Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Primary bilateral macronodular adrenal hyperplasia: definitely a genetic disease

Abstract

Primary bilateral macronodular adrenal hyperplasia (PBMAH) is an adrenal cause of Cushing syndrome. Nowadays, a PBMAH diagnosis is more frequent than previously, as a result of progress in the diagnostic methods for adrenal incidentalomas, which are widely available. Although some rare syndromic forms of PBMAH are known to be of genetic origin, non-syndromic forms of PBMAH have only been recognized as a genetic disease in the past 10 years. Genomics studies have highlighted the molecular heterogeneity of PBMAH and identified molecular subgroups, allowing improved understanding of the clinical heterogeneity of this disease. Furthermore, the generation of these subgroups permitted the identification of new genes responsible for PBMAH. Constitutive inactivating variants in ARMC5 and KDM1A are responsible for the development of distinct forms of PBMAH. To date, pathogenic variants of ARMC5 are responsible for 20–25% of PBMAH, whereas germline KDM1A alterations have been identified in >90% of PBMAH causing food-dependent Cushing syndrome. The identification of pathogenic variants in ARMC5 and KDM1A demonstrated that PBMAH, despite mostly being diagnosed in adults aged 45–60 years, is a genetic disorder. This Review summarizes the important progress made in the past 10 years in understanding the genetics of PBMAH, which have led to a better understanding of the pathophysiology, opening new clinical perspectives.

Key points

  • Primary bilateral macronodular adrenal hyperplasia (PBMAH) can be diagnosed after the investigation of clinical signs of cortisol excess or bilateral adrenal incidentalomas; multiple bilateral nodules of >1 cm are seen on imaging.

  • Despite the presentation being apparently sporadic rather than familial, PBMAH is frequently of genetic origin.

  • Biallelic ARMC5 inactivation is responsible for about 20% of PBMAH and is associated with more severe Cushing syndrome and a high number of macronodules on CT scan in the index patients, compared with other forms of PBMAH.

  • Biallelic KDM1A inactivation induces a particular form of PBMAH called food-dependent Cushing syndrome that is molecularly characterized by ectopic expression of GIP receptor in adrenocortical cells.

  • The discovery of ARMC5 and KDM1A genetic alterations in PBMAH enabled familial screening, which can reduce the long-term consequences of cortisol dysregulation as a result of earlier diagnosis.

  • ARMC5 and KDM1A genetic alterations are not observed in all patients with PBMAH, leading to the view that further research will identify other genetic causes of PBMAH.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: An algorithm for genetic diagnosis and management of patients with PBMAH.
Fig. 2: ARMC5 protein, genetic alterations and function.
Fig. 3: KDM1A protein, genetic alterations and function.

References

  1. Xing, Y., Lerario, A. M., Rainey, W. & Hammer, G. D. Development of adrenal cortex zonation. Endocrinol. Metab. Clin. North. Am. 44, 243–274 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  2. Pignatti, E., Leng, S., Carlone, D. L. & Breault, D. T. Regulation of zonation and homeostasis in the adrenal cortex. Mol. Cell Endocrinol. 441, 146–155 (2017).

    CAS  PubMed  Article  Google Scholar 

  3. Lyraki, R. & Schedl, A. Adrenal cortex renewal in health and disease. Nat. Rev. Endocrinol. 17, 421–434 (2021).

    PubMed  Article  Google Scholar 

  4. Lam, K. Y., Chan, A. C. & Lo, C. Y. Morphological analysis of adrenal glands: a prospective analysis. Endocr. Pathol. 12, 33–38 (2001).

    CAS  PubMed  Article  Google Scholar 

  5. van Haalen, F. M., Broersen, L. H., Jorgensen, J. O., Pereira, A. M. & Dekkers, O. M. Management of endocrine disease: mortality remains increased in Cushing’s disease despite biochemical remission: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R143–R149 (2015).

    PubMed  Article  CAS  Google Scholar 

  6. Pivonello, R. et al. Complications of Cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol. 4, 611–629 (2016).

    CAS  PubMed  Article  Google Scholar 

  7. Webb, S. M. & Valassi, E. Morbidity of Cushing’s syndrome and impact of treatment. Endocrinol. Metab. Clin. North. Am. 47, 299–311 (2018).

    PubMed  Article  Google Scholar 

  8. Fleseriu, M. et al. Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol. 9, 847–875 (2021).

    PubMed  Article  Google Scholar 

  9. Newell-Price, J., Bertagna, X., Grossman, A. B. & Nieman, L. K. Cushing’s syndrome. Lancet 367, 1605–1617 (2006).

    CAS  PubMed  Article  Google Scholar 

  10. Lacroix, A. ACTH-independent macronodular adrenal hyperplasia. Best. Pract. Res. Clin. Endocrinol. Metab. 23, 245–259 (2009).

    CAS  PubMed  Article  Google Scholar 

  11. Newell-Price, J. Cushing’s syndrome. Clin. Med. 8, 204–208 (2008).

    Article  Google Scholar 

  12. Vassiliadi, D. A. & Tsagarakis, S. Diagnosis and management of primary bilateral macronodular adrenal hyperplasia. Endocr. Relat. Cancer 26, R567–R581 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. Kirschner, M. A., Powell, R. D. Jr. & Lipsett, M. B. Cushing’s syndrome: nodular cortical hyperplasia of adrenal glands with clinical and pathological features suggesting adrenocortical tumor. J. Clin. Endocrinol. Metab. 24, 947–955 (1964).

    CAS  PubMed  Article  Google Scholar 

  14. Lieberman, S. A., Eccleshall, T. R. & Feldman, D. ACTH-independent massive bilateral adrenal disease (AIMBAD): a subtype of Cushing’s syndrome with major diagnostic and therapeutic implications. Eur. J. Endocrinol. 131, 67–73 (1994).

    CAS  PubMed  Article  Google Scholar 

  15. Strohm, M., Reincke, M., Theiss, M., Diehl, K. L. & Allolio, B. Bilateral massive macronodular adrenal gland hyperplasia. A rare cause of Cushing’s syndrome [German]. Dtsch. Med. Wochenschr. 119, 180–184 (1994).

    CAS  PubMed  Article  Google Scholar 

  16. Cugini, P. et al. “GIANT” macronodular adrenal hyperplasia causing Cushing’s syndrome: case report and review of the literature on a clinical distinction of adrenocortical nodular pathology associated with hypercortisolism. Endocrinol. Jpn. 36, 101–116 (1989).

    CAS  PubMed  Article  Google Scholar 

  17. Aiba, M. Cushing’s syndrome due to huge bilateral adrenocortical multinodular hyperplasia–ACTH-independent bilateral adrenocortical macronodular hyperplasia (AIMAH) [Japanese]. Nihon Naibunpi Gakkai Zasshi 70, 37–42 (1994).

    CAS  PubMed  Google Scholar 

  18. Faucz, F. R. et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J. Clin. Endocrinol. Metab. 99, E1113–E1119 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lefebvre, H., Duparc, C., Prevost, G., Bertherat, J. & Louiset, E. Cell-to-cell communication in bilateral macronodular adrenal hyperplasia causing hypercortisolism. Front. Endocrinol. 6, 34 (2015).

    Google Scholar 

  20. Alencar, G. A. et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J. Clin. Endocrinol. Metab. 99, E1501–E1509 (2014). In this article, the authors describe the first large family with ARMC5 pathogenic variants, with 16 carriers all affected by PBMAH.

    CAS  PubMed  Article  Google Scholar 

  21. Louiset, E. et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N. Engl. J. Med. 369, 2115–2125 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. Lacroix, A. Heredity and cortisol regulation in bilateral macronodular adrenal hyperplasia. N. Engl. J. Med. 369, 2147–2149 (2013).

    CAS  PubMed  Article  Google Scholar 

  23. Findlay, J. C., Sheeler, L. R., Engeland, W. C. & Aron, D. C. Familial adrenocorticotropin-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia. J. Clin. Endocrinol. Metab. 76, 189–191 (1993).

    CAS  PubMed  Google Scholar 

  24. Gagliardi, L. et al. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin. Endocrinol. 70, 883–891 (2009).

    CAS  Article  Google Scholar 

  25. Vezzosi, D. et al. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur. J. Endocrinol. 156, 21–31 (2007).

    CAS  PubMed  Article  Google Scholar 

  26. Lee, S. et al. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin. Endocrinol. 63, 625–630 (2005).

    CAS  Article  Google Scholar 

  27. Assie, G. et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N. Engl. J. Med. 369, 2105–2114 (2013). This is the first paper demonstrating the biallelic loss of ARMC5 in PBMAH tissues by combining SNP array and whole-exosome sequencing.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Vaczlavik, A. et al. KDM1A inactivation causes hereditary food-dependent Cushing syndrome. Genet. Med. 24, 374–383 (2022). This article uncovers the molecular heterogeneity existing between PBMAH tissues, leading to the discovery of biallelic KDM1A inactivation.

    PubMed  Article  Google Scholar 

  29. Chasseloup, F. et al. Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing’s syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes Endocrinol. 9, 813–824 (2021). This article demonstrates the role of KDM1A inactivation in PBMAH associated with the development of food-dependent Cushing syndrome.

    CAS  PubMed  Article  Google Scholar 

  30. Mete, O. et al. Overview of the 2022 WHO classification of adrenal cortical tumors. Endocr. Pathol. 33, 155–196 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Fassnacht, M. et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur. J. Endocrinol. 175, G1–G34 (2016).

    CAS  PubMed  Article  Google Scholar 

  32. Barzon, L. et al. Incidentally discovered adrenal tumors: endocrine and scintigraphic correlates. J. Clin. Endocrinol. Metab. 83, 55–62 (1998).

    CAS  PubMed  Google Scholar 

  33. Bourdeau, I., El Ghorayeb, N., Gagnon, N. & Lacroix, A. Management of endocrine disease: differential diagnosis, investigation and therapy of bilateral adrenal incidentalomas. Eur. J. Endocrinol. 179, R57–R67 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. Candida Barisson Villares Fragoso, M., Pontes Cavalcante, I., Meneses Ferreira, A., Marinho de Paula Mariani, B. & Ferini Pacicco Lotfi, C. Genetics of primary macronodular adrenal hyperplasia. Presse Med. 47, e139–e149 (2018).

    PubMed  Article  Google Scholar 

  35. Espiard, S. et al. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J. Clin. Endocrinol. Metab. 100, E926–E935 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Zhou, J. et al. Demographic characteristics, etiology, and comorbidities of patients with Cushing’s syndrome: a 10-year retrospective study at a large general hospital in China. Int. J. Endocrinol. 2019, 7159696 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Bouys, L. et al. Identification of predictive criteria for pathogenic variants of primary bilateral macronodular adrenal hyperplasia (PBMAH) gene ARMC5 in 352 unselected patients. Eur. J. Endocrinol. 187, 123–134 (2022).

    CAS  PubMed  Article  Google Scholar 

  38. Bouys, L., Chiodini, I., Arlt, W., Reincke, M. & Bertherat, J. Update on primary bilateral macronodular adrenal hyperplasia (PBMAH). Endocrine 71, 595–603 (2021).

    CAS  PubMed  Article  Google Scholar 

  39. Di Dalmazi, G. et al. Cardiovascular events and mortality in patients with adrenal incidentalomas that are either non-secreting or associated with intermediate phenotype or subclinical Cushing’s syndrome: a 15-year retrospective study. Lancet Diabetes Endocrinol. 2, 396–405 (2014).

    PubMed  Article  Google Scholar 

  40. Debono, M. et al. Cortisol as a marker for increased mortality in patients with incidental adrenocortical adenomas. J. Clin. Endocrinol. Metab. 99, 4462–4470 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kjellbom, A., Lindgren, O., Puvaneswaralingam, S., Londahl, M. & Olsen, H. Association between mortality and levels of autonomous cortisol secretion by adrenal incidentalomas: a cohort study. Ann. Intern. Med. 174, 1041–1049 (2021).

    PubMed  Article  Google Scholar 

  42. Prete, A. et al. Cardiometabolic disease burden and steroid excretion in benign adrenal tumors: a cross-sectional multicenter study. Ann. Intern. Med. 175, 325–334 (2022).

    PubMed  Article  Google Scholar 

  43. St-Jean, M., Ghorayeb, N. E., Bourdeau, I. & Lacroix, A. Aberrant G-protein coupled hormone receptor in adrenal diseases. Best. Pract. Res. Clin. Endocrinol. Metab. 32, 165–187 (2018).

    CAS  PubMed  Article  Google Scholar 

  44. Albiger, N. M. et al. An analysis of different therapeutic options in patients with Cushing’s syndrome due to bilateral macronodular adrenal hyperplasia: a single-centre experience. Clin. Endocrinol. 82, 808–815 (2015).

    CAS  Article  Google Scholar 

  45. Sasano, H. Localization of steroidogenic enzymes in adrenal cortex and its disorders. Endocr. J. 41, 471–482 (1994).

    CAS  PubMed  Article  Google Scholar 

  46. Faillot, S. et al. Genomic classification of benign adrenocortical lesions. Endocr. Relat. Cancer 28, 79–95 (2021). This article demonstrates the specific transcriptomic signature of PBMAH compared with other cortisol-producing adrenal lesions, such as PPNAD and adrenocortical adenomas, demonstrating its uniqueness.

    CAS  PubMed  Article  Google Scholar 

  47. Barreau, O. et al. Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach. J. Clin. Endocrinol. Metab. 97, E301–E311 (2012).

    CAS  PubMed  Article  Google Scholar 

  48. Assie, G. et al. Integrated genomic characterization of adrenocortical carcinoma. Nat. Genet. 46, 607–612 (2014).

    CAS  PubMed  Article  Google Scholar 

  49. Bourdeau, I. et al. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 23, 1575–1585 (2004).

    CAS  PubMed  Article  Google Scholar 

  50. Gagliardi, L. et al. Genome-wide gene expression profiling identifies overlap with malignant adrenocortical tumours and novel mechanisms of inefficient steroidogenesis in familial ACTH-independent macronodular adrenal hyperplasia. Endocr. Relat. Cancer 19, L19–L23 (2012).

    CAS  PubMed  Article  Google Scholar 

  51. Almeida, M. Q. et al. Activation of cyclic AMP signaling leads to different pathway alterations in lesions of the adrenal cortex caused by germline PRKAR1A defects versus those due to somatic GNAS mutations. J. Clin. Endocrinol. Metab. 97, E687–E693 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Berthon, A., Hannah-Shmouni, F., Maria, A. G., Faucz, F. R. & Stratakis, C. A. High expression of adrenal P450 aromatase (CYP19A1) in association with ARMC5-primary bilateral macronodular adrenocortical hyperplasia. J. Steroid Biochem. Mol. Biol. 191, 105316 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Agarwal, S. K. Multiple endocrine neoplasia type 1. Front. Horm. Res. 41, 1–15 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Gatta-Cherifi, B. et al. Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d’etude des Tumeurs Endocrines database. Eur. J. Endocrinol. 166, 269–279 (2012).

    CAS  PubMed  Article  Google Scholar 

  55. Langer, P. et al. Adrenal involvement in multiple endocrine neoplasia type 1. World J. Surg. 26, 891–896 (2002).

    PubMed  Article  Google Scholar 

  56. Waldmann, J. et al. Adrenal involvement in multiple endocrine neoplasia type 1: results of 7 years prospective screening. Langenbecks Arch. Surg. 392, 437–443 (2007).

    CAS  PubMed  Article  Google Scholar 

  57. Bodmer, W. F. et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328, 614–616 (1987).

    CAS  PubMed  Article  Google Scholar 

  58. Leppert, M. et al. The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 238, 1411–1413 (1987).

    CAS  PubMed  Article  Google Scholar 

  59. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Rowley, P. T. Inherited susceptibility to colorectal cancer. Annu. Rev. Med. 56, 539–554 (2005).

    CAS  PubMed  Article  Google Scholar 

  61. Cetta, F. et al. Thyroid carcinoma usually occurs in patients with familial adenomatous polyposis in the absence of biallelic inactivation of the adenomatous polyposis coli gene. J. Clin. Endocrinol. Metab. 86, 427–432 (2001).

    CAS  PubMed  Google Scholar 

  62. Gaujoux, S. et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin. Cancer Res. 16, 5133–5141 (2010).

    CAS  PubMed  Article  Google Scholar 

  63. Hsiao, H. P. et al. Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J. Clin. Endocrinol. Metab. 94, 2930–2937 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Marchesa, P., Fazio, V. W., Church, J. M. & McGannon, E. Adrenal masses in patients with familial adenomatous polyposis. Dis. Colon Rectum 40, 1023–1028 (1997).

    CAS  PubMed  Article  Google Scholar 

  65. Weinstein, L. S., Liu, J., Sakamoto, A., Xie, T. & Chen, M. Minireview: GNAS: normal and abnormal functions. Endocrinology 145, 5459–5464 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. Dumitrescu, C. E. & Collins, M. T. McCune-Albright syndrome. Orphanet J. Rare Dis. 3, 12 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  67. Carney, J. A., Young, W. F. & Stratakis, C. A. Primary bimorphic adrenocortical disease: cause of hypercortisolism in McCune-Albright syndrome. Am. J. Surg. Pathol. 35, 1311–1326 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  68. Fragoso, M. C. et al. Cushing’s syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J. Clin. Endocrinol. Metab. 88, 2147–2151 (2003).

    CAS  PubMed  Article  Google Scholar 

  69. Sudarshan, S., Pinto, P. A., Neckers, L. & Linehan, W. M. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer – a distinct form of hereditary kidney cancer. Nat. Clin. Pract. Urol. 4, 104–110 (2007).

    CAS  PubMed  Article  Google Scholar 

  70. Matyakhina, L. et al. Hereditary leiomyomatosis associated with bilateral, massive, macronodular adrenocortical disease and atypical Cushing syndrome: a clinical and molecular genetic investigation. J. Clin. Endocrinol. Metab. 90, 3773–3779 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. Lehtonen, H. J. et al. Increased risk of cancer in patients with fumarate hydratase germline mutation. J. Med. Genet. 43, 523–526 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. Soberg, K., Moen, L. V., Skalhegg, B. S. & Laerdahl, J. K. Evolution of the cAMP-dependent protein kinase (PKA) catalytic subunit isoforms. PLoS ONE 12, e0181091 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Lacroix, A. et al. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin. Endocrinol. 73, 1–15 (2010).

    CAS  Google Scholar 

  74. Mazzuco, T. L., Chabre, O., Feige, J. J. & Thomas, M. Aberrant expression of human luteinizing hormone receptor by adrenocortical cells is sufficient to provoke both hyperplasia and Cushing’s syndrome features. J. Clin. Endocrinol. Metab. 91, 196–203 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. Pralong, F. P. et al. Food-dependent Cushing’s syndrome: possible involvement of leptin in cortisol hypersecretion. J. Clin. Endocrinol. Metab. 84, 3817–3822 (1999).

    CAS  PubMed  Google Scholar 

  76. Cartier, D. et al. Overexpression of serotonin4 receptors in cisapride-responsive adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J. Clin. Endocrinol. Metab. 88, 248–254 (2003).

    CAS  PubMed  Article  Google Scholar 

  77. Louiset, E. et al. Expression of vasopressin receptors in ACTH-independent macronodular bilateral adrenal hyperplasia causing Cushing’s syndrome: molecular, immunohistochemical and pharmacological correlates. J. Endocrinol. 196, 1–9 (2008).

    CAS  PubMed  Article  Google Scholar 

  78. Lacroix, A., Tremblay, J., Rousseau, G., Bouvier, M. & Hamet, P. Propranolol therapy for ectopic β-adrenergic receptors in adrenal Cushing’s syndrome. N. Engl. J. Med. 337, 1429–1434 (1997).

    CAS  PubMed  Article  Google Scholar 

  79. Louiset, E. et al. Expression of serotonin7 receptor and coupling of ectopic receptors to protein kinase A and ionic currents in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome. J. Clin. Endocrinol. Metab. 91, 4578–4586 (2006).

    CAS  PubMed  Article  Google Scholar 

  80. Lacroix, A. et al. Gastric inhibitory polypeptide-dependent cortisol hypersecretion – a new cause of Cushing’s syndrome. N. Engl. J. Med. 327, 974–980 (1992).

    CAS  PubMed  Article  Google Scholar 

  81. Reznik, Y. et al. Food-dependent Cushing’s syndrome mediated by aberrant adrenal sensitivity to gastric inhibitory polypeptide. N. Engl. J. Med. 327, 981–986 (1992).

    CAS  PubMed  Article  Google Scholar 

  82. Pitsava, G. & Stratakis, C. A. Genetic alterations in benign adrenal tumors. Biomedicines 10, 1041 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Swords, F. M. et al. Impaired desensitization of a mutant adrenocorticotropin receptor associated with apparent constitutive activity. Mol. Endocrinol. 16, 2746–2753 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. Swords, F. M., Noon, L. A., King, P. J. & Clark, A. J. Constitutive activation of the human ACTH receptor resulting from a synergistic interaction between two naturally occurring missense mutations in the MC2R gene. Mol. Cell Endocrinol. 213, 149–154 (2004).

    CAS  PubMed  Article  Google Scholar 

  85. Hiroi, N. et al. Human ACTH hypersensitivity syndrome associated with abnormalities of the ACTH receptor gene. Clin. Endocrinol. 48, 129–134 (1998).

    CAS  Article  Google Scholar 

  86. Beuschlein, F. et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N. Engl. J. Med. 370, 1019–1028 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Carney, J. A., Lyssikatos, C., Lodish, M. B. & Stratakis, C. A. Germline PRKACA amplification leads to Cushing syndrome caused by 3 adrenocortical pathologic phenotypes. Hum. Pathol. 46, 40–49 (2015).

    CAS  PubMed  Article  Google Scholar 

  88. Lodish, M. B. et al. Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. Eur. J. Endocrinol. 172, 803–811 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Hannah-Shmouni, F., Faucz, F. R. & Stratakis, C. A. Alterations of phosphodiesterases in adrenocortical tumors. Front. Endocrinol. 7, 111 (2016).

    Article  Google Scholar 

  90. Rothenbuhler, A. et al. Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clin. Endocrinol. 77, 195–199 (2012).

    CAS  Article  Google Scholar 

  91. Libe, R. et al. Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin. Cancer Res. 14, 4016–4024 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Vezzosi, D. et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with ACTH-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J. Clin. Endocrinol. Metab. 97, E2063–E2069 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Correa, R. et al. The ARMC5 gene shows extensive genetic variance in primary macronodular adrenocortical hyperplasia. Eur. J. Endocrinol. 173, 435–440 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Elbelt, U. et al. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J. Clin. Endocrinol. Metab. 100, E119–E128 (2015).

    CAS  PubMed  Article  Google Scholar 

  95. Albiger, N. M. et al. A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype. Endocrine 55, 959–968 (2017).

    CAS  PubMed  Article  Google Scholar 

  96. Gagliardi, L. et al. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J. Clin. Endocrinol. Metab. 99, E1784–E1792 (2014).

    CAS  PubMed  Article  Google Scholar 

  97. Bourdeau, I. et al. ARMC5 mutations in a large French–Canadian family with cortisol-secreting β-adrenergic/vasopressin responsive bilateral macronodular adrenal hyperplasia. Eur. J. Endocrinol. 174, 85–96 (2016).

    CAS  PubMed  Article  Google Scholar 

  98. Yu, L. et al. ARMC5 mutations in familial and sporadic primary bilateral macronodular adrenal hyperplasia. PLoS ONE 13, e0191602 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. Rego, T. et al. ARMC5 mutation in a Portuguese family with primary bilateral macronodular adrenal hyperplasia (PBMAH). Endocrinol. Diabetes Metab. Case Rep. 2017, 16-0135 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Suzuki, S. et al. Germline deletion of Armc5 in familial primary macronodular adrenal hyperplasia. Endocr. Pract. 21, 1152–1160 (2015).

    PubMed  Article  Google Scholar 

  101. Stratakis, C. A. & Berthon, A. Molecular mechanisms of ARMC5 mutations in adrenal pathophysiology. Curr. Opin. Endocr. Metab. Res. 8, 104–111 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  102. Kyo, C. et al. ARMC5 alterations in primary macronodular adrenal hyperplasia (PMAH) and the clinical state of variant carriers. J. Endocr. Soc. 3, 1837–1846 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  103. Zhang, F., Lin, X. & Yu, X. Primary macronodular adrenal hyperplasia (PMAH) can be generated by a new ARMC5 germline variant (c.52C>T (p.Gln18X)). Endocr. J. 67, 1179–1186 (2020).

    CAS  PubMed  Article  Google Scholar 

  104. Drougat, L., Omeiri, H., Lefevre, L. & Ragazzon, B. Novel insights into the genetics and pathophysiology of adrenocortical tumors. Front. Endocrinol. 6, 96 (2015).

    Article  Google Scholar 

  105. Cavalcante, I. P. et al. The role of ARMC5 in human cell cultures from nodules of primary macronodular adrenocortical hyperplasia (PMAH). Mol. Cell Endocrinol. 460, 36–46 (2018).

    CAS  PubMed  Article  Google Scholar 

  106. Pintard, L., Willems, A. & Peter, M. Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 23, 1681–1687 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Hu, Y. et al. Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nat. Commun. 8, 13834 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Cavalcante, I. P. et al. Cullin 3 targets the tumor suppressor gene ARMC5 for ubiquitination and degradation. Endocr. Relat. Cancer 27, 221–230 (2020).

    CAS  PubMed  Article  Google Scholar 

  109. Wilkins, A., Ping, Q. & Carpenter, C. L. RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 18, 856–861 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Zhou, Z. et al. Stability of HIB-Cul3 E3 ligase adaptor HIB is regulated by self-degradation and availability of its substrates. Sci. Rep. 5, 12709 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Berthon, A. et al. Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function. Hum. Mol. Genet. 26, 3495–3507 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Groussin, L. et al. The ectopic expression of the gastric inhibitory polypeptide receptor is frequent in adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia, but rare in unilateral tumors. J. Clin. Endocrinol. Metab. 87, 1980–1985 (2002).

    CAS  PubMed  Article  Google Scholar 

  113. Bertherat, J. et al. In vivo and in vitro screening for illegitimate receptors in adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing’s syndrome: identification of two cases of gonadotropin/gastric inhibitory polypeptide-dependent hypercortisolism. J. Clin. Endocrinol. Metab. 90, 1302–1310 (2005).

    CAS  PubMed  Article  Google Scholar 

  114. Lecoq, A. L. et al. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight 2, e92184 (2017).

    PubMed Central  Article  Google Scholar 

  115. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    CAS  PubMed  Article  Google Scholar 

  116. Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013).

    CAS  PubMed  Article  Google Scholar 

  117. Lan, F., Nottke, A. C. & Shi, Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr. Opin. Cell Biol. 20, 316–325 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    CAS  PubMed  Article  Google Scholar 

  119. Shao, G. et al. Inhibition of lysine-specific demethylase 1 prevents proliferation and mediates cisplatin sensitivity in ovarian cancer cells. Oncol. Lett. 15, 9025–9032 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. Fang, R., Xu, J., Lin, H., Xu, X. & Tian, F. The histone demethylase lysine-specific demethylase-1-mediated epigenetic silence of KLF2 contributes to gastric cancer cell proliferation, migration, and invasion. Tumour Biol. 39, 1010428317698356 (2017).

    PubMed  Google Scholar 

  121. Zhu, D. et al. Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nat. Commun. 5, 3174 (2014).

    PubMed  Article  CAS  Google Scholar 

  122. Clark, E. A. et al. GR and LSD1/KDM1A-targeted gene activation requires selective H3K4me2 demethylation at enhancers. Cell Rep. 27, 3522–3532 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Bennesch, M. A., Segala, G., Wider, D. & Picard, D. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP. Nucleic Acids Res. 44, 8655–8670 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Whyte, W. A. et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482, 221–225 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Lacroix, A., Hamet, P. & Boutin, J. M. Leuprolide acetate therapy in luteinizing hormone-dependent Cushing’s syndrome. N. Engl. J. Med. 341, 1577–1581 (1999).

    CAS  PubMed  Article  Google Scholar 

  126. Jojima, T. et al. Genetic alteration of ARMC5 in a patient diagnosed with meningioma and primary macronodular adrenal hyperplasia: a case report. Eur. J. Endocrinol. 183, K7–K12 (2020).

    CAS  PubMed  Article  Google Scholar 

  127. Wei, X. et al. Germline lysine-specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma. Cancer Res. 78, 2747–2759 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Ferreira, M. J. et al. ARMC5 primary bilateral macronodular adrenal hyperplasia associated with a meningioma: a family report. Case Rep. Endocrinol. 2020, 8848151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shiroky, J. S., Lerner-Ellis, J. P., Govindarajan, A., Urbach, D. R. & Devon, K. M. Characteristics of adrenal masses in familial adenomatous polyposis. Dis. Colon Rectum 61, 679–685 (2018).

    PubMed  Article  Google Scholar 

  130. Brown, R. J., Kelly, M. H. & Collins, M. T. Cushing syndrome in the McCune-Albright syndrome. J. Clin. Endocrinol. Metab. 95, 1508–1515 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Shuch, B. et al. Adrenal nodular hyperplasia in hereditary leiomyomatosis and renal cell cancer. J. Urol. 189, 430–435 (2013).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Bouys and E. Pasmant from Institut Cochin (Université Paris Cité, Inserm U1016, CNRS UMR8104, Paris, France) for helpful discussions. J.B.’s laboratory was supported by the Agence Nationale de la Recherche (18-CE14-0008-01; ANR-21-CE14-0011-01) and the Fondation pour la Recherche Médicale (FRM EQU201903007854). M.C.F. and J.B. received funding from FAPESP-ANR (#2015/50192-9). M.R. was supported by a grant from the Else Kröner-Fresenius Stiftung (2012_A103 and 2015_A228) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Projektnummer 314061271-TRR 205). I.P.C. receives a fellowship from the Fondation pour la Recherche Médicale (SPF201809007096).

Author information

Authors and Affiliations

Authors

Contributions

J.B., A.B., I.P.C. and B.R. contributed to all aspects of the article. M.C.F. researched data for the article, contributed to discussion of the content and reviewed and/or edited the manuscript before submission. M.R. and C.A.S. contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jérôme Bertherat.

Ethics declarations

Competing interests

J.B. has received grants to his institution from Novartis, HRA Pharma and Recordati, and personal honoraria for consulting, lectures and meeting attendance from Novartis, Corcept, HRA Pharma and Recordati. C.A.S. holds patents on PRKAR1A, PDE11A and GPR101 function; he has also received support from ELPEN, Pfizer, Sandoz and Lundbeck pharmaceuticals. M.R. has received personal honoraria for consulting, lectures and advisory board membership from Novartis, Recordati, HRA Pharma, Crinetics and Ipsen. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Carla Scaroni, who co-reviewed with Filippo Ceccato, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, I.P., Berthon, A., Fragoso, M.C. et al. Primary bilateral macronodular adrenal hyperplasia: definitely a genetic disease. Nat Rev Endocrinol (2022). https://doi.org/10.1038/s41574-022-00718-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-022-00718-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing