Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The interplay between diabetes mellitus and menopause: clinical implications

Abstract

The menopausal transition is an impactful period in women’s lives, when the risk of cardiovascular disease is accelerated. Similarly, diabetes mellitus profoundly impacts cardiovascular risk. However, the interplay between menopause and diabetes mellitus has not been adequately studied. The menopausal transition is accompanied by metabolic changes that predispose to diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), as menopause results in increased risk of upper body adipose tissue accumulation and increased incidence of insulin resistance. Equally, diabetes mellitus can affect ovarian ageing, potentially causing women with type 1 diabetes mellitus and early-onset T2DM to experience menopause earlier than women without diabetes mellitus. Earlier age at menopause has been associated with a higher risk of T2DM later in life. Menopausal hormone therapy can reduce the risk of T2DM and improve glycaemic control in women with pre-existing diabetes mellitus; however, there is not enough evidence to support the administration of menopausal hormone therapy for diabetes mellitus prevention or control. This Review critically appraises studies published within the past few years on the interaction between diabetes mellitus and menopause and addresses all clinically relevant issues, such as the effect of menopause on the development of T2DM, and the management of both menopause and diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiology and implications of menopause.
Fig. 2: Effects of diabetes mellitus on ovarian ageing and menopause.
Fig. 3: Pathophysiological changes after menopause that predispose to the development of diabetes mellitus.
Fig. 4: Management of menopause and diabetes mellitus in women with diabetes mellitus.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. National Diabetes Statistics Report. cdc.gov https://www.cdc.gov/diabetes/data/statistics-report/index.html (2020).

  2. Mauvais-Jarvis, F., Manson, J. A. E., Stevenson, J. C. & Fonseca, V. A. Menopausal hormone therapy and type 2 diabetes prevention: Evidence, mechanisms, and clinical implications. Endocr. Rev. 38, 173–188 (2017). This review describes the mechanisms by which menopausal hormone therapy reduces the risk of incident T2DM.

    PubMed  PubMed Central  Google Scholar 

  3. Park, S. U., Walsh, L. & Berkowitz, K. M. Mechanisms of ovarian aging. Reproduction 162, R19–R33 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Anagnostis, P. et al. Early menopause and premature ovarian insufficiency are associated with increased risk of type 2 diabetes: a systematic review and meta-analysis. Eur. J. Endocrinol. 180, 41–50 (2019).

    CAS  PubMed  Google Scholar 

  5. Paschou, S. et al. Diabetes in menopause: risks and management. Curr. Vasc. Pharmacol. 17, 556–563 (2018).

    Google Scholar 

  6. Vryonidou, A., Paschou, S. A., Muscogiuri, G., Orio, F. & Goulis, D. G. Mechanisms in endocrinology: metabolic syndrome through the female life cycle. Eur. J. Endocrinol. 173, R153–R163 (2015).

    CAS  PubMed  Google Scholar 

  7. LeBlanc, E. S. et al. Reproductive history and risk of type 2 diabetes mellitus in postmenopausal women: findings from the Women’s Health Initiative. Menopause 24, 64–72 (2017). Women with a shorter reproductive lifespan (<30 years) have a 37% higher risk of T2DM than women with a normal reproductive lifespan (36–40 years).

    PubMed  PubMed Central  Google Scholar 

  8. Tatulashvili, S. et al. Gonadal hormonal factors before menopause and incident type 2 diabetes in women: a 22-year follow-up of 83 799 women from the E3N cohort study. J. Diabetes 13, 330–338 (2021).

    CAS  PubMed  Google Scholar 

  9. Slopien, R. et al. Menopause and diabetes: EMAS clinical guide. Maturitas 117, 6–10 (2018). This clinical guide describes the individualization of menopausal hormone therapy in women with diabetes mellitus.

    CAS  PubMed  Google Scholar 

  10. World Health Organization. Diabetes. WHO.int https://www.who.int/news-room/fact-sheets/detail/diabetes (2021).

  11. Paschou, S. A. et al. Therapeutic strategies for type 2 diabetes mellitus in women after menopause. Maturitas 126, 69–72 (2019).

    CAS  PubMed  Google Scholar 

  12. Lambrinoudaki, I. et al. Premature ovarian insufficiency: a toolkit for the primary care physician. Maturitas 147, 53–63 (2021).

    CAS  PubMed  Google Scholar 

  13. Skurnick, J. H., Weiss, G., Goldsmith, L. T., Santoro, N. & Crawford, S. Longitudinal changes in hypothalamic and ovarian function in perimenopausal women with anovulatory cycles: relationship with vasomotor symptoms. Fertil. Steril. 91, 1127–1134 (2009).

    PubMed  Google Scholar 

  14. Freedman, R. R. Physiology of hot flashes. Am. J. Hum. Biol. 13, 453–464 (2001).

    CAS  PubMed  Google Scholar 

  15. Rance, N. E., Dacks, P. A., Mittelman-Smith, M. A., Romanovsky, A. A. & Krajewski-Hall, S. J. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: a novel hypothesis on the mechanism of hot flushes. Front. Neuroendocrinol. 34, 211–227 (2013).

    CAS  PubMed  Google Scholar 

  16. Padilla, S. L., Johnson, C. W., Barker, F. D., Patterson, M. A. & Palmiter, R. D. A neural circuit underlying the generation of hot flushes. Cell Rep. 24, 271–277 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Freedman, R. R. Menopausal hot flashes: mechanisms, endocrinology, treatment. J. Steroid Biochem. Mol. Biol. 142, 115–120 (2014).

    CAS  PubMed  Google Scholar 

  18. Berendsen, H. H. The role of serotonin in hot flushes. Maturitas 36, 155–164 (2000).

    CAS  PubMed  Google Scholar 

  19. Sipe, K. et al. Serotonin 2A receptors modulate tail-skin temperature in two rodent models of estrogen deficiency-related thermoregulatory dysfunction. Brain Res. 1028, 191–202 (2004).

    CAS  PubMed  Google Scholar 

  20. Davis, S. R. et al. Menopause. Nat. Rev. Dis. Prim. 1, 15004 (2015).

    PubMed  Google Scholar 

  21. [No authors listed]. The 2020 genitourinary syndrome of menopause position statement of The North American Menopause Society. Menopause 27, 976–992 (2020).

    Google Scholar 

  22. Rozenberg, S. et al. Is there a role for menopausal hormone therapy in the management of postmenopausal osteoporosis? Osteoporos. Int. 31, 2271–2286 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabet, A., Danchin, N., Juillière, Y. & Olié, V. Acute coronary syndrome in women: rising hospitalizations in middle-aged French women, 2004–14. Eur. Heart J. 38, 1060–1065 (2017).

    PubMed  Google Scholar 

  24. Institute for Health Metrics and Evaluation. GBD: Results. IHME http://ghdx.healthdata.org/gbd-results-tool (2021).

  25. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Google Scholar 

  26. Maas, A. H. E. M. et al. Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists. Eur. Heart J. 42, 967–984 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. InterLACE Study Team. Variations in reproductive events across life: a pooled analysis of data from 505 147 women across 10 countries. Hum. Reprod. 34, 881–893 (2019).

    PubMed Central  Google Scholar 

  28. Tal, R. et al. AMH highly correlates with cumulative live birth rate in women with diminished ovarian reserve independent of age. J. Clin. Endocrinol. Metab. 106, 2754–2766 (2021).

    PubMed  Google Scholar 

  29. de Kat, A. C. et al. Can menopause prediction be improved with multiple AMH measurements? Results from the prospective Doetinchem Cohort Study. J. Clin. Endocrinol. Metab. 104, 5024–5031 (2019).

    PubMed  Google Scholar 

  30. Santoro, N., Roeca, C., Peters, B. A. & Neal-Perry, G. The menopause transition: signs, symptoms, and management options. J. Clin. Endocrinol. Metab. 106, 1–15 (2021).

    PubMed  Google Scholar 

  31. Dorman, J. S. et al. Menopause in type 1 diabetic women: is it premature? Diabetes 50, 1857–1862 (2001).

    CAS  PubMed  Google Scholar 

  32. Brand, J. S. et al. Diabetes and onset of natural menopause: results from the European Prospective Investigation into Cancer and Nutrition. Hum. Reprod. 30, 1491–1498 (2015). This study evaluates the effect of pre-existing diabetes mellitus on the timing of natural menopause.

    CAS  PubMed  Google Scholar 

  33. Yi, Y. et al. Women with type 1 diabetes (T1D) experience a shorter reproductive period compared with nondiabetic women: the Pittsburgh Epidemiology of Diabetes Complications (EDC) study and the Study of Women’s Health Across the Nation (SWAN). Menopause 28, 634–641 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Paschou, S. A. et al. Menstrual disorders and androgen-related traits in young women with type : a clinical study. Endocr. Pract. 26, 1269–1276 (2020).

    PubMed  Google Scholar 

  35. Sjöberg, L. et al. Menopause in women with type 1 diabetes. Menopause 18, 158–163 (2011).

    PubMed  Google Scholar 

  36. Yi, Y. et al. Association of age at diabetes complication diagnosis with age at natural menopause in women with type 1 diabetes: the Pittsburgh Epidemiology of Diabetes Complications (EDC) Study. J. Diabetes Complicat. 35, 107832 (2021).

    CAS  Google Scholar 

  37. Yarde, F. et al. Age at menopause in women with type 1 diabetes mellitus: the OVADIA study. Hum. Reprod. 30, 441–446 (2015).

    CAS  PubMed  Google Scholar 

  38. Kim, C. et al. Effect of glycemic treatment and microvascular complications on menopause in women with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. Diabetes Care 37, 701–708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Khalil, N. et al. Menopausal bone changes and incident fractures in diabetic women: a cohort study. Osteoporos. Int. 22, 1367–1376 (2011).

    CAS  PubMed  Google Scholar 

  40. Monterrosa-Castro, A. et al. Type II diabetes mellitus and menopause: a multinational study. Climacteric 16, 663–672 (2013).

    CAS  PubMed  Google Scholar 

  41. Gold, E. B. et al. Factors related to age at natural menopause: longitudinal analyses from SWAN. Am. J. Epidemiol. 178, 70–83 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Aydin, Z. D. Determinants of age at natural menopause in the Isparta Menopause and Health Study: premenopausal body mass index gain rate and episodic weight loss. Menopause 17, 494–505 (2010).

    PubMed  Google Scholar 

  43. Fogle, R. H., Stanczyk, F. Z., Zhang, X. & Paulson, R. J. Ovarian androgen production in postmenopausal women. J. Clin. Endocrinol. Metab. 92, 3040–3043 (2007).

    CAS  PubMed  Google Scholar 

  44. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    PubMed  Google Scholar 

  45. Carr, M. C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 88, 2404–2411 (2003).

    CAS  PubMed  Google Scholar 

  46. Greendale, G. A. et al. Changes in body composition and weight during the menopause transition. JCI Insight 4, e124865 (2019).

    PubMed Central  Google Scholar 

  47. Samargandy, S. et al. Abdominal visceral adipose tissue over the menopause transition and carotid atherosclerosis: the SWAN heart study. Menopause 28, 626–633 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Pu, D., Tan, R., Yu, Q. & Wu, J. Metabolic syndrome in menopause and associated factors: a meta-analysis. Climacteric 20, 583–591 (2017).

    CAS  PubMed  Google Scholar 

  49. Lovejoy, J. C., Champagne, C. M., De Jonge, L., Xie, H. & Smith, S. R. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32, 949–958 (2008).

    CAS  Google Scholar 

  50. Lee, C. G. et al. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J. Clin. Endocrinol. Metab. 94, 1104–1110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guthrie, J. R., Dennerstein, L. & Dudley, E. C. Weight gain and the menopause: a 5-year prospective study. Climacteric 2, 205–211 (1999).

    CAS  PubMed  Google Scholar 

  52. Rogers, N. H., Perfield, J. W. II, Strissel, K. J., Obin, M. S. & Greenberg, A. S. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology 150, 2161–2168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B. & Cooke, P. S. Increased adipose tissue in male and female estrogen receptor-α knockout mice. Proc. Natl Acad. Sci. USA 97, 12729–12734 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ainslie, D. A. et al. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int. J. Obes. Relat. Metab. Disord. 25, 1680–1688 (2001).

    CAS  PubMed  Google Scholar 

  55. Geraci, A. et al. Sarcopenia and menopause: the role of estradiol. Front. Endocrinol. 12, 682012 (2021).

    Google Scholar 

  56. Stute, P. et al. Management of depressive symptoms in peri- and postmenopausal women: EMAS position statement. Maturitas 131, 91–101 (2020).

    CAS  PubMed  Google Scholar 

  57. de Mutsert, R. et al. Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands Epidemiology of Obesity Study. Metab. Syndr. Relat. Disord. 16, 54–63 (2018).

    PubMed  Google Scholar 

  58. Janssen, I., Powell, L. H., Kazlauskaite, R. & Dugan, S. A. Testosterone and visceral fat in midlife women: the Study of Women’s Health Across the Nation (SWAN) fat patterning study. Obesity 18, 604–610 (2010).

    CAS  PubMed  Google Scholar 

  59. Zhu, L. et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 62, 424–434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tiano, J. P. & Mauvais-Jarvis, F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat. Rev. Endocrinol. 8, 342–351 (2012).

    CAS  PubMed  Google Scholar 

  61. Mauvais-Jarvis, F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab. 27, 844–855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Crețu, D., Cernea, S., Onea, C. R. & Pop, R.-M. Reproductive health in women with type 2 diabetes mellitus. Hormones 19, 291–300 (2020).

    PubMed  Google Scholar 

  63. Matthews, K. A., Gibson, C. J., El Khoudary, S. R. & Thurston, R. C. Changes in cardiovascular risk factors by hysterectomy status with and without oophorectomy: Study of Women’s Health Across the Nation. J. Am. Coll. Cardiol. 62, 191–200 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Matthews, K. A. et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 54, 2366–2373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Park, S. K. et al. Association between changes in oestradiol and follicle-stimulating hormone levels during the menopausal transition and risk of diabetes. Diabet. Med. 34, 531–538 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brand, J. S. et al. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care 36, 1012–1019 (2013). This study demonstrates that premature ovarian insufficiency increases the risk of T2DM by 32%.

    PubMed  PubMed Central  Google Scholar 

  67. Shen, T. Y., Strong, C. & Yu, T. Age at menopause and mortality in Taiwan: a cohort analysis. Maturitas 136, 42–48 (2020).

    PubMed  Google Scholar 

  68. Heianza, Y. et al. Effect of postmenopausal status and age at menopause on type 2 diabetes and prediabetes in Japanese individuals: Toranomon Hospital Health Management Center Study 17 (TOPICS 17). Diabetes Care 36, 4007–4014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Appiah, D., Winters, S. J. & Hornung, C. A. Bilateral oophorectomy and the risk of incident diabetes in postmenopausal women. Diabetes Care 37, 725–733 (2014).

    PubMed  Google Scholar 

  70. Mishra, S. R., Waller, M., Chung, H.-F. & Mishra, G. D. Epidemiological studies of the association between reproductive lifespan characteristics and risk of type 2 diabetes and hypertension: a systematic review. Maturitas 155, 14–23 (2022).

    PubMed  Google Scholar 

  71. Duncan, A. C. et al. The effect of estradiol and a combined estradiol/progestagen preparation on insulin sensitivity in healthy postmenopausal women. J. Clin. Endocrinol. Metab. 84, 2402–2407 (1999).

    CAS  PubMed  Google Scholar 

  72. Gray, K. E. et al. Vasomotor symptom characteristics: are they risk factors for incident diabetes? Menopause 25, 520–530 (2018). The risk of T2DM is higher in women with severe vasomotor symptoms than in women without severe vasomotor symptoms.

    PubMed  PubMed Central  Google Scholar 

  73. Herber-Gast, G. C. M. & Mishra, G. D. Early severe vasomotor menopausal symptoms are associated with diabetes. Menopause 21, 855–860 (2014).

    PubMed  Google Scholar 

  74. Thurston, R. C., Chang, Y., Mancuso, P. & Matthews, K. A. Adipokines, adiposity, and vasomotor symptoms during the menopause transition: findings from the Study of Women’s Health Across the Nation. Fertil. Steril. 100, 793–800 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Reeves, A. N. et al. Symptom clusters predict risk of metabolic-syndrome and diabetes in midlife: the Study of Women’s Health Across the Nation. Ann. Epidemiol. 58, 48–55 (2021).

    PubMed  PubMed Central  Google Scholar 

  76. Katainen, R. E., Engblom, J. R., Siirtola, T. J., Erkkola, R. U. & Polo-Kantola, P. Climacteric symptoms in middle-aged women with chronic somatic diseases. Maturitas 86, 17–24 (2016).

    PubMed  Google Scholar 

  77. Monteleone, P., Mascagni, G., Giannini, A., Genazzani, A. R. & Simoncini, T. Symptoms of menopause – global prevalence, physiology and implications. Nat. Rev. Endocrinol. 14, 199–215 (2018).

    PubMed  Google Scholar 

  78. Ma, Y. et al. All-cause, cardiovascular, and cancer mortality rates in postmenopausal white, black, Hispanic, and Asian women with and without diabetes in the United States: the Women’s Health Initiative, 1993–2009. Am. J. Epidemiol. 178, 1533–1541 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. et al. Sex differences in the association between diabetes and risk of cardiovascular disease, cancer, and all-cause and cause-specific mortality: a systematic review and meta-analysis of 5,162,654 participants. BMC Med. 17, 136 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Peters, S. A. E., Huxley, R. R. & Woodward, M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 57, 1542–1551 (2014).

    PubMed  Google Scholar 

  81. Yetkin, E. et al. Diabetes mellitus and female gender are the strongest predictors of poor collateral vessel development in patients with severe coronary artery stenosis. Angiogenesis 18, 201–207 (2015).

    CAS  PubMed  Google Scholar 

  82. Malmborg, M. et al. Does type 2 diabetes confer higher relative rates of cardiovascular events in women compared with men? Eur. Heart J. 41, 1346–1353 (2020). Despite higher absolute rates of cardiovascular disease in men, women have higher relative rates of cardiovascular disease associated with diabetes mellitus than men.

    PubMed  Google Scholar 

  83. Angoulvant, D. et al. Impact of gender on relative rates of cardiovascular events in patients with diabetes. Diabetes Metab. 47, 101226 (2021).

    PubMed  Google Scholar 

  84. Policardo, L. et al. Gender difference in diabetes-associated risk of first-ever and recurrent ischemic stroke. J. Diabetes Complicat. 29, 713–717 (2015).

    Google Scholar 

  85. Bancks, M. P. et al. Sex differences in cardiovascular risk factors before and after the development of type 2 diabetes and risk for incident cardiovascular disease. Diabetes Res. Clin. Pract. 166, 108334 (2020).

    PubMed  Google Scholar 

  86. Gersh, F. L., O’Keefe, J. H., Lavie, C. J. & Henry, B. M. The renin-angiotensin-aldosterone system in postmenopausal women: the promise of hormone therapy. Mayo Clin. Proc. 96, 3130–3141 (2021).

    CAS  PubMed  Google Scholar 

  87. Yoshida, Y. et al. Early menopause and cardiovascular disease risk in women with or without type 2 diabetes: a pooled analysis of 9,374 postmenopausal women. Diabetes Care 44, 2564–2572 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Greendale, G. A. et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from The Study of Women’s Health Across the Nation (SWAN). J. Bone Miner. Res. 27, 111–118 (2012).

    PubMed  Google Scholar 

  89. Anagnostis, P., Bosdou, J. K., Vaitsi, K., Goulis, D. G. & Lambrinoudaki, I. Estrogen and bones after menopause: a reappraisal of data and future perspectives. Hormones 20, 13–21 (2021).

    PubMed  Google Scholar 

  90. Hough, F. S., Pierroz, D. D., Cooper, C. & Ferrari, S. L. Mechanisms in endocrinology: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur. J. Endocrinol. 174, R127–R138 (2016).

    CAS  PubMed  Google Scholar 

  91. Shanbhogue, V. V., Mitchell, D. M., Rosen, C. J. & Bouxsein, M. L. Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol. 4, 159–173 (2016).

    CAS  PubMed  Google Scholar 

  92. Hanley, D. et al. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J. Bone Miner. Res. 18, 784–790 (2003).

    CAS  PubMed  Google Scholar 

  93. Chen, F. P., Kuo, S. F., Lin, Y. C., Fan, C. M. & Chen, J. F. Status of bone strength and factors associated with vertebral fracture in postmenopausal women with type 2 diabetes. Menopause 26, 182–188 (2019).

    PubMed  Google Scholar 

  94. Bonds, D. E. et al. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J. Clin. Endocrinol. Metab. 91, 3404–3410 (2006). Women with diabetes mellitus have 20% higher fracture risk than women without diabetes mellitus, independently of baseline BMD.

    CAS  PubMed  Google Scholar 

  95. Paul, J. et al. Do proximal hip geometry, trabecular microarchitecture, and prevalent vertebral fractures differ in postmenopausal women with type 2 diabetes mellitus? A cross-sectional study from a teaching hospital in southern India. Osteoporos. Int. 32, 1585–1593 (2021).

    CAS  PubMed  Google Scholar 

  96. Dytfeld, J. & Michalak, M. Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin. Exp. Res. 29, 301–309 (2017).

    PubMed  Google Scholar 

  97. Janghorbani, M., Feskanich, D., Willett, W. C. & Hu, F. Prospective study of diabetes and risk of hip fracture: the Nurses’ Nealth Study. Diabetes Care 29, 1573–1578 (2006).

    PubMed  Google Scholar 

  98. Almutlaq, N., Neyman, A. & DiMeglio, L. A. Are diabetes microvascular complications risk factors for fragility fracture? Curr. Opin. Endocrinol. Diabetes Obes. 28, 354–359 (2021).

    CAS  PubMed  Google Scholar 

  99. Thong, E. P. et al. The diabetes-fracture association in women with type 1 and type 2 diabetes is partially mediated by falls: a 15-year longitudinal study. Osteoporos. Int. 32, 1175–1184 (2021).

    CAS  PubMed  Google Scholar 

  100. Stuenkel, C. A. et al. Treatment of symptoms of the menopause: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 100, 3975–4011 (2015).

    CAS  PubMed  Google Scholar 

  101. Margolis, K. L. et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 47, 1175–1187 (2004). Menopausal hormone therapy reduces the risk of incident T2DM in women without T2DM at baseline.

    CAS  PubMed  Google Scholar 

  102. Kanaya, A. M. et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/Progestin Replacement Study: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 138, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  103. Espeland, M. A. et al. Effect of postmenopausal hormone therapy on glucose and insulin concentrations. Diabetes Care 21, 1589–1595 (1998).

    CAS  PubMed  Google Scholar 

  104. Salpeter, S. R. et al. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes, Obes. Metab. 8, 538–554 (2006).

    CAS  Google Scholar 

  105. Manson, J. A. E. et al. A prospective study of postmenopausal estrogen therapy and subsequent incidence of non-insulin-dependent diabetes mellitus. Ann. Epidemiol. 2, 665–673 (1992).

    CAS  PubMed  Google Scholar 

  106. De Lauzon-Guillain, B. et al. Menopausal hormone therapy and new-onset diabetes in the French Etude Epidemiologique de Femmes de la Mutuelle Générale de l’Education Nationale (E3N) cohort. Diabetologia 52, 2092–2100 (2009).

    PubMed  PubMed Central  Google Scholar 

  107. Mattiasson, I., Rendell, M., Törnquist, C., Jeppsson, S. & Hulthén, U. L. Effects of estrogen replacement therapy on abdominal fat compartments as related to glucose and lipid metabolism in early postmenopausal women. Horm. Metab. Res. 34, 583–588 (2002).

    CAS  PubMed  Google Scholar 

  108. Armeni, E. & Lambrinoudaki, I. Androgens and cardiovascular disease in women and men. Maturitas 104, 54–72 (2017).

    CAS  PubMed  Google Scholar 

  109. Kim, J. E. et al. Associations of postmenopausal hormone therapy with metabolic syndrome among diabetic and non-diabetic women. Maturitas 121, 76–82 (2019).

    CAS  PubMed  Google Scholar 

  110. Brussaard, H. E., Gevers Leuven, J. A., Frölich, M., Kluft, C. & Krans, H. M. J. Short-term oestrogen replacement therapy improves insulin resistance, lipids and fibrinolysis in postmenopausal women with NIDDM. Diabetologia 40, 843–849 (1997).

    CAS  PubMed  Google Scholar 

  111. Friday, K. E., Dong, C. & Fontenot, R. U. Conjugated equine estrogen improves glycemic control and blood lipoproteins in postmenopausal women with type 2 diabetes 1. J. Clin. Endocrinol. Metab. 86, 48–52 (2001).

    CAS  PubMed  Google Scholar 

  112. Andersson, B. et al. Estrogen replacement therapy decreases hyperandrogenicity and improves glucose homeostasis and plasma lipids in postmenopausal women with noninsulin-dependent diabetes mellitus 1. J. Clin. Endocrinol. Metab. 82, 638–643 (1997).

    CAS  PubMed  Google Scholar 

  113. Kim, J.-E. et al. Effects of menopausal hormone therapy on cardiovascular diseases and type 2 diabetes in middle-aged postmenopausal women: analysis of the Korea National Health Insurance Service Database. Menopause 28, 1225–1232 (2021).

    PubMed  Google Scholar 

  114. Mackay, L., Kilbride, L., Adamson, K. A. & Chisholm, J. Hormone replacement therapy for women with type 1 diabetes mellitus. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD008613.pub2 (2013).

    Article  PubMed  Google Scholar 

  115. Depypere, H. et al. A randomized trial on the effect of oral combined estradiol and drospirenone on glucose and insulin metabolism in healthy menopausal women with a normal oral glucose tolerance test. Maturitas 138, 36–41 (2020).

    CAS  PubMed  Google Scholar 

  116. Nie, L. et al. C-reactive protein mediates the effect of serum progesterone on obesity for men and postmenopausal women in Henan rural cohort study. J. Inflamm. Res. 14, 633–644 (2021).

    PubMed  PubMed Central  Google Scholar 

  117. Godsland, I. F. et al. Effects of low and high dose oestradiol and dydrogesterone therapy on insulin and lipoprotein metabolism in healthy postmenopausal women. Clin. Endocrinol. 60, 541–549 (2004).

    CAS  Google Scholar 

  118. Davidson, M. H. et al. Effects of continuous estrogen and estrogen-progestin replacement regimens on cardiovascular risk markers in postmenopausal women. Arch. Intern. Med. 160, 3315–3325 (2000).

    CAS  PubMed  Google Scholar 

  119. Shufelt, C. L. & Manson, J. E. Menopausal hormone therapy and cardiovascular disease: the role of formulation, dose, and route of delivery. J. Clin. Endocrinol. Metab. 106, 1245–1254 (2021). Transdermal oestrogens pose a lower risk of venous thromboembolism than oral oestrogens and micronized progesterone does not oppose the beneficial effects of oestrogens on cardiovascular risk factors.

    PubMed  PubMed Central  Google Scholar 

  120. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/Progestin Replacement Study (HERS) Research Group. JAMA 280, 605–613 (1998).

    CAS  PubMed  Google Scholar 

  121. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    CAS  PubMed  Google Scholar 

  122. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    CAS  PubMed  Google Scholar 

  123. Manson, J. A. E. et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA 310, 1353–1368 (2013).

    CAS  PubMed  Google Scholar 

  124. Boardman, H. M. P. et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane database Syst. Rev. https://doi.org/10.1002/14651858.CD002229.pub4 (2015).

    Article  PubMed  Google Scholar 

  125. Hodis, H. N. et al. Vascular effects of early versus late postmenopausal treatment with estradiol. N. Engl. J. Med. 374, 1221–1231 (2016). Menopausal hormone therapy within 6 years of the final menstrual period attenuates the progression of carotid atherosclerosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Santen, R. J. Use of cardiovascular age for assessing risks and benefits of menopausal hormone therapy. Menopause 24, 589–595 (2017).

    PubMed  Google Scholar 

  127. Rovinski, D., Ramos, R. B., Fighera, T. M., Casanova, G. K. & Spritzer, P. M. Risk of venous thromboembolism events in postmenopausal women using oral versus non-oral hormone therapy: a systematic review and meta-analysis. Thromb. Res. 168, 83–95 (2018).

    CAS  PubMed  Google Scholar 

  128. Paschou, S. & Papanas, N. Type 2 diabetes mellitus and menopausal hormone therapy: an update. Diabetes Ther. 10, 2313–2320 (2019).

    PubMed  PubMed Central  Google Scholar 

  129. Cosentino, F. et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 41, 255–323 (2020).

    PubMed  Google Scholar 

  130. Wang, B. et al. Unmasking fracture risk in type 2 diabetes: the association of longitudinal glycemic hemoglobin level and medications. J. Clin. Endocrinol. Metab. 107, e1390–e1401 (2022).

    PubMed  Google Scholar 

  131. Almourani, R., Chinnakotla, B., Patel, R., Kurukulasuriya, L. R. & Sowers, J. Diabetes and cardiovascular disease: an update. Curr. Diab. Rep. 19, 161 (2019).

    CAS  PubMed  Google Scholar 

  132. American Diabetes Association. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes 2021. Diabetes Care 44, S111–S124 (2021).

    Google Scholar 

  133. Sousa, G. R. et al. Glycemic control, cardiac autoimmunity, and long-term risk of cardiovascular disease in type 1 diabetes mellitus. Circulation 139, 730–743 (2019).

    PubMed  PubMed Central  Google Scholar 

  134. Giugliano, D., Maiorino, M. I., Bellastella, G., Chiodini, P. & Esposito, K. Glycemic control, preexisting cardiovascular disease, and risk of major cardiovascular events in patients with type 2 diabetes mellitus: systematic review with meta-analysis of cardiovascular outcome trials and intensive glucose control trials. J. Am. Heart Assoc. 8, e012356 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hidayat, K., Fang, Q.-L., Shi, B.-M. & Qin, L.-Q. Influence of glycemic control and hypoglycemia on the risk of fracture in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. Osteoporos. Int. 32, 1693–1704 (2021).

    CAS  PubMed  Google Scholar 

  136. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 3, 866–875 (2015).

    PubMed Central  Google Scholar 

  137. Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    CAS  PubMed  Google Scholar 

  138. Jensen, M. D. et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 63, 2985–3023 (2014).

    PubMed  Google Scholar 

  139. Ghaemi, F. et al. Effects of a Mediterranean diet on the development of diabetic complications: a longitudinal study from the nationwide diabetes report of the National Program for Prevention and Control of Diabetes (NPPCD 2016-2020). Maturitas 153, 61–67 (2021).

    PubMed  Google Scholar 

  140. Elhayany, A., Lustman, A., Abel, R., Attal-Singer, J. & Vinker, S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study. Diabetes Obes. Metab. 12, 204–209 (2010).

    CAS  PubMed  Google Scholar 

  141. Upadhyay, J. et al. Pharmacotherapy of type 2 diabetes: an update. Metab.: Clin. Exp. 78, 13–42 (2018).

    CAS  Google Scholar 

  142. Buse, J. B. et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43, 487–493 (2020).

    CAS  PubMed  Google Scholar 

  143. Singh, A. K. & Singh, R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: a systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab. Syndr. 14, 181–187 (2020).

    PubMed  Google Scholar 

  144. Raparelli, V. et al. Sex differences in cardiovascular effectiveness of newer glucose-lowering drugs added to metformin in type 2 diabetes mellitus. J. Am. Heart Assoc. 9, e012940 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. O’Donoghue, M. L. et al. The efficacy and safety of dapagliflozin in women and men with type 2 diabetes mellitus. Diabetologia 64, 1226–1234 (2021).

    PubMed  Google Scholar 

  146. Zinman, B. et al. Empagliflozin in women with type 2 diabetes and cardiovascular disease – an analysis of EMPA-REG OUTCOME®. Diabetologia 61, 1522–1527 (2018).

    PubMed  Google Scholar 

  147. Rådholm, K., Zhou, Z., Clemens, K., Neal, B. & Woodward, M. Effects of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes in women versus men. Diabetes Obes. Metab. 22, 263–266 (2020).

    PubMed  Google Scholar 

  148. Simkin-Silverman, L. R., Wing, R. R., Boraz, M. A. & Kuller, L. H. Lifestyle intervention can prevent weight gain during menopause: results from a 5-year randomized clinical trial. Ann. Behav. Med. 26, 212–220 (2003).

    PubMed  Google Scholar 

  149. Wu, L. et al. Effects of lifestyle intervention improve cardiovascular disease risk factors in community-based menopausal transition and early postmenopausal women in China. Menopause 21, 1263–1268 (2014).

    PubMed  Google Scholar 

  150. Wilding, J. P. H., Overgaard, R. V., Jacobsen, L. V., Jensen, C. B. & le Roux, C. W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab. 18, 491–499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Davies, M. J. et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA 314, 687–699 (2015).

    CAS  PubMed  Google Scholar 

  152. Petri, K. C. C., Ingwersen, S. H., Flint, A., Zacho, J. & Overgaard, R. V. Exposure-response analysis for evaluation of semaglutide dose levels in type 2 diabetes. Diabetes Obes. Metab. 20, 2238–2245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Paschou, S. A. et al. Type 2 diabetes and osteoporosis: a guide to optimal management. J. Clin. Endocrinol. Metab. 102, 3621–3634 (2017).

    PubMed  Google Scholar 

  154. Bonds, D. E. et al. The effect of conjugated equine oestrogen on diabetes incidence: the Women’s Health Initiative randomised trial. Diabetologia 49, 459–468 (2006).

    CAS  PubMed  Google Scholar 

  155. Pentti, K. et al. Hormone therapy protects from diabetes: the Kuopio osteoporosis risk factor and prevention study. Eur. J. Endocrinol. 160, 979–983 (2009).

    CAS  PubMed  Google Scholar 

  156. Gartlehner, G. et al. Hormone therapy for the primary prevention of chronic conditions in postmenopausal women evidence report and systematic review for the US Preventive Services Task Force. JAMA 318, 2234–2249 (2017).

    PubMed  Google Scholar 

  157. Prentice, R. L. et al. Dual-outcome intention-to-treat analyses in the Women’s Health Initiative randomized controlled hormone therapy trials. Am. J. Epidemiol. 189, 972–981 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Irene Lambrinoudaki.

Ethics declarations

Competing interests

S.A.P. has participated in clinical trials sponsored by NovoNordisk, Sanofi and Eli Lilly, and has received honoraria for advisory board membership or lectures from NovoNordisk, Sanofi, Bausch Health and Abbott. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Michael A. Nauck; Martha Hickey, who co-reviewed with Sarah Price; and the other, anonymous reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

A search was undertaken in the electronic databases PubMed (MEDLINE), Scopus, EMBASE and Cochrane Central Register of Controlled Trials (CENTRAL) for English-language publications through to 31 December 2021 using the following search terms: menopause; menopausal hormone therapy; diabetes mellitus; type 1 diabetes; type 2 diabetes; diabetes therapy; obesity; cardiovascular disease; cardiovascular risk factors. The literature search focused on systematic reviews and meta-analyses, randomized controlled trials (RCTs) and position statements. Further references, after a manual search in key journals in the fields of endocrinology, diabetology, menopause, cardiology and angiology, were also included.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrinoudaki, I., Paschou, S.A., Armeni, E. et al. The interplay between diabetes mellitus and menopause: clinical implications. Nat Rev Endocrinol 18, 608–622 (2022). https://doi.org/10.1038/s41574-022-00708-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00708-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing