Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical application of intermittent fasting for weight loss: progress and future directions

Abstract

Intermittent fasting diets have become very popular in the past few years, as they can produce clinically significant weight loss. These diets can be defined, in the simplest of terms, as periods of fasting alternating with periods of eating. The most studied forms of intermittent fasting include: alternate day fasting (0–500 kcal per ‘fast day’ alternating with ad libitum intake on ‘feast days’); the 5:2 diet (two fast days and five feast days per week) and time-restricted eating (only eating within a prescribed window of time each day). Despite the recent surge in the popularity of fasting, only a few studies have examined the health benefits of these diets in humans. The goal of this Review is to summarize these preliminary findings and give insights into the effects of intermittent fasting on body weight and risk factors for cardiometabolic diseases in humans. This Review also assesses the safety of these regimens, and offers some practical advice for how to incorporate intermittent fasting diets into everyday life. Recommendations for future research are also presented.

Key points

  • The three main forms of intermittent fasting (alternate day fasting, the 5:2 diet and time-restricted eating) produce mild to moderate weight loss (3–8% loss from baseline) over short durations (8–12 weeks).

  • The degree of weight loss achieved with intermittent fasting is on a par with that achieved with traditional dieting approaches (daily calorie restriction).

  • The ability of these intermittent fasting protocols to help to manage weight long-term is still poorly understood, as the majority of studies to date have run for short durations.

  • Some studies demonstrate that intermittent fasting improves cardiometabolic risk factors such as blood pressure, levels of LDL cholesterol and triglycerides, insulin resistance and HbA1c, while others show no benefit on these parameters.

  • Intermittent fasting is generally safe and produces few gastrointestinal, neurological, hormonal or metabolic adverse effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of intermittent fasting.
Fig. 2: Effects of intermittent fasting on cardiometabolic risk factors.

References

  1. Williamson, D. A., Bray, G. A. & Ryan, D. H. Is 5% weight loss a satisfactory criterion to define clinically significant weight loss? Obesity 23, 2319–2320 (2015).

    Article  PubMed  Google Scholar 

  2. Brody, J. E. The benefits of intermittent fasting. The New York Times (23 Feb 2020).

  3. Kohik, S. Why is intermittent fasting so popular? BBC News (3 Jun 2019).

  4. de Cabo, R. & Mattson, M. P. Effects of intermittent fasting on health, aging, and disease. N. Engl. J. Med. 381, 2541–2551 (2019).

    Article  PubMed  Google Scholar 

  5. Brandhorst, S. & Longo, V. D. Dietary restrictions and nutrition in the prevention and treatment of cardiovascular disease. Circ. Res. 124, 952–965 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    Article  PubMed  Google Scholar 

  8. Paoli, A., Tinsley, G., Bianco, A. & Moro, T. The influence of meal frequency and timing on health in humans: the role of fasting. Nutrients 11, 719 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  9. St-Onge, M. P. et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 135, e96–e121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harvie, M. & Howell, A. Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects–a narrative review of human and animal evidence. Behav. Sci. 7, 4 (2017).

    Article  PubMed Central  Google Scholar 

  11. Patterson, R. E. & Sears, D. D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 37, 371–393 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Tinsley, G. M. & La Bounty, P. M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 73, 661–674 (2015).

    Article  PubMed  Google Scholar 

  13. Stekovic, S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 31, 878–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Catenacci, V. A. et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity 24, 1874–1883 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, J. B. et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med. 42, 665–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cho, A. R. et al. Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: a pilot randomized controlled trial. Metabolism 93, 52–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Trepanowski, J. F. et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern. Med. 177, 930–938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoddy, K. K. et al. Meal timing during alternate day fasting: impact on body weight and cardiovascular disease risk in obese adults. Obesity 22, 2524–2531 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Antoni, R., Johnston, K. L., Collins, A. L. & Robertson, M. D. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants. Br. J. Nutr. 115, 951–959 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Harvie, M. N. et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int. J. Obes. 35, 714–727 (2011).

    Article  CAS  Google Scholar 

  21. Schubel, R. et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am. J. Clin. Nutr. 108, 933–945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carter, S., Clifton, P. M. & Keogh, J. B. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw. Open 1, e180756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cienfuegos, S. et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 32, 366–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Tinsley, G. M. et al. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur. J. Sport. Sci. 17, 200–207 (2017).

    Article  PubMed  Google Scholar 

  25. Tinsley, G. M. et al. Time-restricted feeding plus resistance training in active females: a randomized trial. Am. J. Clin. Nutr. 110, 628–640 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chow, L. S. et al. Time-restricted eating effects on body composition and metabolic measures in humans who are overweight: a feasibility study. Obesity 28, 860–869 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Wilkinson, M. J. et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31, 92–104.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Parvaresh, A. et al. Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: a randomized clinical trial. Complement. Ther. Med. 47, 102187 (2019).

    Article  PubMed  Google Scholar 

  29. Bhutani, S., Klempel, M. C., Kroeger, C. M., Trepanowski, J. F. & Varady, K. A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity 21, 1370–1379 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Bhutani, S. et al. Effect of exercising while fasting on eating behaviors and food intake. J. Int. Soc. Sports Nutr. 10, 50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Varady, K. A. et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr. J. 12, 146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fitzgerald, K. C. et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult. Scler. Relat. Disord. 23, 33–39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harvie, M. et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 110, 1534–1547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sundfor, T. M., Svendsen, M. & Tonstad, S. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial. Nutr. Metab. Cardiovasc. Dis. 28, 698–706 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Overland, J. et al. The safety and efficacy of weight loss via intermittent fasting or standard daily energy restriction in adults with type 1 diabetes and overweight or obesity: a pilot study. Obes. Med. 12, 13–17 (2018).

    Article  Google Scholar 

  36. Gabel, K. et al. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr. Healthy Aging 4, 345–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, S. et al. Does the weight loss efficacy of alternate day fasting differ according to sex and menopausal status? Nutr. Metab. Cardiovasc. Dis. 31, 641–649 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gabel, K. et al. Differential effects of alternate-day fasting versus daily calorie restriction on insulin resistance. Obesity 27, 1443–1450 (2019).

    CAS  PubMed  Google Scholar 

  39. Cioffi, I. et al. Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials. J. Transl. Med. 16, 371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harris, L., McGarty, A., Hutchison, L., Ells, L. & Hankey, C. Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis. Obes. Rev. 19, 1–13 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Headland, M., Clifton, P. M., Carter, S. & Keogh, J. B. Weight-loss outcomes: a systematic review and meta-analysis of intermittent energy restriction trials lasting a minimum of 6 months. Nutrients 8, 354 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  42. Willoughby, D., Hewlings, S. & Kalman, D. Body composition changes in weight loss: strategies and supplementation for maintaining lean body mass, a brief review. Nutrients 10, 1876 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  43. Heymsfield, S. B., Gonzalez, M. C., Shen, W., Redman, L. & Thomas, D. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule. Obes. Rev. 15, 310–321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pownall, H. J. et al. Changes in body composition over 8 years in a randomized trial of a lifestyle intervention: the look AHEAD study. Obesity 23, 565–572 (2015).

    Article  PubMed  Google Scholar 

  45. Ravussin, E. et al. A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1097–1104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moro, T. et al. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 14, 290 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Klempel, M. C., Bhutani, S., Fitzgibbon, M., Freels, S. & Varady, K. A. Dietary and physical activity adaptations to alternate day modified fasting: implications for optimal weight loss. Nutr. J. 9, 35 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Harvey, J., Howell, A., Morris, J. & Harvie, M. Intermittent energy restriction for weight loss: spontaneous reduction of energy intake on unrestricted days. Food Sci. Nutr. 6, 674–680 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Das, S. K. et al. Long-term effects of 2 energy-restricted diets differing in glycemic load on dietary adherence, body composition, and metabolism in CALERIE: a 1-y randomized controlled trial. Am. J. Clin. Nutr. 85, 1023–1030 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Jospe, M. R. et al. Intermittent fasting, Paleolithic, or Mediterranean diets in the real world: exploratory secondary analyses of a weight-loss trial that included choice of diet and exercise. Am. J. Clin. Nutr. 111, 503–514 (2020).

    Article  PubMed  Google Scholar 

  52. Kalam, F. et al. Beverage intake during alternate-day fasting: relationship to energy intake and body weight. Nutr. Health 25, 167–171 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sutton, E. F. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab. 27, 1212–1221.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lowe, D. A. et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern. Med. 180, 1491–1499 (2020).

    Article  PubMed  Google Scholar 

  55. Andersson, B., Wallin, G., Hedner, T., Ahlberg, A. C. & Andersson, O. K. Acute effects of short-term fasting on blood pressure, circulating noradrenaline and efferent sympathetic nerve activity. Acta Med. Scand. 223, 485–490 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Johnston, J. G., Speed, J. S., Jin, C. & Pollock, D. M. Loss of endothelin B receptor function impairs sodium excretion in a time- and sex-dependent manner. Am. J. Physiol. Ren. Physiol. 311, F991–F998 (2016).

    Article  CAS  Google Scholar 

  57. Rolland, C. & Broom, I. The effects of very-low-calorie diets on HDL: a review. Cholesterol 2011, 306278 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Kodama, S. et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: a meta-analysis. Arch. Intern. Med. 167, 999–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Leon, A. S. & Sanchez, O. A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 33, S502–S515 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Browning, J. D., Baxter, J., Satapati, S. & Burgess, S. C. The effect of short-term fasting on liver and skeletal muscle lipid, glucose, and energy metabolism in healthy women and men. J. Lipid Res. 53, 577–586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Halberg, N. et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol. 99, 2128–2136 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Salgin, B. et al. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. Am. J. Physiol. Endocrinol. Metab. 296, E454–E461 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Freckmann, G. et al. Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals. J. Diabetes Sci. Technol. 1, 695–703 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cervantes Gracia, K., Llanas-Cornejo, D. & Husi, H. CVD and oxidative stress. J. Clin. Med. 6, 22 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  65. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Maritim, A. C., Sanders, R. A. & Watkins, J. B. 3rd Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Siti, H. N., Kamisah, Y. & Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 71, 40–56 (2015).

    Article  CAS  Google Scholar 

  68. Tsalamandris, S. et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur. Cardiol. 14, 50–59 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Rains, J. L. & Jain, S. K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 50, 567–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Zaulkffali, A. S. et al. Vitamins D and E stimulate the PI3K-AKT signalling pathway in insulin-resistant SK-N-SH neuronal cells. Nutrients 11, 2525 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  73. Manning, P. J. et al. Effect of high-dose vitamin E on insulin resistance and associated parameters in overweight subjects. Diabetes Care 27, 2166–2171 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Gabel, K., Hoddy, K. K. & Varady, K. A. Safety of 8-h time restricted feeding in adults with obesity. Appl. Physiol. Nutr. Metab. 44, 107–109 (2019).

    Article  PubMed  Google Scholar 

  75. Hoddy, K. K. et al. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr. J. 14, 44 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Blau, J. N., Kell, C. A. & Sperling, J. M. Water-deprivation headache: a new headache with two variants. Headache 44, 79–83 (2004).

    Article  PubMed  Google Scholar 

  77. Spigt, M. G. et al. Increasing the daily water intake for the prophylactic treatment of headache: a pilot trial. Eur. J. Neurol. 12, 715–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Akasheh, R. T. et al. Weight loss efficacy of alternate day fasting versus daily calorie restriction in subjects with subclinical hypothyroidism: a secondary analysis. Appl. Physiol. Nutr. Metab. 45, 340–343 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Heilbronn, L. K., Smith, S. R., Martin, C. K., Anton, S. D. & Ravussin, E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am. J. Clin. Nutr. 81, 69–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Jebeile, H. et al. Intermittent energy restriction is a feasible, effective, and acceptable intervention to treat adolescents with obesity. J. Nutr. 149, 1189–1197 (2019).

    Article  PubMed  Google Scholar 

  81. Lister, N. B. et al. Fast track to health – intermittent energy restriction in adolescents with obesity. A randomised controlled trial study protocol. Obes. Res. Clin. Pract. 14, 80–90 (2020).

    Article  PubMed  Google Scholar 

  82. Vidmar, A. P., Goran, M. I. & Raymond, J. K. Time-limited eating in pediatric patients with obesity: a case series. J. Food Sci. Nutr. Res. 2, 236–244 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Culbert, K. M., Racine, S. E. & Klump, K. L. The influence of gender and puberty on the heritability of disordered eating symptoms. Curr. Top. Behav. Neurosci. 6, 177–185 (2011).

    Article  PubMed  Google Scholar 

  84. Klump, K. L. Puberty as a critical risk period for eating disorders: a review of human and animal studies. Horm. Behav. 64, 399–410 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Klump, K. L., Culbert, K. M., O’Connor, S., Fowler, N. & Burt, S. A. The significant effects of puberty on the genetic diathesis of binge eating in girls. Int. J. Eat. Disord. 50, 984–989 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jebeile, H. et al. Treatment of obesity, with a dietary component, and eating disorder risk in children and adolescents: a systematic review with meta-analysis. Obes. Rev. 20, 1287–1298 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Antoni, R., Johnston, K. L., Collins, A. L. & Robertson, M. D. Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants. Br. J. Nutr. 119, 507–516 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Chaix, A., Manoogian, E. N. C., Melkani, G. C. & Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr. 39, 291–315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wegman, M. P. et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 18, 162–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Apolzan, J. W., Carnell, N. S., Mattes, R. D. & Campbell, W. W. Inadequate dietary protein increases hunger and desire to eat in younger and older men. J. Nutr. 137, 1478–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Leidy, H. J., Tang, M., Armstrong, C. L., Martin, C. B. & Campbell, W. W. The effects of consuming frequent, higher protein meals on appetite and satiety during weight loss in overweight/obese men. Obesity 19, 818–824 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Weigle, D. S. et al. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 82, 41–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Cava, E., Yeat, N. C. & Mittendorfer, B. Preserving healthy muscle during weight loss. Adv. Nutr. 8, 511–519 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mettler, S., Mitchell, N. & Tipton, K. D. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med. Sci. Sports Exerc. 42, 326–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Swithers, S. E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 24, 431–441 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hartmann-Boyce, J. et al. Cognitive and behavioural strategies for weight management in overweight adults: results from the Oxford Food and Activity Behaviours (OxFAB) cohort study. PLoS ONE 13, e0202072 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Kelley, C. P., Sbrocco, G. & Sbrocco, T. Behavioral modification for the management of obesity. Prim. Care 43, 159–175 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Teixeira, P. J. et al. Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 13, 84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ghelani, D. P., Moran, L. J., Johnson, C., Mousa, A. & Naderpoor, N. Mobile apps for weight management: a review of the latest evidence to inform practice. Front. Endocrinol. 11, 412 (2020).

    Article  Google Scholar 

  100. Carter, S., Clifton, P. M. & Keogh, J. B. Intermittent energy restriction in type 2 diabetes: a short discussion of medication management. World J. Diabetes 7, 627–630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Grajower, M. M. & Horne, B. D. Clinical management of intermittent fasting in patients with diabetes mellitus. Nutrients 11, 873 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  102. Varady, K. A., Bhutani, S., Church, E. C. & Klempel, M. C. Short-term modified alternate-day fasting: a novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 90, 1138–1143 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Carlson, O. et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56, 1729–1734 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Higgins, J. P. et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343, d5928 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the participants in the trials discussed in this Review for their time and effort. The authors acknowledge support from the National Institute of Diabetes and Digestive and Kidney Diseases (grant no. R01DK119783). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

K.A.V., S.C., M.E. and K.G. contributed to all aspects of the preparation and writing of this Review.

Corresponding author

Correspondence to Krista A. Varady.

Ethics declarations

Competing interests

K.A.V. received author fees from Hachette Book Group for the book, The Every Other Day Diet. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks M. Harvie, K. Petersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varady, K.A., Cienfuegos, S., Ezpeleta, M. et al. Clinical application of intermittent fasting for weight loss: progress and future directions. Nat Rev Endocrinol 18, 309–321 (2022). https://doi.org/10.1038/s41574-022-00638-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-022-00638-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing