Rep. 8, 11777 (2018).

    Article  Google Scholar 

  63. Zinser, G. M. & Welsh, J. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol. Endocrinol. 18, 2208–2223 (2004).

    Article  CAS  Google Scholar 

  64. Buser, A. C. et al. Progesterone receptor repression of prolactin/signal transducer and activator of transcription 5-mediated transcription of the beta-casein gene in mammary epithelial cells. Mol. Endocrinol. 21, 106–125 (2007).

    Article  CAS  Google Scholar 

  65. Nguyen, D. A., Parlow, A. F. & Neville, M. C. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J. Endocrinol. 170, 347–356 (2001).

    Article  CAS  Google Scholar 

  66. Boss, M., Gardner, H. & Hartmann, P. Normal human lactation: closing the gap. F1000Res 7, F1000 Faculty Rev-801 (2018).

    Article  Google Scholar 

  67. Naylor, M. J. et al. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol. Endocrinol. 19, 1868–1883 (2005).

    Article  CAS  Google Scholar 

  68. Chen, C. C. et al. Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes. Dev. 26, 2154–2168 (2012).

    Article  CAS  Google Scholar 

  69. Boxer, R. B. et al. Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab. 4, 475–490 (2006).

    Article  CAS  Google Scholar 

  70. Failor, K. L., Desyatnikov, Y., Finger, L. A. & Firestone, G. L. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol. Endocrinol. 21, 2403–2415 (2007).

    Article  CAS  Google Scholar 

  71. Casey, T. M. & Plaut, K. The role of glucocorticoids in secretory activation and milk secretion, a historical perspective. J. Mammary Gland. Biol. Neoplasia 12, 293–304 (2007).

    Article  Google Scholar 

  72. Crowley, W. R. Neuroendocrine regulation of lactation and milk production. Compr. Physiol. 5, 255–291 (2015).

    Google Scholar 

  73. McNeilly, A. S., Robinson, I. C., Houston, M. J. & Howie, P. W. Release of oxytocin and prolactin in response to suckling. BMJ 286, 257–259 (1983).

    Article  CAS  Google Scholar 

  74. Stevenson, A. J. et al. Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc. Natl Acad. Sci. USA 117, 26822–26832 (2020).

    Article  CAS  Google Scholar 

  75. Mather, I. H., Masedunskas, A., Chen, Y. & Weigert, R. Symposium review: intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J. Dairy Sci. 102, 2760–2782 (2019).

    Article  CAS  Google Scholar 

  76. Diaz, S. et al. Circadian variation of basal plasma prolactin, prolactin response to suckling, and length of amenorrhea in nursing women. J. Clin. Endocrinol. Metab. 68, 946–955 (1989).

    Article  CAS  Google Scholar 

  77. Cox, D. B., Owens, R. A. & Hartmann, P. E. Blood and milk prolactin and the rate of milk synthesis in women. Exp. Physiol. 81, 1007–1020 (1996).

    Article  CAS  Google Scholar 

  78. Daly, S. E., Kent, J. C., Owens, R. A. & Hartmann, P. E. Frequency and degree of milk removal and the short-term control of human milk synthesis. Exp. Physiol. 81, 861–875 (1996).

    Article  CAS  Google Scholar 

  79. Grinman, D. Y. et al. PTHrP induces STAT5 activation, secretory differentiation and accelerates mammary tumor development. Breast Cancer Res. 24, 30 (2022).

    Article  CAS  Google Scholar 

  80. Stewart, T. A. et al. Mammary mechanobiology-investigating roles for mechanically activated ion channels in lactation and involution. J. Cell Sci. 134, jcs.248849 (2021).

    Google Scholar 

  81. Weaver, S. R. & Hernandez, L. L. Autocrine-paracrine regulation of the mammary gland. J. Dairy Sci. 99, 842–853 (2016).

    Article  CAS  Google Scholar 

  82. Gunn, A. J. et al. Growth hormone increases breast milk volumes in mothers of preterm infants. Pediatrics 98, 279–282 (1996).

    Article  CAS  Google Scholar 

  83. Motil, K. J. et al. Insulin, cortisol and thyroid hormones modulate maternal protein status and milk production and composition in humans. J. Nutr. 124, 1248–1257 (1994).

    Article  CAS  Google Scholar 

  84. Capuco, A. V., Kahl, S., Jack, L. J., Bishop, J. O. & Wallace, H. Prolactin and growth hormone stimulation of lactation in mice requires thyroid hormones. Proc. Soc. Exp. Biol. Med. 221, 345–351 (1999).

    CAS  Google Scholar 

  85. Campo Verde Arbocco, F., Persia, F. A., Hapon, M. B. & Jahn, G. A. Hypothyroidism decreases JAK/STAT signaling pathway in lactating rat mammary gland. Mol. Cell Endocrinol. 450, 14–23 (2017).

    Article  CAS  Google Scholar 

  86. Kritikou, E. A. et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130, 3459–3468 (2003).

    Article  CAS  Google Scholar 

  87. Nguyen, A. V. & Pollard, J. W. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127, 3107–3118 (2000).

    Article  CAS  Google Scholar 

  88. Sargeant, T. J. et al. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat. Cell Biol. 16, 1057–1068 (2014).

    Article  CAS  Google Scholar 

  89. Rieanrakwong, D. et al. Prolactin suppression of gonadotropin-releasing hormone initiation of mammary gland involution in female rats. Endocrinology 157, 2750–2758 (2016).

    Article  CAS  Google Scholar 

  90. Bertucci, P. Y., Quaglino, A., Pozzi, A. G., Kordon, E. C. & Pecci, A. Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation. Endocrinology 151, 5730–5740 (2010).

    Article  CAS  Google Scholar 

  91. Krebs, N. F., Reidinger, C. J., Robertson, A. D. & Brenner, M. Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am. J. Clin. Nutr. 65, 1738–1746 (1997).

    Article  CAS  Google Scholar 

  92. Lim, C. L. et al. Estrogen exacerbates mammary involution through neutrophil-dependent and -independent mechanism. Elife 9, e57274 (2020).

    Article  CAS  Google Scholar 

  93. Radhakrishnan, A. et al. A pathway map of prolactin signaling. J. Cell Commun. Signal. 6, 169–173 (2012).

    Article  Google Scholar 

  94. Rudolph, M. C., Russell, T. D., Webb, P., Neville, M. C. & Anderson, S. M. Prolactin-mediated regulation of lipid biosynthesis genes in vivo in the lactating mammary epithelial cell. Am. J. Physiol. Endocrinol. Metab. 300, E1059–E1068 (2011).

    Article  CAS  Google Scholar 

  95. Shin, H. Y., Hennighausen, L. & Yoo, K. H. STAT5-driven enhancers tightly control temporal expression of mammary-specific genes. J. Mammary Gland. Biol. Neoplasia 24, 61–71 (2019).

    Article  Google Scholar 

  96. Liu, F. et al. Prolactin/Jak2 directs apical/basal polarization and luminal linage maturation of mammary epithelial cells through regulation of the Erk1/2 pathway. Stem Cell Res. 15, 376–383 (2015).

    Article  Google Scholar 

  97. Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1997).

    Article  CAS  Google Scholar 

  98. Ormandy, C. J. et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 11, 167–178 (1997).

    Article  CAS  Google Scholar 

  99. Wagner, K. U. et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol. Cell Biol. 24, 5510–5520 (2004).

    Article  CAS  Google Scholar 

  100. Bridgewater, R. E., Streuli, C. H. & Caswell, P. T. Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells. Sci. Rep. 7, 4572 (2017).

    Article  Google Scholar 

  101. Rooney, N., Wang, P., Brennan, K., Gilmore, A. P. & Streuli, C. H. The integrin-mediated ILK-Parvin-alphaPix signaling axis controls differentiation in mammary epithelial cells. J. Cell Physiol. 231, 2408–2417 (2016).

    Article  CAS  Google Scholar 

  102. Akhtar, N. & Streuli, C. H. Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J. Cell Biol. 173, 781–793 (2006).

    Article  CAS  Google Scholar 

  103. Watkin, H. et al. Lactation failure in Src knockout mice is due to impaired secretory activation. BMC Dev. Biol. 8, 6 (2008).

    Article  Google Scholar 

  104. Kitayama, M. et al. A novel nectin-mediated cell adhesion apparatus that is implicated in prolactin receptor signaling for mammary gland development. J. Biol. Chem. 291, 5817–5831 (2016).

    Article  CAS  Google Scholar 

  105. Mapes, J. et al. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet. 13, e1006654 (2017).

    Article  Google Scholar 

  106. Liao, Y. & Du, W. An Rb family-independent E2F3 transcription factor variant impairs STAT5 signaling and mammary gland remodeling during pregnancy in mice. J. Biol. Chem. 293, 3156–3167 (2018).

    Article  CAS  Google Scholar 

  107. Harris, J. et al. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol. Endocrinol. 20, 1177–1187 (2006).

    Article  CAS  Google Scholar 

  108. Lindeman, G. J. et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev. 15, 1631–1636 (2001).

    Article  CAS  Google Scholar 

  109. Jinagal, S. L. et al. Prolactin-induced AMPK stabilizes alveologenesis and lactogenesis through regulation of STAT5 signaling. bioRxiv https://doi.org/10.1101/2022.02.15.480514 (2022).

    Article  Google Scholar 

  110. Tarulli, G. A., Laven-Law, G., Shakya, R., Tilley, W. D. & Hickey, T. E. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J. Mammary Gland. Biol. Neoplasia 20, 75–91 (2015).

    Article  Google Scholar 

  111. Cagnet, S. et al. Oestrogen receptor alpha AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium. Nat. Commun. 9, 4723 (2018).

    Article  Google Scholar 

  112. Gagniac, L. et al. Membrane expression of the estrogen receptor ERalpha is required for intercellular communications in the mammary epithelium. Development 147, dev182303 (2020).

    Article  CAS  Google Scholar 

  113. Kariagina, A., Aupperlee, M. D. & Haslam, S. Z. Progesterone receptor isoforms and proliferation in the rat mammary gland during development. Endocrinology 148, 2723–2736 (2007).

    Article  CAS  Google Scholar 

  114. Hannan, F. M., Kallay, E., Chang, W., Brandi, M. L. & Thakker, R. V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 15, 33–51 (2018).

    Article  Google Scholar 

  115. VanHouten, J. N. et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J. Clin. Invest. 112, 1429–1436 (2003).

    Article  CAS  Google Scholar 

  116. Lotinun, S. et al. Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J. Clin. Invest. 129, 3058–3071 (2019).

    Article  Google Scholar 

  117. VanHouten, J. et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J. Clin. Invest. 113, 598–608 (2004).

    Article  CAS  Google Scholar 

  118. Mamillapalli, R. et al. Mammary-specific ablation of the calcium-sensing receptor during lactation alters maternal calcium metabolism, milk calcium transport, and neonatal calcium accrual. Endocrinology 154, 3031–3042 (2013).

    Article  CAS  Google Scholar 

  119. Mamillapalli, R., VanHouten, J., Zawalich, W. & Wysolmerski, J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J. Biol. Chem. 283, 24435–24447 (2008).

    Article  CAS  Google Scholar 

  120. VanHouten, J. N., Neville, M. C. & Wysolmerski, J. J. The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform 2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology 148, 5943–5954 (2007).

    Article  CAS  Google Scholar 

  121. Uemura, H. et al. Regulatory factors on parathyroid hormone-related peptide production by primary culture of lactating rat mammary gland. Horm. Metab. Res. 37, 463–467 (2005).

    Article  CAS  Google Scholar 

  122. Matsuda, M. et al. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev. Cell 6, 193–203 (2004).

    Article  CAS  Google Scholar 

  123. Hernandez, L. L., Gregerson, K. A. & Horseman, N. D. Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals. Am. J. Physiol. Endocrinol. Metab. 302, E1009–E1015 (2012).

    Article  CAS  Google Scholar 

  124. Kovacs, C. S. & Chik, C. L. Hyperprolactinemia caused by lactation and pituitary adenomas is associated with altered serum calcium, phosphate, parathyroid hormone (PTH), and PTH-related peptide levels. J. Clin. Endocrinol. Metab. 80, 3036–3042 (1995).

    CAS  Google Scholar 

  125. Chan, D. et al. Adiponectin, leptin and insulin in breast milk: associations with maternal characteristics and infant body composition in the first year of life. Int. J. Obes. 42, 36–43 (2018).

    Article  CAS  Google Scholar 

  126. Cheema, A. S. et al. Human milk lactose, insulin, and glucose relative to infant body composition during exclusive breastfeeding. Nutrients 13, 3724 (2021).

    Article  CAS  Google Scholar 

  127. Fields, D. A. et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr. Obes. 12, 78–85 (2017).

    Article  Google Scholar 

  128. Lemas, D. J. et al. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am. J. Clin. Nutr. 103, 1291–1300 (2016).

    Article  CAS  Google Scholar 

  129. Schneider-Worthington, C. R. et al. Associations among maternal adiposity, insulin, and adipokines in circulation and human milk. J. Hum. Lact. 37, 714–722 (2021).

    Article  Google Scholar 

  130. Fields, D. A. & Demerath, E. W. Relationship of insulin, glucose, leptin, IL-6 and TNF-alpha in human breast milk with infant growth and body composition. Pediatr. Obes. 7, 304–312 (2012).

    Article  CAS  Google Scholar 

  131. Joung, K. E., Martin, C. R., Cherkerzian, S., Kellogg, M. & Belfort, M. B. Human milk hormone intake in the first month of life and physical growth outcomes in preterm infants. J. Clin. Endocrinol. Metab. 106, 1793–1803 (2021).

    Article  Google Scholar 

  132. Eriksson, U., Duc, G., Froesch, E. R. & Zapf, J. Insulin-like growth factors (IGF) I and II and IGF binding proteins (IGFBPs) in human colostrum/transitory milk during the first week postpartum: comparison with neonatal and maternal serum. Biochem. Biophys. Res. Commun. 196, 267–273 (1993).

    Article  CAS  Google Scholar 

  133. Donovan, S. M., Hintz, R. L. & Rosenfeld, R. G. Investigation into the potential physiological sources of rat milk IGF-I and IGF-binding proteins. J. Endocrinol. 145, 569–578 (1995).

    Article  CAS  Google Scholar 

  134. Galante, L. et al. Growth factor concentrations in human milk are associated with infant weight and BMI from birth to 5 years. Front. Nutr. 7, 110 (2020).

    Article  Google Scholar 

  135. Galante, L. et al. Sexually dimorphic associations between maternal factors and human milk hormonal concentrations. Nutrients 12, 152 (2020).

    Article  CAS  Google Scholar 

  136. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  Google Scholar 

  137. Gridneva, Z. et al. Human milk adiponectin and leptin and infant body composition over the first 12 months of lactation. Nutrients 10, 1125 (2018).

    Article  Google Scholar 

  138. Sanchez, J. et al. Leptin orally supplied to neonate rats is directly uptaken by the immature stomach and may regulate short-term feeding. Endocrinology 146, 2575–2582 (2005).

    Article  CAS  Google Scholar 

  139. Wolinski, J., Biernat, M., Guilloteau, P., Westrom, B. R. & Zabielski, R. Exogenous leptin controls the development of the small intestine in neonatal piglets. J. Endocrinol. 177, 215–222 (2003).

    Article  CAS  Google Scholar 

  140. Cross, N. A., Hillman, L. S. & Forte, L. R. The effects of calcium supplementation, duration of lactation, and time of day on concentrations of parathyroid hormone-related protein in human milk: a pilot study. J. Hum. Lact. 14, 111–117 (1998).

    Article  CAS  Google Scholar 

  141. Lubetzky, R., Weisman, Y., Dollberg, S., Herman, L. & Mandel, D. Parathyroid hormone-related protein in preterm human milk. Breastfeed. Med. 5, 67–69 (2010).

    Article  Google Scholar 

  142. Tov, A. B. et al. Changes in serum parathyroid hormone-related protein in breastfed preterm infants. Breastfeed. Med. 7, 50–53 (2012).

    Article  Google Scholar 

  143. Liu, C. et al. Parathyroid hormone-related protein (1–40) enhances calcium uptake in rat enterocytes through PTHR1 receptor and protein kinase calpha/beta signaling. Cell Physiol. Biochem. 51, 1695–1709 (2018).

    Article  CAS  Google Scholar 

  144. Hollanders, J. J., Heijboer, A. C., van der Voorn, B., Rotteveel, J. & Finken, M. J. J. Nutritional programming by glucocorticoids in breast milk: targets, mechanisms and possible implications. Best Pract. Res. Clin. Endocrinol. Metab. 31, 397–408 (2017).

    Article  CAS  Google Scholar 

  145. Pundir, S. et al. Human milk glucocorticoid levels are associated with infant adiposity and head circumference over the first year of life. Front. Nutr. 7, 166 (2020).

    Article  Google Scholar 

  146. Dorr, H. G. et al. Longitudinal study of progestins, mineralocorticoids, and glucocorticoids throughout human pregnancy. J. Clin. Endocrinol. Metab. 68, 863–868 (1989).

    Article  CAS  Google Scholar 

  147. Pundir, S. et al. Variation of human milk glucocorticoids over 24 hour period. J. Mammary Gland. Biol. Neoplasia 22, 85–92 (2017).

    Article  Google Scholar 

  148. Romijn, M. et al. The association between maternal stress and glucocorticoid rhythmicity in human milk. Nutrients 13, 1608 (2021).

    Article  CAS  Google Scholar 

  149. Hollanders, J. J. et al. Biphasic glucocorticoid rhythm in one-month-old infants: reflection of a developing HPA-Axis? J. Clin. Endocrinol. Metab. 105, e544–e554 (2020).

    Article  Google Scholar 

  150. Lee, S. & Kelleher, S. L. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am. J. Physiol. Endocrinol. Metab. 311, E405–E422 (2016).

    Article  Google Scholar 

  151. Neifert, M. et al. The influence of breast surgery, breast appearance, and pregnancy-induced breast changes on lactation sufficiency as measured by infant weight gain. Birth 17, 31–38 (1990).

    Article  CAS  Google Scholar 

  152. Iwama, S., Welt, C. K., Romero, C. J., Radovick, S. & Caturegli, P. Isolated prolactin deficiency associated with serum autoantibodies against prolactin-secreting cells. J. Clin. Endocrinol. Metab. 98, 3920–3925 (2013).

    Article  CAS  Google Scholar 

  153. Moriwaki, M. & Welt, C. K. PRL mutation causing alactogenesis: insights into prolactin structure and function relationships. J. Clin. Endocrinol. Metab. 106, e3021–e3026 (2021).

    Article  Google Scholar 

  154. Littlejohn, M. D. et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat. Commun. 5, 5861 (2014).

    Article  CAS  Google Scholar 

  155. Kobayashi, T., Usui, H., Tanaka, H. & Shozu, M. Variant prolactin receptor in agalactia and hyperprolactinemia. N. Engl. J. Med. 379, 2230–2236 (2018).

    Article  CAS  Google Scholar 

  156. Newey, P. J. et al. Mutant prolactin receptor and familial hyperprolactinemia. N. Engl. J. Med. 369, 2012–2020 (2013).

    Article  CAS  Google Scholar 

  157. Brownell, E., Howard, C. R., Lawrence, R. A. & Dozier, A. M. Delayed onset lactogenesis II predicts the cessation of any or exclusive breastfeeding. J. Pediatr. 161, 608–614 (2012).

    Article  Google Scholar 

  158. Dewey, K. G., Nommsen-Rivers, L. A., Heinig, M. J. & Cohen, R. J. Risk factors for suboptimal infant breastfeeding behavior, delayed onset of lactation, and excess neonatal weight loss. Pediatrics 112, 607–619 (2003).

    Article  Google Scholar 

  159. Ramiandrasoa, C. et al. Delayed diagnosis of Sheehan’s syndrome in a developed country: a retrospective cohort study. Eur. J. Endocrinol. 169, 431–438 (2013).

    Article  CAS  Google Scholar 

  160. Marasco, L., Marmet, C. & Shell, E. Polycystic ovary syndrome: a connection to insufficient milk supply? J. Hum. Lact. 16, 143–148 (2000).

    Article  CAS  Google Scholar 

  161. Vanky, E. et al. Breast size increment during pregnancy and breastfeeding in mothers with polycystic ovary syndrome: a follow-up study of a randomised controlled trial on metformin versus placebo. BJOG 119, 1403–1409 (2012).

    Article  CAS  Google Scholar 

  162. Sievers, E., Haase, S., Oldigs, H. D. & Schaub, J. The impact of peripartum factors on the onset and duration of lactation. Biol. Neonate 83, 246–252 (2003).

    Article  CAS  Google Scholar 

  163. Dos Santos, C. O., Dolzhenko, E., Hodges, E., Smith, A. D. & Hannon, G. J. An epigenetic memory of pregnancy in the mouse mammary gland. Cell Rep. 11, 1102–1109 (2015).

    Article  Google Scholar 

  164. Hill, P. D., Aldag, J. C., Chatterton, R. T. & Zinaman, M. Comparison of milk output between mothers of preterm and term infants: the first 6 weeks after birth. J. Hum. Lact. 21, 22–30 (2005).

    Article  Google Scholar 

  165. Parker, L. A. et al. Indicators of secretory activation in mothers of preterm very low birth weight infants. J. Hum. Lact. 37, 581–592 (2021).

    Article  Google Scholar 

  166. Preusting, I., Brumley, J., Odibo, L., Spatz, D. L. & Louis, J. M. Obesity as a predictor of delayed lactogenesis II. J. Hum. Lact. 33, 684–691 (2017).

    Article  Google Scholar 

  167. Buonfiglio, D. C. et al. Obesity impairs lactation performance in mice by inducing prolactin resistance. Sci. Rep. 6, 22421 (2016).

    Article  CAS  Google Scholar 

  168. Neubauer, S. H. et al. Delayed lactogenesis in women with insulin-dependent diabetes mellitus. Am. J. Clin. Nutr. 58, 54–60 (1993).

    Article  CAS  Google Scholar 

  169. Joshi, J. V., Bhandarkar, S. D., Chadha, M., Balaiah, D. & Shah, R. Menstrual irregularities and lactation failure may precede thyroid dysfunction or goitre. J. Postgrad. Med. 39, 137–141 (1993).

    CAS  Google Scholar 

  170. Campo Verde Arbocco, F. et al. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol. Cell Endocrinol. 419, 18–28 (2016).

    Article  CAS  Google Scholar 

  171. Henderson, J. J., Hartmann, P. E., Moss, T. J., Doherty, D. A. & Newnham, J. P. Disrupted secretory activation of the mammary gland after antenatal glucocorticoid treatment in sheep. Reproduction 136, 649–655 (2008).

    Article  CAS  Google Scholar 

  172. Henderson, J. J., Newnham, J. P., Simmer, K. & Hartmann, P. E. Effects of antenatal corticosteroids on urinary markers of the initiation of lactation in pregnant women. Breastfeed. Med. 4, 201–206 (2009).

    Article  Google Scholar 

  173. Jonas, W. et al. Effects of intrapartum oxytocin administration and epidural analgesia on the concentration of plasma oxytocin and prolactin, in response to suckling during the second day postpartum. Breastfeed. Med. 4, 71–82 (2009).

    Article  CAS  Google Scholar 

  174. Nissen, E. et al. Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by caesarean section or by the vaginal route. Early Hum. Dev. 45, 103–118 (1996).

    Article  CAS  Google Scholar 

  175. Neifert, M. R., McDonough, S. L. & Neville, M. C. Failure of lactogenesis associated with placental retention. Am. J. Obstet. Gynecol. 140, 477–478 (1981).

    Article  CAS  Google Scholar 

  176. Zoeller, R. T. et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology 153, 4097–4110 (2012).

    Article  CAS  Google Scholar 

  177. Vandenberg, L. N. & Turgeon, J. L. Endocrine disrupting chemicals: understanding what matters. Adv. Pharmacol. 92, xiii–xxiv (2021).

    Article  Google Scholar 

  178. Eckstrum, K. S., Weis, K. E., Baur, N. G., Yoshihara, Y. & Raetzman, L. T. Icam5 Expression exhibits sex differences in the neonatal pituitary and is regulated by estradiol and bisphenol A. Endocrinology 157, 1408–1420 (2016).

    Article  CAS  Google Scholar 

  179. Moran, T. B., Brannick, K. E. & Raetzman, L. T. Aryl-hydrocarbon receptor activity modulates prolactin expression in the pituitary. Toxicol. Appl. Pharmacol. 265, 139–145 (2012).

    Article  CAS  Google Scholar 

  180. Vandenberg, L. N. Endocrine disrupting chemicals and the mammary gland. Adv. Pharmacol. 92, 237–277 (2021).

    Article  CAS  Google Scholar 

  181. Vorderstrasse, B. A., Fenton, S. E., Bohn, A. A., Cundiff, J. A. & Lawrence, B. P. A novel effect of dioxin: exposure during pregnancy severely impairs mammary gland differentiation. Toxicol. Sci. 78, 248–257 (2004).

    Article  CAS  Google Scholar 

  182. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003).

    Article  CAS  Google Scholar 

  183. White, S. S. et al. Gestational and chronic low-dose PFOA exposures and mammary gland growth and differentiation in three generations of CD-1 mice. Env. Health Perspect. 119, 1070–1076 (2011).

    Article  CAS  Google Scholar 

  184. White, S. S. et al. Gestational PFOA exposure of mice is associated with altered mammary gland development in dams and female offspring. Toxicol. Sci. 96, 133–144 (2007).

    Article  CAS  Google Scholar 

  185. Catanese, M. C., Suvorov, A. & Vandenberg, L. N. Beyond a means of exposure: a new view of the mother in toxicology research. Toxicol. Res. 4, 592–612 (2015).

    Article  CAS  Google Scholar 

  186. LaPlante, C. D., Catanese, M. C., Bansal, R. & Vandenberg, L. N. Bisphenol S alters the lactating mammary gland and nursing behaviors in mice exposed during pregnancy and lactation. Endocrinology 158, 3448–3461 (2017).

    Article  CAS  Google Scholar 

  187. Benninghoff, A. D. et al. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol. Sci. 120, 42–58 (2011).

    Article  CAS  Google Scholar 

  188. Fei, C., McLaughlin, J. K., Lipworth, L. & Olsen, J. Maternal concentrations of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) and duration of breastfeeding. Scand. J. Work Environ. Health 36, 413–421 (2010).

    Article  CAS  Google Scholar 

  189. Romano, M. E. et al. Maternal serum perfluoroalkyl substances during pregnancy and duration of breastfeeding. Environ. Res. 149, 239–246 (2016).

    Article  CAS  Google Scholar 

  190. Timmermann, C. A. G. et al. Shorter duration of breastfeeding at elevated exposures to perfluoroalkyl substances. Reprod. Toxicol. 68, 164–170 (2017).

    Article  CAS  Google Scholar 

  191. Timmermann, C. A. G. et al. Pregnancy exposure to perfluoroalkyl substances, prolactin concentrations and breastfeeding in the Odense Child Cohort. J. Clin. Endocrinol. Metab. 107, e631–e642 (2022).

    Article  Google Scholar 

  192. Criswell, R., Crawford, K. A., Bucinca, H. & Romano, M. E. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr. Opin. Endocrinol. Diabetes Obes. 27, 388–395 (2020).

    Article  CAS  Google Scholar 

  193. Fromme, H. et al. Polychlorinated dioxins and dibenzofurans (PCDD/F), polybrominated dioxins and dibenzofurans (PBDD/F), polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), and per- and polyfluoroalkyl substances (PFAS) in German breast milk samples (LUPE 8). Sci. Total. Environ. 825, 154066 (2022).

    Article  CAS  Google Scholar 

  194. Martin Carli, J. F. et al. Single cell RNA sequencing of human milk-derived cells reveals sub-populations of mammary epithelial cells with molecular signatures of progenitor and mature states: a novel, non-invasive framework for investigating human lactation physiology. J. Mammary Gland. Biol. Neoplasia 25, 367–387 (2020).

    Article  Google Scholar 

  195. Twigger, A. J. & Khaled, W. T. Mammary gland development from a single cell ‘omics view. Semin. Cell Dev. Biol. 114, 171–185 (2021).

    Article  CAS  Google Scholar 

  196. Neville, M. C., McFadden, T. B. & Forsyth, I. Hormonal regulation of mammary differentiation and milk secretion. J. Mammary Gland. Biol. Neoplasia 7, 49–66 (2002).

    Article  Google Scholar 

  197. Monks, J., Ladinsky, M. S. & McManaman, J. L. Organellar contacts of milk lipid droplets. Contact 3, https://doi.org/10.1177/2515256419897226 (2020).

  198. Sasaki, M., Eigel, W. N. & Keenan, T. W. Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland. Proc. Natl Acad. Sci. USA 75, 5020–5024 (1978).

    Article  CAS  Google Scholar 

  199. Acosta, J. J. et al. Src mediates prolactin-dependent proliferation of T47D and MCF7 cells via the activation of focal adhesion kinase/Erk1/2 and phosphatidylinositol 3-kinase pathways. Mol. Endocrinol. 17, 2268–2282 (2003).

    Article  CAS  Google Scholar 

  200. Chen, C. C. et al. Akt is required for Stat5 activation and mammary differentiation. Breast Cancer Res. 12, R72 (2010).

    Article  Google Scholar 

  201. Gore, A. C. et al. EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–150 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the Family Larsson-Rosenquist Foundation (to F.M.H. and S.H.K.) is gratefully acknowledged. R.V.T. has received a Wellcome Trust Investigator Award (grant number 106995/Z/15/Z); National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme, and NIHR Senior Investigator Award (grant number NF- SI-0514–10091). L.N.V. has received a National Institutes of Health (NIH) grant (grant number U01ES026140). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

F.M.H., T.E. and L.N.V. researched data for the article and wrote the manuscript. S.H.K. and R.V.T. reviewed and edited the manuscript. All authors made substantial contributions to discussion of the content.

Corresponding author

Correspondence to Fadil M. Hannan.

Ethics declarations

Competing interests

L.N.V. has been reimbursed for travel expenses by numerous organizations, including SweTox, Israel Environment Fund, the Mexican Endocrine Society, Advancing Green Chemistry, ShiftCon, US EPA, CropLife America, BeautyCounter, and many universities, to speak about endocrine-disrupting chemicals. L.N.V. also serves as a paid scientific adviser to SUDOC, LLC. S.H.K. holds a grant from the Family Larsson-Rosenquist Foundation to help the global dissemination of the INTERGROWTH-21st Preterm Postnatal Growth Standards and feeding recommendations, which include the use of human milk. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Margaret Neville and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mammary rudiment

Small mammary ductal tree that develops in utero.

Secretory differentiation

Alveolar luminal cells begin to synthesize milk components and accumulate cytoplasmic lipid droplets.

Secretory activation

The initiation of copious milk secretion.

Galactopoiesis

The continued synthesis and secretion of milk.

Colostrum

Initial mammary secretions produced after childbirth that are rich in immunological components.

Alactogenesis

Absence of lactation postpartum.

2,3,7,8-Tetrachlorodibenzo-p-dioxin

(TCDD). A persistent organic pollutant and toxic compound produced during the synthesis of chlorophenol and chlorophenoxy acid herbicides.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannan, F.M., Elajnaf, T., Vandenberg, L.N. et al. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 19, 46–61 (2023). https://doi.org/10.1038/s41574-022-00742-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00742-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing